1
|
Corbalan JJ, Jagadeesan P, Frietze KK, Taylor R, Gao GL, Gallagher G, Nickels JT. Humanized monoacylglycerol acyltransferase 2 mice develop metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100695. [PMID: 39505262 DOI: 10.1016/j.jlr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Mice lacking monoacylglycerol acyltransferase 2 (mMGAT21) are resistant to diet-induced fatty liver, suggesting hMOGAT2 inhibition is a viable option for treating metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). We generated humanized hMOGAT2 mice (HuMgat2) for use in pre-clinical studies testing the efficacy of hMOGAT2 inhibitors for treating MASLD/MASH. HuMgat2 mice developed MASH when fed a steatotic diet. Computer-aided histology revealed the presence of hepatocyte cell ballooning, immune cell infiltration, and fibrosis. Hepatocytes accumulated Mallory-Denk bodies containing phosphorylated p62/sequestosome-1-ubiquitinated protein aggregates likely caused by defects in autophagy. Metainflammation and apoptotic cell death were seen in the livers of HuMgat2 mice. Treating HuMgat2 mice with elafibranor reduced several MASH phenotypes. RNASeq analysis predicted changes in bile acid transporter expression that correlated with altered bile acid metabolism indicative of cholestasis. Our results suggest that HuMgat2 mice will serve as a pre-clinical model for testing hMOGAT2 inhibitor efficacy and toxicity and allow for the study of hMOGAT2 in the context of MASH.
Collapse
Affiliation(s)
- J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Pranavi Jagadeesan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace L Gao
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Grant Gallagher
- Oncoveda, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Meurs A, Ndoj K, van den Berg M, Marinković G, Tantucci M, Veenendaal T, Kuivenhoven JA, Klumperman J, Zelcer N. A suite of genome-engineered hepatic cells provides novel insights into the spatiotemporal metabolism of apolipoprotein B and apolipoprotein B-containing lipoprotein secretion. Cardiovasc Res 2024; 120:1253-1264. [PMID: 38833612 PMCID: PMC11416059 DOI: 10.1093/cvr/cvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Apolipoprotein B (APOB)-containing very LDL (VLDL) production, secretion, and clearance by hepatocytes is a central determinant of hepatic and circulating lipid levels. Impairment of any of the aforementioned processes is associated with the development of multiple diseases. Despite the discovery of genes and processes that govern hepatic VLDL metabolism, our understanding of the different mechanistic steps involved is far from complete. An impediment to these studies is the lack of tractable hepatocyte-based systems to interrogate and follow APOB in cells, which the current study addresses. METHODS AND RESULTS To facilitate the cellular study of VLDL metabolism, we generated human hepatic HepG2 and Huh-7 cell lines in which CRISPR/Cas9-based genome engineering was used to introduce the fluorescent protein mNeonGreen into the APOB gene locus. This results in the production of APOB100-mNeon that localizes predominantly to the endoplasmic reticulum (ER) and Golgi by immunofluorescence and electron microscopy imaging. The production and secretion of APOB100-mNeon can be quantitatively followed in medium over time and results in the production of lipoproteins that are taken up via the LDL receptor pathway. Importantly, the production and secretion of APOB-mNeon is sensitive to established pharmacological and physiological treatments and to genetic modifiers known to influence VLDL production in humans. As a showcase, we used HepG2-APOBmNeon cells to interrogate ER-associated degradation of APOB. The use of a dedicated sgRNA library targeting all established membrane-associated ER-resident E3 ubiquitin ligases led to the identification of SYNV1 as the E3 responsible for the degradation of poorly lipidated APOB in HepG2 cells. CONCLUSIONS In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.
