1
|
Kounatidis D, Vallianou NG, Poulaki A, Evangelopoulos A, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Dalamaga M. ApoB100 and Atherosclerosis: What's New in the 21st Century? Metabolites 2024; 14:123. [PMID: 38393015 PMCID: PMC10890411 DOI: 10.3390/metabo14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Second Department of Internal Medicine, Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Aikaterini Poulaki
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Poznyak AV, Orekhova VA, Sukhorukov VN, Khotina VA, Popov MA, Orekhov AN. Atheroprotective Aspects of Heat Shock Proteins. Int J Mol Sci 2023; 24:11750. [PMID: 37511509 PMCID: PMC10380699 DOI: 10.3390/ijms241411750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is a major global health problem. Being a harbinger of a large number of cardiovascular diseases, it ultimately leads to morbidity and mortality. At the same time, effective measures for the prevention and treatment of atherosclerosis have not been developed, to date. All available therapeutic options have a number of limitations. To understand the mechanisms behind the triggering and development of atherosclerosis, a deeper understanding of molecular interactions is needed. Heat shock proteins are important for the normal functioning of cells, actively helping cells adapt to gradual changes in the environment and survive in deadly conditions. Moreover, multiple HSP families play various roles in the progression of cardiovascular disorders. Some heat shock proteins have been shown to have antiatherosclerotic effects, while the role of others remains unclear. In this review, we considered certain aspects of the antiatherosclerotic activity of a number of heat shock proteins.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Varvara A Orekhova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Vasily N Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin St., 129110 Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| |
Collapse
|
3
|
Jaago M, Pupina N, Rähni A, Pihlak A, Sadam H, Vrana NE, Sinisalo J, Pussinen P, Palm K. Antibody response to oral biofilm is a biomarker for acute coronary syndrome in periodontal disease. Commun Biol 2022; 5:205. [PMID: 35246599 PMCID: PMC8897497 DOI: 10.1038/s42003-022-03122-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cumulative evidence over the last decades have supported the role of gum infections as a risk for future major cardiovascular events. The precise mechanism connecting coronary artery disease (CAD) with periodontal findings has remained elusive. Here, we employ next generation phage display mimotope-variation analysis (MVA) to identify the features of dysfunctional immune system that associate CAD with periodontitis. We identify a fine molecular description of the antigenic epitope repertoires of CAD and its most severe form - acute coronary syndrome (ACS) by profiling the antibody reactivity in a patient cohort with invasive heart examination and complete clinical oral assessment. Specifically, we identify a strong immune response to an EBV VP26 epitope mimicking multiple antigens of oral biofilm as a biomarker for the no-CAD group. With a 2-step biomarker test, we stratify subjects with periodontitis from healthy controls (balanced accuracy 84%), and then assess the risk for ACS with sensitivity 71-89% and specificity 67-100%, depending on the oral health status. Our findings highlight the importance of resolving the immune mechanisms related to severe heart conditions such as ACS in the background of oral health. Prospective validation of these findings will support incorporation of these non-invasive biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios Llc, Mäealuse 4, 12618, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | | | - Annika Rähni
- Protobios Llc, Mäealuse 4, 12618, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618, Tallinn, Estonia
| | - Helle Sadam
- Protobios Llc, Mäealuse 4, 12618, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Nihal Engin Vrana
- Spartha Medical, 14B Rue de la Canardiere, 67100, Strasbourg, France
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital, and Helsinki University, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618, Tallinn, Estonia. .,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
4
|
Morphological Alterations and Stress Protein Variations in Lung Biopsies Obtained from Autopsies of COVID-19 Subjects. Cells 2021; 10:cells10113136. [PMID: 34831356 PMCID: PMC8623438 DOI: 10.3390/cells10113136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular chaperones, many of which are heat shock proteins, play a role in cell stress response and regulate the immune system in various ways, such as in inflammatory/autoimmune reactions. It would be interesting to study the involvement of these molecules in the damage done to COVID-19-infected lungs. In our study, we performed a histological analysis and an immunomorphological evaluation on lung samples from subjects who succumbed to COVID-19 and subjects who died from other causes. We also assessed Hsp60 and Hsp90 distribution in lung samples to determine their location and post-translational modifications. We found histological alterations that could be considered pathognomonic for COVID-19-related lung disease. Hsp60 and Hsp90 immunopositivity was significantly higher in the COVID-19 group compared to the controls, and immunolocalization was in the plasma membrane of the endothelial cells in COVID-19 subjects. The colocalization ratios for Hsp60/3-nitrotyrosine and Hsp60/acetylate-lisine were significantly increased in the COVID-19 group compared to the control group, similar to the colocalization ratio for Hsp90/acetylate-lisine. The histological and immunohistochemical findings led us to hypothesize that Hsp60 and Hsp90 might have a role in the onset of the thromboembolic phenomena that lead to death in a limited number of subjects affected by COVID-19. Further studies on a larger number of samples obtained from autopsies would allow to confirm these data as well as discover new biomarkers useful in the battle against this disease.
