1
|
Patel TP, Jun JY, Seo AY, Levi NJ, Elizondo DM, Chen J, Wong AM, Tugarinov N, Altman EK, Gehle DB, Jung SM, Patel P, Ericson M, Haskell-Luevano C, Demby TC, Cougnoux A, Wolska A, Yanovski JA. Melanocortin 3 receptor regulates hepatic autophagy and systemic adiposity. Nat Commun 2025; 16:1690. [PMID: 39956805 PMCID: PMC11830824 DOI: 10.1038/s41467-025-56936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Systemic lipid homeostasis requires hepatic autophagy, a major cellular program for intracellular fat recycling. Here, we find melanocortin 3 receptor (MC3R) regulates hepatic autophagy in addition to its previously established CNS role in systemic energy partitioning and puberty. Mice with Mc3r deficiency develop obesity with hepatic triglyceride accumulation and disrupted hepatocellular autophagosome turnover. Mice with partially inactive human MC3R due to obesogenic variants demonstrate similar hepatic autophagic dysfunction. In vitro and in vivo activation of hepatic MC3R upregulates autophagy through LC3II activation, TFEB cytoplasmic-to-nuclear translocation, and subsequent downstream gene activation. MC3R-deficient hepatocytes had blunted autophagosome-lysosome docking and lipid droplet clearance. Finally, the liver-specific rescue of Mc3r was sufficient to restore hepatocellular autophagy, improve hepatocyte mitochondrial function and systemic energy expenditures, reduce adipose tissue lipid accumulation, and partially restore body weight in both male and female mice. We thus report a role for MC3R in regulating hepatic autophagy and systemic adiposity.
Collapse
Affiliation(s)
- Tushar P Patel
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Arnold Y Seo
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Noah J Levi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Diana M Elizondo
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Jocelyn Chen
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Adrian M Wong
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Nicol Tugarinov
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Elizabeth K Altman
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Daniel B Gehle
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Sun Min Jung
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Pooja Patel
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Mark Ericson
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Tamar C Demby
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Xiao H, Song X, Wang P, Li W, Qin S, Huang C, Wu B, Jia B, Gao Q, Song Z. Termite Fungus Comb Polysaccharides Alleviate Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice by Regulating Hepatic Glucose/Lipid Metabolism and the Gut Microbiota. Int J Mol Sci 2024; 25:7430. [PMID: 39000541 PMCID: PMC11242180 DOI: 10.3390/ijms25137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weilin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Senhua Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaofu Huang
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Beimin Wu
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Bao Jia
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Qionghua Gao
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Hughey CC, Bracy DP, Rome FI, Goelzer M, Donahue EP, Viollet B, Foretz M, Wasserman DH. Exercise training adaptations in liver glycogen and glycerolipids require hepatic AMP-activated protein kinase in mice. Am J Physiol Endocrinol Metab 2024; 326:E14-E28. [PMID: 37938177 PMCID: PMC11193517 DOI: 10.1152/ajpendo.00289.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.