Collapse
Affiliation(s)
- Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Goran Marinković
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Matteo Tantucci
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Tineke Veenendaal
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Corrao S, Calvo L, Granà W, Scibetta S, Mirarchi L, Amodeo S, Falcone F, Argano C. Metabolic dysfunction-associated steatotic liver disease: A pathophysiology and clinical framework to face the present and the future. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00293-X. [PMID: 39358105 DOI: 10.1016/j.numecd.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
AIMS This review aims to provide a straightforward conceptual framework for the knowledge and understanding of Metabolic dysfunction-associated steatotic liver disease (MASLD) in the broad spectrum of steatotic liver disease and to point out the need to consider metabolic dysfunction and comorbidities as interrelated factors for a holistic approach to fatty liver disease. DATA SYNTHESIS MASLD is the new proposed term for steatotic liver disease that replaces the old terminology of non-alcoholic fatty liver disease. This term focused on the relationship between metabolic alteration and hepatic steatosis, reflecting a growing comprehension of the association between metabolic dysfunction and hepatic steatosis. Numerous factors and conditions contribute to the underlying mechanisms, including central obesity, insulin resistance, adiponectin, lipid metabolism, liver function, dietary influences, the composition of intestinal microbiota, and genetic factors. The development of the condition, however, involves a more intricate network of components, such as neurotensin and Advanced Glycation End Products, highlighting the complexity of its pathogenesis. CONCLUSIONS MASLD must be regarded as a complex clinical problem in which only a holistic approach can win through the coordination of multi-professional and multi-speciality interventions.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy.
| | - Luigi Calvo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Walter Granà
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Salvatore Scibetta
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Luigi Mirarchi
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Simona Amodeo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Fabio Falcone
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
4
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
5
|
Nogueira JP, Cusi K. Role of Insulin Resistance in the Development of Nonalcoholic Fatty Liver Disease in People With Type 2 Diabetes: From Bench to Patient Care. Diabetes Spectr 2024; 37:20-28. [PMID: 38385099 PMCID: PMC10877218 DOI: 10.2337/dsi23-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Insulin resistance is implicated in both the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and its progression from steatosis to steatohepatitis, cirrhosis, and even hepatocellular carcinoma, which is known to be more common in people with type 2 diabetes. This article reviews the role of insulin resistance in the metabolic dysfunction observed in obesity, type 2 diabetes, atherogenic dyslipidemia, and hypertension and how it is a driver of the natural history of NAFLD by promoting glucotoxicity and lipotoxicity. The authors also review the genetic and environmental factors that stimulate steatohepatitis and fibrosis progression and their relationship with cardiovascular disease and summarize guidelines supporting the treatment of NAFLD with diabetes medications that reduce insulin resistance, such as pioglitazone or glucagon-like peptide 1 receptor agonists.
Collapse
Affiliation(s)
- Juan Patricio Nogueira
- Universidad del Pacifico, Asunción, Paraguay
- Centro de Investigación en Endocrinología, Nutrición y Metabolismo, Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Formosa, Argentina
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Allard J, Bucher S, Ferron PJ, Launay Y, Fromenty B. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury. Fundam Clin Pharmacol 2024; 38:152-167. [PMID: 37665028 DOI: 10.1111/fcp.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Julien Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| |
Collapse
|
7
|
Hirano T, Satoh N, Ito Y. Specific Increase in Small Dense Low-Density Lipoprotein-Cholesterol Levels beyond Triglycerides in Patients with Diabetes: Implications for Cardiovascular Risk of MAFLD. J Atheroscler Thromb 2024; 31:36-47. [PMID: 37438123 PMCID: PMC10776337 DOI: 10.5551/jat.64271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