Collapse
|
5
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
6
|
Guo J, Zhu S, Deng H, Xu R. HSP60-knockdown suppresses proliferation in colorectal cancer cells via activating the adenine/AMPK/mTOR signaling pathway. Oncol Lett 2021; 22:630. [PMID: 34267822 PMCID: PMC8258614 DOI: 10.3892/ol.2021.12891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most lethal cancer in the world. Heat shock protein 60 (HSP60), a mitochondrial chaperone that maintains mitochondrial proteostasis, is highly expressed in tumors compared with in paracancerous tissues, suggesting that high HSP60 expression benefits tumor growth. To determine the effects of HSP60 expression on tumor progression, stable HSP60-knockdown HCT116 cells were constructed in the present study, revealing that knockdown of HSP60 inhibited cell proliferation. Proteomic analysis demonstrated that mitochondrial proteins were downregulated, indicating that knockdown of HSP60 disrupted mitochondrial homeostasis. Metabolomic analysis demonstrated that cellular adenine levels were >30-fold higher in HSP60-knockdown cells than in control cells. It was further confirmed that elevated adenine activated the AMPK signaling pathway, which inhibited mTOR-regulated protein synthesis to slow down cell proliferation. Overall, the current results provide a valuable resource for understanding mitochondrial function in CRC, suggesting that HSP60 may be a potential target for CRC intervention.
Collapse
Affiliation(s)
- Jianying Guo
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.,Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Songbiao Zhu
- Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Haiteng Deng
- Key Laboratory of Bioinformatics, Ministry of Education, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Renhua Xu
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
7
|
Kim D, Chung H, Lee JE, Kim J, Hwang J, Chung Y. Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. J Lipid Atheroscler 2021; 10:184-201. [PMID: 34095011 PMCID: PMC8159760 DOI: 10.12997/jla.2021.10.2.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.
Collapse
Affiliation(s)
- Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hayeon Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junseok Hwang
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
9
|
Zhang S, Li L, Chen W, Xu S, Feng X, Zhang L. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother Res 2020; 35:2945-2967. [PMID: 33368763 DOI: 10.1002/ptr.7002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a chronic inflammatory, metabolic, and epigenetic disease, which leads to the life-threatening coronary artery disease. Emerging studies from bench to bedside have demonstrated the pivotal role of low-density lipoprotein (LDL) oxidation in the initiation and progression of atherosclerosis. This article hereby reviews oxidation mechanism of LDL, and the pro-atherogenic and biomarker role of oxidized LDL in atherosclerosis. We also review the pharmacological effects of several representative natural products (vitamin E, resveratrol, quercetin, probucol, tanshinone IIA, epigallocatechin gallate, and Lycopene) in protecting against LDL oxidation and atherosclerosis. Clinical and basic research supports the beneficial effects of these natural products in inhibiting LDL oxidation and preventing atherosclerosis, but the data are still controversial. This may be related to factors such as the population and the dosage and time of taking natural products involved in different studies. Understanding the mechanism of LDL oxidation and effect of oxidized LDL help researchers to find novel therapies against atherosclerosis.