Collapse
Affiliation(s)
- Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Ferrol I Rome
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Liu P, Li M, Wu W, Liu A, Hu H, Liu Q, Yi C. Protective effect of omega-3 polyunsaturated fatty acids on sepsis via the AMPK/mTOR pathway. PHARMACEUTICAL BIOLOGY 2023; 61:306-315. [PMID: 36694426 PMCID: PMC9879202 DOI: 10.1080/13880209.2023.2168018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
CONTEXT Sepsis is a systemic inflammatory response caused by infection, with high morbidity and mortality. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have reported biological activities. OBJECTIVE This study explored the signaling pathways through which ω-3 PUFAs protect against sepsis-induced multiorgan failure. MATERIALS AND METHODS Septic Sprague-Dawley (SD) rat model was established by the cecum ligation perforation (CLP) method. Rats were divided into control, sham, model, parenteral ω-3 PUFAs (0.5 g/kg) treatment, ω-3 PUFAs (0.5 g/kg) + AMPK inhibitor Compound C (30 mg/kg) treatment, and ω-3 PUFAs (0.5 g/kg) + mTOR activator MHY1485 (10 mg/kg) treatment groups. The serum inflammatory cytokines were measured using ELISA. Organ damage-related markers cTnI, CK, CK-MB, Cr, BUN, ALT, and AST were measured using an automated chemical analyzer. The AMPK/mTOR pathway in liver, kidney, and myocardial tissues was detected using western blot and qRT-PCR methods. RESULTS CLP treatment enhanced the secretion of pro-inflammatory cytokines and multi-organ related markers, along with increased p-AMPK/AMPK ratio (from 0.47 to 0.87) and decreased p-mTOR/mTOR ratio (from 0.33 to 0.12) in rats. The inflammation response and multi-organ injury induced by CLP treatment could be partially counteracted by 0.5 g/kg parenteral ω-3 PUFA treatment. The activated AMPK/mTOR pathway in CLP-induced rats was further promoted. Finally, Compound C and MHY1485 could reverse the effects of parenteral ω-3 PUFA treatment on sepsis rats. DISCUSSION AND CONCLUSION ω-3 PUFAs ameliorated sepsis development by activating the AMPK/mTOR pathway, serving as a potent therapeutic agent for sepsis. Further in vivo studies may validate potential clinical use.
Collapse
Affiliation(s)
- Peng Liu
- Wuhan Fourth Hospital, Wuhan, China
| | - Ming Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Wei Wu
- Wuhan Fourth Hospital, Wuhan, China
| | - Anjie Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Qin Liu
- Wuhan Fourth Hospital, Wuhan, China
| | | |
Collapse
|
5
|
Sun L, Lu J, Yao D, Li X, Cao Y, Gao J, Liu J, Zheng T, Wang H, Zhan X. Effect of DHCR7 for the co-occurrence of hypercholesterolemia and vitamin D deficiency in type 2 diabetes: Perspective of health prevention. Prev Med 2023; 173:107576. [PMID: 37329988 DOI: 10.1016/j.ypmed.2023.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease caused by multiple factors, which are often accompanied by the disorder of glucose and lipid metabolism and the lack of vitamin D.Over the years, researchers have conducted numerous studies into the pathogenesis and prevention strategies of diabetes. In this study, diabetic SD rats were randomly divided into type 2 diabetes group, vitamin D intervention group, 7-dehydrocholesterole reductase (DHCR7) inhibitor intervention group, simvastatin intervention group, and naive control group. Before and 12 weeks after intervention, liver tissue was extracted to isolate hepatocytes. Compared with naive control group, in the type 2 diabetic group without interference, the expression of DHCR7 increased, the level of 25(OH)D3 decreased, the level of cholesterol increased. In the primary cultured naive and type 2 diabetic hepatocytes, the expression of genes related to lipid metabolism and vitamin D metabolism were differently regulated in each of the 5 treatment groups. Overall, DHCR7 is an indicator for type 2 diabetic glycolipid metabolism disorder and vitamin D deficiency. Targeting DHCR7 will help with T2DM therapy.The management model of comprehensive health intervention can timely discover the disease problems of diabetes patients and high-risk groups and reduce the incidence of diabetes.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixuan Lu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xinyu Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Cao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Gao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangwen Liu
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Tiansheng Zheng
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, China