AIMS Small dense (sd) low-density lipoprotein (LDL)-cholesterol (C) is the most powerful predictor of cardiovascular (CV) disease among lipid biomarkers and is generated by hypertriglyceridemia and insulin resistance. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a newly proposed liver disease with a high CV risk. We investigated the specific association of sdLDL-C with MAFLD beyond triglycerides (TG) and obesityMethods: Participants were 839 non-alcoholic drinkers with type 2 diabetes enrolled in a regional diabetes cohort. Fatty liver (FL) and visceral fat area (VFA) was detected by computed tomography scan. sdLDL-C and LDL-TG were measured by our established homogeneous assay. TG rich lipoprotein (TRL) was calculated by subtracting LDL-C plus HDL-C from total-C. Grade of sdLDL-C (≤ 24, 25-34, 35-44, and ≥ 45 mg/dL) was classified according to the Hisayama study. RESULTS Compared to non-FL counterparts, FL subjects were younger, predominantly male and smokers; and had higher body mass index (BMI), VFA, hemoglobin A1c, C-peptide, TG, and sdLDL-C, while had similar levels of LDL-C, LDL-TG, and TRL-C. Multivariate logistic analysis revealed that sdLDL-C was the most powerful lipid parameter for identifying FL, independent of TG, HDL-C, BMI, and VFA. The independent association between TG and FL was lost when sdLDL-C was added to the analysis. These results remained the same when lipid-lowering drug users were excluded. After adjustment for confounders, the odds ratio for FL was 2.4-2.7 at sdLDL ≥ 35 mg/dL based on sdLDL ≤ 24 mg/dL. CONCLUSIONS sdLDL-C levels are specifically elevated in patients with diabetes and MAFLD, independent of TG and VFA, suggesting liver-centered metabolic abnormalities.
Collapse
Affiliation(s)
| | - Noriyuki Satoh
- Clinical Diagnostics Development Department, Denka Co., Ltd, Tokyo, Japan
| | - Yasuki Ito
- Clinical Diagnostics Development Department, Denka Co., Ltd, Tokyo, Japan
| |
Collapse
|
8
|
Liu T, Wang Q, Zhou L, Zhang P, Mi L, Qiu X, Chen Z, Kuang H, Li S, Lin JD. Intrahepatic paracrine signaling by cardiotrophin-like cytokine factor 1 ameliorates diet-induced NASH in mice. Hepatology 2023; 78:1478-1491. [PMID: 35950514 PMCID: PMC9918604 DOI: 10.1002/hep.32719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Lin Mi
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Khaznadar F, Petrovic A, Khaznadar O, Roguljic H, Bojanic K, Kuna Roguljic L, Siber S, Smolic R, Bilic-Curcic I, Wu GY, Smolic M. Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. J Clin Med 2023; 12:6561. [PMID: 37892698 PMCID: PMC10607797 DOI: 10.3390/jcm12206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Hrvoje Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Ines Bilic-Curcic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| |
Collapse
|
10
|
Rui L, Lin JD. Reprogramming of Hepatic Metabolism and Microenvironment in Nonalcoholic Steatohepatitis. Annu Rev Nutr 2022; 42:91-113. [PMID: 35584814 PMCID: PMC10122183 DOI: 10.1146/annurev-nutr-062220-105200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of metabolic liver disease associated with obesity, ranges from relatively benign hepatic steatosis to nonalcoholic steatohepatitis (NASH). The latter is characterized by persistent liver injury, inflammation, and liver fibrosis, which collectively increase the risk for end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Recent work has shed new light on the pathophysiology of NAFLD/NASH, particularly the role of genetic, epigenetic, and dietary factors and metabolic dysfunctions in other tissues in driving excess hepatic fat accumulation and liver injury. In parallel, single-cell RNA sequencing studies have revealed unprecedented details of the molecular nature of liver cell heterogeneity, intrahepatic cross talk, and disease-associated reprogramming of the liver immune and stromal vascular microenvironment. This review covers the recent advances in these areas, the emerging concepts of NASH pathogenesis, and potential new therapeutic opportunities. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrated Physiology and Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
11
|
Strong A, Ganetzky R, Rader DJ. Hepatic Manifestations of Mendelian Disorders of Cholesterol Biosynthesis and Cellular Metabolism. Clin Liver Dis (Hoboken) 2021; 18:266-273. [PMID: 34976370 PMCID: PMC8688899 DOI: 10.1002/cld.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Audio Recording.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA,The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Rebecca Ganetzky
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA,Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Daniel J. Rader
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA,Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA,Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA,Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|