Collapse
Affiliation(s)
- Shengyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wenxu Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Watad A, McGonagle D, Bragazzi NL, Damiani G, Comaneshter D, Lidar M, Cohen AD, Amital H. Systemic sclerosis is an independent risk factor for ischemic heart disease, especially in patients carrying certain antiphospholipid antibodies: A large cross-sectional study. Eur J Intern Med 2020; 81:44-49. [PMID: 32620499 DOI: 10.1016/j.ejim.2020.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND A higher prevalence of ischemic heart disease (IHD) in patients with systemic sclerosis (SSc) was reported. However, contrasting findings were published concerning the role of SSc-related autoantibodies in IHD risk which remains controversial. The current study explored the link between SSc and IHD, impact of putative links on SSc mortality and the role of SSc-related and antiphospholipid autoantibodies in disease associated IHD. METHODS A large cohort study utilising the Clalit-Health-Service (CHS) database was conducted on 2431 SSc patients and 12,710 age- and sex matched controls. The proportion of IHD was compared between patients diagnosed with SSc and age- and gender-matched controls. The role of SSc-linked and antiphospholipid autoantibodies in disease associated IHD was assessed. RESULTS The prevalence rate of IHD was significantly higher in SSc than controls (20.4% vs 15.0%, p <0.001). At the multivariate analysis, SSc was an independent predictor of IHD with an OR of 1.91 (95%CI 1.57-2.31, p < 0.0001). SSc patients with IHD had a higher mortality rate with an HR of 2.67 (95%CI 2.03-3.53, p < 0.0001) than those without IHD. In SSc patients positivity for anti-beta2GPI (IgM-isotype) or anti-cardiolipin (aCL) (IgA-isotype) represented a risk factor for IHD with an OR 1.89 (95% 1.04-3.45, p = 0.0369) and OR of 3.72 (95% 1.25-11.11, p = 0.0184), respectively. CONCLUSIONS Patients with SSc are at higher risk for developing IHD with an additional risk for the latter in those positive for aCL or anti-beta2GPI. A high degree of suspicion is needed during routine patient follow-up and pre-emptive screening should be considered.
Collapse
Affiliation(s)
- Abdulla Watad
- Department of Medicine 'B', The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Rheumatology Unit, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK.
| | - Dennis McGonagle
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Nicola L Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Canada
| | - Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Doron Comaneshter
- Chief Physician's Office, Faculty of Health Sciences, Clalit Health Services Tel Aviv, Israel
| | - Merav Lidar
- Rheumatology Unit, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Arnon D Cohen
- Chief Physician's Office, Faculty of Health Sciences, Clalit Health Services Tel Aviv, Israel; Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Howard Amital
- Department of Medicine 'B', The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Rheumatology Unit, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
11
|
Affiliation(s)
- Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, and Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO. Department of Biomedical Engineering, Washington University, McKelvey School of Engineering, St. Louis, MO. Veterans Affairs St. Louis Health Care System, St. Louis, MO
| |
Collapse
|
12
|
Chu CS, Law SH, Lenzen D, Tan YH, Weng SF, Ito E, Wu JC, Chen CH, Chan HC, Ke LY. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020; 8:biomedicines8080254. [PMID: 32751498 PMCID: PMC7460408 DOI: 10.3390/biomedicines8080254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - David Lenzen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Yong-Hong Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Etsuro Ito
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Jung-Chou Wu
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Graduate Institute of Medicine, College of Medicine, & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| |
Collapse
|
13
|
Kim JY, Choi BG, Jelinek J, Kim DH, Lee SH, Cho K, Rha SH, Lee YH, Jin HS, Choi DK, Kim GE, Kwon SU, Hwang J, Cha JK, Lee S, Issa JPJ, Kim J. Promoter methylation changes in ALOX12 and AIRE1: novel epigenetic markers for atherosclerosis. Clin Epigenetics 2020; 12:66. [PMID: 32398127 PMCID: PMC7218560 DOI: 10.1186/s13148-020-00846-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis is the main cause of cardiovascular diseases such as ischemic stroke and coronary heart disease. Gene-specific promoter methylation changes have been suggested as one of the causes underlying the development of atherosclerosis. We aimed to identify and validate specific genes that are differentially expressed through promoter methylation in atherosclerotic plaques. We performed the present study in four steps: (1) profiling and identification of gene-specific promoter methylation changes in atherosclerotic tissues; (2) validation of the promoter methylation changes of genes in plaques by comparison with non-plaque intima; (3) evaluation of promoter methylation status of the genes in vascular cellular components composing atherosclerotic plaques; and (4) evaluation of promoter methylation differences in genes among monocytes, T cells, and B cells isolated from the blood of ischemic stroke patients. RESULTS Upon profiling, AIRE1, ALOX12, FANK1, NETO1, and SERHL2 were found to have displayed changes in promoter methylation. Of these, AIRE1 and ALOX12 displayed higher methylation levels in plaques than in non-plaque intima, but lower than those in the buffy coat of blood. Between inflammatory cells, the three genes were significantly less methylated in monocytes than in T and B cells. In the vascular cells, AIRE1 methylation was lower in endothelial and smooth muscle cells. ALOX12 methylation was higher in endothelial, but lower in smooth muscle cells. Immunofluorescence staining showed that co-localization of ALOX12 and AIRE1 was more frequent in CD14(+)-monocytes than in CD4(+)-T cell in plaque than in non-plaque intima. CONCLUSIONS Promoter methylation changes in AIRE1 and ALOX12 occur in atherosclerosis and can be considered as novel epigenetic markers.