| | - Xiaorong Zhan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Yao Y, Yang Y, Wang H, Jiang Z, Ma H. Dehydroepiandrosterone alleviates oleic acid-induced lipid metabolism disorders through activation of AMPK-mTOR signal pathway in primary chicken hepatocytes. Poult Sci 2022; 102:102385. [PMID: 36565630 PMCID: PMC9800306 DOI: 10.1016/j.psj.2022.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 μM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,Corresponding author:
| |
Collapse
|
7
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
8
|
Virginia DM, Patramurti C, Fenty, Setiawan CH, Julianus J, Hendra P, Susanto NAP. Single Nucleotide Polymorphism in the 3' Untranslated Region of PRKAA2 on Cardiometabolic Parameters in Type 2 Diabetes Mellitus Patients Who Received Metformin. Ther Clin Risk Manag 2022; 18:349-357. [PMID: 35414746 PMCID: PMC8995000 DOI: 10.2147/tcrm.s349900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose This study aimed to explore the association of rs857148 A>C as 3'UTR variants with blood pressure, HbA1c profile, and lipid profiles as cardiometabolic parameters among patients with T2DM receiving metformin. Patients and Methods This cross-sectional analytic research was conducted with 114 consecutively selected patients with T2DM. Polymerase chain reaction-restriction fragment length polymorphism was conducted to determine rs857148. A total of 108 patients fulfilled inclusion and exclusion criteria. Results Genotype distribution agreed with the Hardy Weinberg Equation for Equilibrium (p>0.05) but wildtype allele was found as the minor allele. Subjects with CC genotype and C allele had enhanced HbA1c levels (OR=7.12; 95% CI=1.05-48.26; p=0.04; OR=1.66; 95% CI=1.06-2.60; p=0.03, respectively). It was confirmed by dominant model whereas subjects with AA tended to have reduced HbA1c compared to AC+CC genotype (OR=0.15; 95% CI=0.02-0.97; p=0.047). AC genotype had significant correlation to total cholesterol (OR=1.05; 95% CI=1.01-1.10; p=0.03) compared to AA genotype. Conclusion We conclude that polymorphism of rs87148, specifically CC genotype and C allele, has a significant association with HbA1c and total cholesterol after considering oral hypoglycemia agent dose, age, gender, and combination therapy, compared to AA genotype. Future studies that involve a larger sample population and more rigorous selection criteria are required.
Collapse
Affiliation(s)
- Dita Maria Virginia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Christine Patramurti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Fenty
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
- Bethesda Lempuyangwangi Hospital, Yogyakarta, Indonesia
| | - Christianus Heru Setiawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Jeffry Julianus
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Phebe Hendra
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | | |
Collapse
|
9
|
Simino LAP, Panzarin C, Fontana MF, de Fante T, Geraldo MV, Ignácio-Souza LM, Milanski M, Torsoni MA, Ross MG, Desai M, Torsoni AS. MicroRNA Let-7 targets AMPK and impairs hepatic lipid metabolism in offspring of maternal obese pregnancies. Sci Rep 2021; 11:8980. [PMID: 33903707 PMCID: PMC8076304 DOI: 10.1038/s41598-021-88518-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nutritional status during gestation may lead to a phenomenon known as metabolic programming, which can be triggered by epigenetic mechanisms. The Let-7 family of microRNAs were one of the first to be discovered, and are closely related to metabolic processes. Bioinformatic analysis revealed that Prkaa2, the gene that encodes AMPK α2, is a predicted target of Let-7. Here we aimed to investigate whether Let-7 has a role in AMPKα2 levels in the NAFLD development in the offspring programmed by maternal obesity. Let-7 levels were upregulated in the liver of newborn mice from obese dams, while the levels of Prkaa2 were downregulated. Let-7 levels strongly correlated with serum glucose, insulin and NEFA, and in vitro treatment of AML12 with glucose and NEFA lead to higher Let-7 expression. Transfection of Let-7a mimic lead to downregulation of AMPKα2 levels, while the transfection with Let-7a inhibitor impaired both NEFA-mediated reduction of Prkaa2 levels and the fat accumulation driven by NEFA. The transfection of Let-7a inhibitor in ex-vivo liver slices from the offspring of obese dams restored phospho-AMPKα2 levels. In summary, Let-7a appears to regulate hepatic AMPKα2 protein levels and lead to the early hepatic metabolic disturbances in the offspring of obese dams.
Collapse
Affiliation(s)
- Laís A P Simino
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil.