Collapse
Affiliation(s)
- Jee Yeon Kim
- Department of Neurology and Neuroepigenetics Laboratory, School of Medicine and Hospital, Chungnam National University, Daejeon, South Korea
| | - Bong-Geun Choi
- Department of Neurology and Neuroepigenetics Laboratory, School of Medicine and Hospital, Chungnam National University, Daejeon, South Korea
- Biomedical Research Center, Chungnam National University Hospital, Daejeon, South Korea
| | | | - Dae Hyun Kim
- Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Seo Hyun Lee
- Division of Medical Mathematics Researches, National Institute for Mathematical Sciences, Daejeon, South Korea
| | - Kwangjo Cho
- Department of Thoracic and Cardiovascular Surgery, Dong-A University Hospital, Busan, South Korea
| | - Seo Hee Rha
- Department of Pathology, Dong-A University Hospital, Busan, South Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hyo Sun Jin
- Biomedical Research Center, Chungnam National University Hospital, Daejeon, South Korea
| | - Dae-Kyoung Choi
- Biomedical Research Center, Chungnam National University Hospital, Daejeon, South Korea
| | - Geun-Eun Kim
- Department of Vascular Surgery, Asan Medical Center, Seoul, South Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, Seoul, South Korea
| | - Junha Hwang
- Department of Neurology and Neuroepigenetics Laboratory, School of Medicine and Hospital, Chungnam National University, Daejeon, South Korea
| | - Jae Kwan Cha
- Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Sukhoon Lee
- Division of Medical Mathematics Researches, National Institute for Mathematical Sciences, Daejeon, South Korea
| | | | - Jei Kim
- Department of Neurology and Neuroepigenetics Laboratory, School of Medicine and Hospital, Chungnam National University, Daejeon, South Korea.
- Department of Neurology, Chungnam National University Hospital, 282 Moonhwaro, Joongku, Daejeon, 35015, South Korea.
| |
Collapse
|
14
|
Amirfakhryan H. Vaccination against atherosclerosis: An overview. Hellenic J Cardiol 2020; 61:78-91. [DOI: 10.1016/j.hjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
15
|
Dai R, Dong J, Li W, Zhou Y, Zhou W, Zhou W, Chen M. Antibody to oxidized low-density lipoprotein inhibits THP1 cells from apoptosis by suppressing NF-κB pathway activation. Cardiovasc Diagn Ther 2019; 9:355-361. [PMID: 31555540 DOI: 10.21037/cdt.2019.08.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate whether the oxidized low-density lipoprotein (Ox-LDL) antibody is able to inhibit THP1 cell apoptosis by suppressing NF-κB pathway. Methods THP1 cells were induced to macrophages with phorbol 12-myristate 13-acetate (PMA). Macrophages were divided into control group, Ox-LDL group and antibody group, cells in which were treated with phosphate buffered saline (PBS), Ox-LDL (50 mg/mL), Ox-LDL (50 µg/mL) plus Ox-LDL antibody (100 mg/L), respectively, for 24 h. The apoptosis rate was determined by inverted microscopy and flow cytometry. The protein and mRNA expression of NF-κB (P65), caspase-3 and BCL2 was detected by Western blotting and reverse transcription polymerase chain reaction (RT-PCR), respectively. Results The apoptosis rate reduced significantly in antibody group as compared to Ox-LDL and control groups (P<0.05). The protein and mRNA expression of NF-κB pathway was markedly lowered in antibody group than in Ox-LDL and control groups (P<0.05), which reduced the Ox-LDL induced inflammation. Conclusions Ox-LDL antibody may be used to attenuate Ox-LDL induced inflammation and apoptosis, preventing atherosclerosis patients from acute coronary syndrome (ACS).
Collapse
Affiliation(s)
- Rui Dai
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| | - Jing Dong
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Weijuan Li
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| | - Yi Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| | - Wei Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| | - Wenping Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430014, China
| |
Collapse
|
16
|
Chen Z, Gao X, Jiao Y, Qiu Y, Wang A, Yu M, Che F, Li S, Liu J, Li J, Zhang H, Yu C, Li G, Gao Y, Pan L, Sun W, Guo J, Cao B, Zhu Y, Xu H. Tanshinone IIA Exerts Anti-Inflammatory and Immune-Regulating Effects on Vulnerable Atherosclerotic Plaque Partially via the TLR4/MyD88/NF-κB Signal Pathway. Front Pharmacol 2019; 10:850. [PMID: 31402870 PMCID: PMC6677033 DOI: 10.3389/fphar.2019.00850] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Tanshinone IIA (Tan IIA), a lipophilic constituent from Salvia miltiorrhiza Bunge, has shown a promising cardioprotective effect including anti-atherosclerosis. This study aims at exploring Tan IIA’s anti-inflammatory and immune-regulating roles in stabilizing vulnerable atherosclerotic plaque in ApoE-deficient (ApoE−/−) mice. Methods: Male ApoE−/− mice (6 weeks) were fed with a high-fat diet for 13 weeks and then randomized to the model group (MOD) or Tan IIA groups [high dose: 90 mg/kg/day (HT), moderate dose: 30 mg/kg/day (MT), low dose: 10 mg/kg/day (LT)] or the atorvastatin group (5 mg/kg/day, ATO) for 13 weeks. Male C57BL/6 mice (6 weeks) were fed with ordinary rodent chow as control. The plaque stability was evaluated according to the morphology and composition of aortic atherosclerotic (AS) plaque in H&E staining and Movat staining sections by calculating the area of extracellular lipid, collagenous fiber, and foam cells to the plaque. The expression of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor88 (MyD88)/nuclear factor-kappa B (NF-κB) signal pathway in aorta fractions was determined by immunohistochemistry. Serum levels of blood lipid were measured by turbidimetric inhibition immunoassay. The concentrations of tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were detected by cytometric bead array. Results: Tan IIA stabilized aortic plaque with a striking reduction in the area of extracellular lipid (ATO: 13.15 ± 1.2%, HT: 12.2 ± 1.64%, MT: 13.93 ± 1.59%, MOD: 18.84 ± 1.46%, P < 0.05) or foam cells (ATO: 16.05 ± 1.26%, HT: 14.88 ± 1.79%, MT: 16.61 ± 1.47%, MOD: 22.08 ± 1.69%, P < 0.05) to the plaque, and an evident increase in content of collagenous fiber (ATO: 16.22 ± 1.91%, HT: 17.58 ± 1.33%, MT: 15.71 ± 2.26%, LT:14.92 ± 1.65%, MOD: 9.61 ± 0.7%, P < 0.05) to the plaque than that in the model group, concomitant with down-regulation of the protein expression of TLR4, MyD88, and NF-κB p65, and serum level of MCP-1 and TNF-α in a dose-dependent manner. There were no differences in serum TC, LDL, HDL, or TG levels between ApoE–/– mice and those treated with atorvastatin. Conclusions: These results suggest that Tan IIA could stabilize vulnerable AS plaque in ApoE−/− mice, and this anti-inflammatory and immune-regulating effect may be achieved via the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuo Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Gao
- Internal medicine, Tieying Hospital of Fengtai District, Beijing, China
| | - Yang Jiao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anlu Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Meili Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Fangyuan Che
- Cardiovascular Department, Beijing hospital of Traditional Chinese Medicine Shunyi branch, Beijing, China
| | - Siming Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Graduate school, China Academy of Chinese Medical, Beijing, China
| | - Jingen Li
- Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - He Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Changan Yu
- China-Japan Friendship Hospital, Beijing, China
| | - Geng Li
- China-Japan Friendship Hospital, Beijing, China
| | | | - Lin Pan
- China-Japan Friendship Hospital, Beijing, China
| | | | - Jing Guo
- China-Japan Friendship Hospital, Beijing, China
| | - Bingyan Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Yangyin Qingre Huoxue Method in Traditional Chinese Medicine Ameliorates Atherosclerosis in ApoE -/- Mice Suffering from High-Fat Diet and HSP65 Aggression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2531979. [PMID: 30713570 PMCID: PMC6332951 DOI: 10.1155/2019/2531979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023]
Abstract
Atherosclerosis (AS) is a complicated arterial disease resulting from abnormal lipid deposition and inflammatory injury, which is attributed to Yin deficiency, accumulation of heat materials, and stasis of blood flow in Traditional Chinese Medicine (TCM) theory. Thus, according to TCM theory, the method of nourishing Yin (Yangyin), clearing away heat (Qingre), and promoting blood circulation (Huoxue) is a reasonable strategy, which has achieved remarkable clinical efficacy in the treatment of AS, but the mechanisms remain to be known. In this study, we evaluated the effects of Yangyin Qingre Huoxue Prescription (YQHP) on AS in ApoE-/- mice suffering from a high-fat diet and heat shock protein (HSP65) attack. YQHP regulated levels of blood lipids and inflammation-linked cytokines as well as Th17/Treg ratio in peripheral blood. Suppressed IL-6-p-STAT3 signaling and restored IL-2-p-STAT5 signaling in the presence of YQHP may partake in the regulation of Th17 and Treg differentiation. Moreover, YQHP modulated transcriptional levels of costimulator CD80 in aortas as well corresponding to the downregulation of GM-CSF in serum and CD3 expression in CD4+ T cells, which might indicate the potential of YQHP to regulate antigen presenting cells. All these effects eventually promoted the improvement of atherosclerotic lesions. In addition, YQHP promoted less monocyte infiltration in the liver and lower levels of AST, ALT, and AKP production than simvastatin. Conclusively, lipid-regulating and anti-inflammatory functions mediated by YQHP with lower hepatotoxicity than simvastatin hindered the progression of HSP65 aggravated AS in ApoE-/- mice, indicating the effectiveness of Yangyin Qingre Huoxue Method in the treatment of AS.