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marina F Fontana
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Murilo V Geraldo
- Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Letícia M Ignácio-Souza
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Michael G Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| |
Collapse
|
10
|
Kim JK, Cho IJ, Kim EO, Lee DG, Jung DH, Ki SH, Ku SK, Kim SC. Hemistepsin A inhibits T0901317-induced lipogenesis in the liver. BMB Rep 2021. [PMID: 32843130 PMCID: PMC7907741 DOI: 10.5483/bmbrep.2021.54.2.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jae Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Eun Ok Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Dae Geon Lee
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Dae Hwa Jung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
- Hani Bio Co., Ltd, Daegu 41059, Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| |
Collapse
|
11
|
Li X, Hu X, Pan T, Dong L, Ding L, Wang Z, Song R, Wang X, Wang N, Zhang Y, Wang J, Yang B. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed Pharmacother 2021; 133:110802. [PMID: 33202286 DOI: 10.1016/j.biopha.2020.110802] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Hyperlipidaemia is one of the major risk factors for atherosclerosis, coronary heart disease, stroke and diabetes. In the present study, we synthesized a new anthraquinone compound, 1,8-dihydroxy-3-succinic acid monoethyl ester-6-methylanthraquinone, and named it Kanglexin (KLX). The aim of this study was to evaluate whether KLX has a lipid-lowering effect and to explore the potential molecular mechanism. In this study, Sprague-Dawley rats were fed a high fat diet (HFD) for 5 weeks to establish a hyperlipidaemia model; then, the rats were orally administered KLX (20, 40, and 80 mg kg-1·d-1) or atorvastatin calcium (AT, 10 mg kg-1·d-1) once a day for 2 weeks. KLX had prominent effects on reducing blood lipids, hepatic lipid accumulation, body weight and the ratio of liver weight/body weight. Furthermore, KLXdramatically reduced the total cholesterol (TC) and triglyceride (TG) levels and lipid accumulation in a HepG2 cell model of dyslipidaemia induced by 1 mmol/L oleic acid (OA). KLX may decrease lipid levels by phosphorylating adenosine monophosphate-activated protein kinase (AMPK) and the downstream sterol regulatory element binding protein 2 (SREBP-2)/proprotein convertase subtilisin/kexin type 9 (PCSK9)/low-density lipoprotein receptor (LDLR) signalling pathway in the HFD rats and OA-treated HepG2 cells. The effects of KLX on the AMPK/SREBP-2/PCSK9/LDLR signalling pathway were abolished when AMPK was inhibited by compound C (a specific AMPK inhibitor) in HepG2 cells. In summary, KLX has an efficient lipid-lowering effect mediated by activation of the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Our findings may provide new insight into and evidence for the discovery of a new lipid-lowering drug for the prevention and treatment of hyperlipidaemia, fatty liver, and cardiovascular disease in the clinic.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xueling Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Tengfei Pan
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Lei Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Lili Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical CO. LTD, Jiangsu, Lianyungang 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang 222001, China.
| | - Rui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xiuzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
12
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Morrow NM, Burke AC, Samsoondar JP, Seigel KE, Wang A, Telford DE, Sutherland BG, O'Dwyer C, Steinberg GR, Fullerton MD, Huff MW. The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. J Lipid Res 2020; 61:387-402. [PMID: 31964763 DOI: 10.1194/jlr.ra119000542] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Indexed: 01/05/2023] Open
Abstract
Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1 -/-), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1 -/- hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1 -/-, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms.