Collapse
|
18
|
Roles of Oral Infections in the Pathomechanism of Atherosclerosis. Int J Mol Sci 2018; 19:ijms19071978. [PMID: 29986441 PMCID: PMC6073301 DOI: 10.3390/ijms19071978] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Oral infections occur frequently in humans and often lead to chronic inflammations affecting the teeth (i.e., caries), the gingival tissues surrounding the teeth (i.e., gingivitis and endodontic lesions), and the tooth-supporting structures (i.e., periodontitis). At least four basic pathogenic mechanisms have been proposed that involve oral inflammations in the pathogenesis of atherosclerosis: (1) low level bacteremia by which oral bacteria enter the blood stream and invade the arterial wall; (2) systemic inflammation induced by inflammatory mediators released from the sites of the oral inflammation into the blood stream; (3) autoimmunity to host proteins caused by the host immune response to specific components of oral pathogens; (4) pro-atherogenic effects resulting from specific bacterial toxins that are produced by oral pathogenic bacteria. In this narrative review, we summarize published experimental evidence related to these four mechanisms and discuss their impact on the pathogenesis of atherosclerosis.
Collapse
|
19
|
Oxidative and Antioxidative Stress Status in Children with Inflammatory Bowel Disease as a Result of a Chronic Inflammatory Process. Mediators Inflamm 2018; 2018:4120973. [PMID: 30116148 PMCID: PMC6079420 DOI: 10.1155/2018/4120973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress (OS) has been recently implicated in the disease pathogenesis in inflammatory bowel disease (IBD). The aim of the study was to evaluate oxidative and antioxidative stress status and the risk of the atherosclerotic process in children with IBD and functional gastrointestinal disorders (FGID). The prospective study included a group of 71 children during a period of 2 years. In all children, laboratory tests were performed and intima-media complex in the carotid artery was measured (IMC). Low values of OS were more frequent in children with IBD than in the FGID group. The average concentration of oxidized lipoprotein with average density (oxLDL) was lower in patients with IBD. Among patients with IBD, higher concentrations of oxLDL were recorded in patients with longer-duration disease and with higher concentrations of total cholesterol. In the IBD group, more often, higher concentrations of anti-oxLDL were recorded among patients with longer-duration disease. The obtained results did not support the hypothesis of total antioxidant capacity depletion and greater overall OS in patients with IBD. Patients with IBD with a longer duration of the disease have higher concentrations of oxLDL and anti-oxLDL.
Collapse
|
20
|
Hu Y, Li H, Liu K, Zhang Y, Ren L, Fan Z. Protective effects of icariin on human vascular endothelial cells induced by oxidized low-density lipoprotein via modulating caspase-3 and Bcl-2. Mol Med Rep 2018. [PMID: 29532884 DOI: 10.3892/mmr.2018.8717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Icariin belongs to the family of flavonoids that is extracted from Epimedium brevicornum Maxim, and exhibits antioxidative, antitumorigenic, antiosteoporotic, immunoregulatory and antiatherosclerotic properties. To understand the mechanisms underlying the antiatherosclerotic properties of icariin, the present study investigated the effects of icariin on human vascular endothelial cells (HUVECs) following treatment with oxidized low‑density lipoprotein (ox‑LDL). Thus, following pretreatment with icariin at four various concentrations (0, 10, 20 and 40 µM), HUVECs were stimulated with ox‑LDL (100 µg/ml). The viability of cells was evaluated via an MTT assay and flow cytometry was performed to assess apoptosis. Additionally, the protein and mRNA expression levels of apoptosis regulator Bcl‑2 (Bcl‑2) and caspase‑3 were determined by western blotting and reverse transcription‑quantitative polymerase chain reaction. The findings of the present study indicated that icariin prevented injury and apoptosis in HUVECs following ox‑LDL treatment, in particular via the regulation of protein and mRNA expression levels of Bcl-2 and caspase-3.