Collapse
Affiliation(s)
- Nadya M Morrow
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Amy C Burke
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Joshua P Samsoondar
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Kyle E Seigel
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Andrew Wang
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7 .,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
14
|
Ghorbani P, Smith TK, Fullerton MD. Does prenylation predict progression in NAFLD? J Pathol 2018; 247:283-286. [PMID: 30374976 DOI: 10.1002/path.5190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) often develops in concert with related metabolic diseases, such as obesity, dyslipidemia and insulin resistance. Prolonged lipid accumulation and inflammation can progress to non-alcoholic steatohepatitis (NASH). Although factors associated with the development of NAFLD are known, triggers for the progression of NAFLD to NASH are poorly understood. Recent findings published in The Journal of Pathology reveal the possible regulation of NASH progression by metabolites of the mevalonate pathway. Mevalonate can be converted into the isoprenoids farnesyldiphosphate (FPP) and geranylgeranyl diphosphate (GGPP). GGPP synthase (GGPPS), the enzyme that converts FPP to GGPP, is dysregulated in humans and mice during NASH. Both FPP and GGPP can be conjugated to proteins through prenylation, modifying protein function and localization. Deletion or knockdown of GGPPS favors FPP prenylation (farnesylation) and augments the function of liver kinase B1, an upstream kinase of AMP-activated protein kinase (AMPK). Despite increased AMPK activation, livers in Ggpps-deficient mice on a high-fat diet poorly oxidize lipids due to mitochondrial dysfunction. Although work from Liu et al provides evidence as to the potential importance of the prenylation portion of the mevalonate pathway during NAFLD, future studies are necessary to fully grasp any therapeutic or diagnostic potential. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peyman Ghorbani
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Kt Smith
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D Fullerton
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Leng J, Wang Z, Fu CL, Zhang J, Ren S, Hu JN, Jiang S, Wang YP, Chen C, Li W. NF-κB and AMPK/PI3K/Akt signaling pathways are involved in the protective effects of Platycodon grandiflorum
saponins against acetaminophen-induced acute hepatotoxicity in mice. Phytother Res 2018; 32:2235-2246. [DOI: 10.1002/ptr.6160] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Jing Leng
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Zi Wang
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Cheng-lin Fu
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Jing Zhang
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Shen Ren
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Jun-nan Hu
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Shuang Jiang
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
| | - Ying-ping Wang
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development; Changchun China
| | - Chen Chen
- School of Biomedical Sciences; University of Queensland; Brisbane Queensland Australia
| | - Wei Li
- College of Chinese Medicinal Materials; Jilin Agricultural University; Changchun China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development; Changchun China
| |
Collapse
|
16
|
Velasco C, Comesaña S, Conde-Sieira M, Míguez JM, Soengas JL. The short-term presence of oleate or octanoate alters the phosphorylation status of Akt, AMPK, mTOR, CREB, and FoxO1 in liver of rainbow trout ( Oncorhynchus mykiss ). Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:17-25. [DOI: 10.1016/j.cbpb.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 01/11/2023]
|
17
|
Olivier S, Foretz M, Viollet B. Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol 2018; 153:147-158. [PMID: 29408352 DOI: 10.1016/j.bcp.2018.01.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
AMP-activated protein kinase (AMPK) is an evolutionary conserved and ubiquitously expressed serine/threonine kinase playing a central role in the coordination of energy homeostasis. Based on the beneficial outcomes of its activation on metabolism, AMPK has emerged as an attractive target for the treatment of metabolic diseases. Identification of novel downstream targets of AMPK beyond the regulation of energy metabolism has renewed considerable attention in exploiting AMPK signaling for novel therapeutic targeting strategies including treatment of cancer and inflammatory diseases. The complexity of AMPK system with tissue- and species-specific expression of multiple isoform combination regulated by various inputs, post-traductional modifications and subcellular locations presents unique challenges for drug discovery. Here, we review the most recent advances in the understanding of the mechanism(s) of action of direct small molecule AMPK activators and the potential therapeutic opportunities.
Collapse
Affiliation(s)
- Séverine Olivier
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France.
| |
Collapse
|
18
|
Lu H, Lei X, Liu J, Klaassen C. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha. World J Hepatol 2017; 9:191-208. [PMID: 28217257 PMCID: PMC5295159 DOI: 10.4254/wjh.v9.i4.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/02/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4α) in regulating hepatic expression of microRNAs.