Collapse
Affiliation(s)
- Yanwu Hu
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haitao Li
- Department of Pharmacy, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Tang H, Chen Y, Liu X, Wang S, Lv Y, Wu D, Wang Q, Luo M, Deng H. Downregulation of HSP60 disrupts mitochondrial proteostasis to promote tumorigenesis and progression in clear cell renal cell carcinoma. Oncotarget 2018; 7:38822-38834. [PMID: 27246978 PMCID: PMC5122432 DOI: 10.18632/oncotarget.9615] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, we demonstrate that HSP60 is unequivocally downregulated in clear cell renal cell carcinoma (ccRCC) tissues compared to pericarcinous tissues. Overexpression of HSP60 in ccRCC cancer cells suppresses cell growth. HSP60 knockdown increases cell growth and proliferation in both cell culture and nude mice xenografts, and drives cells to undergo epithelial to mesenchymal transition (EMT). Our results propose that HSP60 silencing disrupts the integrity of the respiratory complex I and triggers the excessive ROS production, which promotes tumor progression in the following aspects: (1) ROS activates the AMPK pathway that promotes acquisition of the Warburg phenotype in HSP60-KN cells; (2) ROS generated by HSP60 knockdown or by rotenone inhibition drives cells to undergo EMT; and (3) the high level of ROS may also fragment the Fe-S clusters that up regulates ADHFe1 expression and the 2-hydroxygluterate (2-HG) production leading to changes in DNA methylation. These results suggest that the high level of ROS is needed for tumorigenesis and progression in tumors with the low HSP60 expression and HSP60 is a potential diagnostic biomarker as well as a therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Haiping Tang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shiyu Wang
- Center of Nephrology, The General Hospital of the PLA, Beijing, China
| | - Yang Lv
- Center of Nephrology, The General Hospital of the PLA, Beijing, China
| | - Di Wu
- Center of Nephrology, The General Hospital of the PLA, Beijing, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
HEIDARI MM, DERAKHSHANI M, SEDIGHI F, FORUZAN-NIA SK. Mutation Analysis of the Mitochondrial tRNA Genes in Iranian Coronary Atherosclerosis Patients. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1379-1385. [PMID: 29308382 PMCID: PMC5750350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atherosclerosis is a disease that affects large and medium size arteries in the body that underlies coronary heart disease. Several nucleotide changes in mitochondrial tRNA genes have been reported in various diseases. The purpose of the study was to identify hotspot mitochondrial tRNA mutations in atherosclerotic patients. METHODS In this case-control study, the variations of ten mitochondrial tRNA genes (about 50%) were investigated in 70 patients from October 2013 and June 2015 suffered from atherosclerosis. The related mitochondrial area was amplified using PCR methid. The mutation analysis was performed by Single Strand Conformational Polymorphism (SSCP) and Restriction Fragment Length Polymorphism (RFLP). All the positive samples were sequenced. RESULTS We found one novel heteroplasmic mutation (m.5725T>G) and three reported single nucleotide polymorphisms (SNPs) previously in other diseases including m.5568A>G, m.5711A>G and m.12308A>G. CONCLUSION These tRNA mutations can alter their steady state level and affect the structure of tRNA. The role of mitochondrial tRNA mutations in the pathogenesis of atherosclerosis could potentially be important for the understanding of mitochondrial dysfunction in coronary atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Mohammad Mehdi HEIDARI
- Dept. of Biology, Faculty of Science, Yazd University, Yazd, Iran,Corresponding Author:
| | | | - Fatemeh SEDIGHI
- Dept. of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Seyed Khalil FORUZAN-NIA
- Dept. of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Jakic B, Buszko M, Cappellano G, Wick G. Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One 2017; 12:e0179383. [PMID: 28604836 PMCID: PMC5467851 DOI: 10.1371/journal.pone.0179383] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is the leading cause of death in the world. We have previously shown that expression of heat shock protein 60 (HSP60) on the surface of endothelial cells is the main cause of initiating the disease as it acts as a T cell auto-antigen and can be triggered by classical atherosclerosis risk factors, such as infection (e.g. Chlamydia pneumoniae), chemical stress (smoking, oxygen radicals, drugs), physical insult (heat, shear blood flow) and inflammation (inflammatory cytokines, lipopolysaccharide, oxidized low density lipoprotein, advanced glycation end products). In the present study, we show that increasing levels of sodium chloride can also induce an increase in intracellular and surface expression of HSP60 protein in human umbilical vein endothelial cells. In addition, we found that elevated sodium induces apoptosis.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Maja Buszko
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Bowman JD, Surani S, Horseman MA. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease. Curr Cardiol Rev 2017; 13:86-93. [PMID: 27586023 PMCID: PMC5452150 DOI: 10.2174/1573403x12666160901145313] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.