METHODS Microarray and real-time PCR were used to determine hepatic expression of microRNAs in young-adult mice lacking Hnf4α expression in liver (Hnf4α-LivKO). Integrative genomics viewer software was used to analyze the public chromatin immunoprecipitation-sequencing datasets for DNA-binding of HNF4α, RNA polymerase-II, and histone modifications to loci of microRNAs in mouse liver and human hepatoma cells. Dual-luciferase reporter assay was conducted to determine effects of HNF4α on the promoters of mouse and human microRNAs as well as effects of microRNAs on the untranslated regions (3’UTR) of two genes in human hepatoma cells.
RESULTS Microarray data indicated that most microRNAs remained unaltered by Hnf4α deficiency in Hnf4α-LivKO mice. However, certain liver-predominant microRNAs were down-regulated similarly in young-adult male and female Hnf4α-LivKO mice. The down-regulation of miR-101, miR-192, miR-193a, miR-194, miR-215, miR-802, and miR-122 as well as induction of miR-34 and miR-29 in male Hnf4α-LivKO mice were confirmed by real-time PCR. Analysis of public chromatin immunoprecipitation-sequencing data indicates that HNF4α directly binds to the promoters of miR-101, miR-122, miR-194-2/miR-192 and miR-193, which is associated with histone marks of active transcription. Luciferase reporter assay showed that HNF4α markedly activated the promoters of mouse and human miR-101b/miR-101-2 and the miR-194/miR-192 cluster. Additionally, miR-192 and miR-194 significantly decreased activities of luciferase reporters for the 3’UTR of histone H3F3 and chromodomain helicase DNA binding protein 1 (CHD1), respectively, suggesting that miR-192 and miR-194 might be important in chromosome remodeling through directly targeting H3F3 and CHD1.
CONCLUSION HNF4α is essential for hepatic basal expression of a group of liver-enriched microRNAs, including miR-101, miR-192, miR-193a, miR-194 and miR-802, through which HNF4α may play a major role in the post-transcriptional regulation of gene expression and maintenance of the epigenome in liver.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW We provide an overview of orally administered lipid-lowering therapies under development. RECENT FINDINGS Recent data support statins for intermediate risk primary prevention, and ezetimibe for high-risk secondary prevention. Novel agents in development include bempedoic acid and gemcabene, and work continues on one remaining cholesteryl ester transfer protein inhibitor, anacetrapib, to determine whether this class can reduce cardiovascular risk. Selective peroxisome proliferator-activated receptor modulators such as K-877 are under study to determine whether they have an advantage over older fibrates. Diacylglycerol transferase inhibitors such as pradigastat appear to have potent triglyceride-lowering effects, even for patients with familial chylomicronemia syndrome. Finally, novel ω-3 preparations are available with significant triglyceride lowering, although their role in therapy remains unclear. SUMMARY Statins will remain the backbone of lipid-lowering therapy, although several novel oral agents are promising. The common theme across drugs in development is the demonstration of good lipid-lowering effect, although lacking cardiovascular outcomes data, which will likely be necessary before any of them, can be recommended or approved for widespread use.
Collapse
Affiliation(s)
- Steven E Gryn
- Department of Medicine, Schulich School of Medicine and Dentistry, London Health Sciences Centre-University Hospital, Western University, London, Ontario, Canada
| | | |
Collapse
|
20
|
Cameron KO, Kurumbail RG. Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Bioorg Med Chem Lett 2016; 26:5139-5148. [PMID: 27727125 DOI: 10.1016/j.bmcl.2016.09.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine heterotrimeric protein kinase, is a critical regulator of cellular and whole body energy homeostasis. There are twelve known AMPK isoforms that are differentially expressed in tissues and species. Dysregulation of AMPK signaling is associated with a multitude of human pathologies. Hence isoform-selective activators of AMPK are actively being sought for the treatment of cardiovascular and metabolic diseases. The present review summarizes the status of direct AMPK activators from the patent and published literature.
Collapse
Affiliation(s)
- Kimberly O Cameron
- Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Chemistry, 610 Main Street, Cambridge, MA 02139, USA.
| | - Ravi G Kurumbail
- Pfizer Global Research and Development, Worldwide Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|