Collapse
Affiliation(s)
- John D Bowman
- Department of Pharmacy Practice, Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, United States
| | - Salim Surani
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Michael A Horseman
- Department of Pharmacy Practice, Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, United States
| |
Collapse
|
25
|
Shaw MK, Tse KY, Zhao X, Welch K, Eitzman DT, Thipparthi RR, Montgomery PC, Thummel R, Tse HY. T-Cells Specific for a Self-Peptide of ApoB-100 Exacerbate Aortic Atheroma in Murine Atherosclerosis. Front Immunol 2017; 8:95. [PMID: 28280493 PMCID: PMC5322236 DOI: 10.3389/fimmu.2017.00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
On the basis of mouse I-Ab-binding motifs, two sequences of the murine apolipoprotein B-100 (mApoB-100), mApoB-1003501–3515 (designated P3) and mApoB-100978–992 (designated P6), were found to be immunogenic. In this report, we show that P6 is also atherogenic. Immunization of Apoe−/− mice fed a high-fat diet (HFD) with P6 resulted in enhanced development of aortic atheroma as compared to control mice immunized with an irrelevant peptide MOG35–55 or with complete Freund’s adjuvant alone. Adoptive transfer of lymph node cells from P6-immunized donor mice to recipients fed an HFD caused exacerbated aortic atheromas, correlating P6-primed cells with disease development. Finally, P6-specific T cell clones were generated and adoptive transfer of T cell clones into recipients fed an HFD led to significant increase in aortic plaque coverage when compared to control animals receiving a MOG35–55-specific T cell line. Recipient mice not fed an HFD, however, did not exhibit such enhancement, indicating that an inflammatory environment facilitated the atherogenic activity of P6-specific T cells. That P6 is identical to or cross-reacts with a naturally processed peptide of ApoB-100 is evidenced by the ability of P6 to stimulate the proliferation of T cells in the lymph node of mice primed by full-length human ApoB-100. By identifying an atherogenic T cell epitope of ApoB-100 and establishing specific T cell clones, our studies open up new and hitherto unavailable avenues to study the nature of atherogenic T cells and their functions in the atherosclerotic disease process.
Collapse
Affiliation(s)
- Michael K Shaw
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Research and Clinical Trials, St. John-Providence Health System, Macomb-Oakland Hospital, Warren, MI, USA
| | - Kevin Y Tse
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of California at San Diego Medical Center, La Jolla, CA, USA; Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Xiaoqing Zhao
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Kathryn Welch
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Daniel T Eitzman
- Cardiovascular Medicine, University of Michigan Cardiovascular Center , Ann Arbor, MI , USA
| | - Raghavendar R Thipparthi
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Paul C Montgomery
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Ryan Thummel
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine , Detroit, MI , USA
| | - Harley Y Tse
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Chyu KY, Dimayuga PC, Shah PK. Vaccine against arteriosclerosis: an update. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:39-47. [PMID: 28515939 DOI: 10.1177/2051013617693753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Substantial data from experimental and clinical investigation support the role of immune-mediated mechanisms in atherogenesis, with immune systems responding to many endogenous and exogenous antigens that play either proatherogenic or atheroprotective roles. An active immunization strategy against many of these antigens could potentially alter the natural history of atherosclerosis. This review mainly focuses on the important studies on the search for antigens that have been tested in vaccine formulations to reduce atherosclerosis in preclinical models. It will also address the opportunities and challenges associated with potential clinical application of this novel therapeutic paradigm.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul C Dimayuga
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Prediman K Shah
- Cedars-Sinai Medical Center, 127 South San Vicente Blvd., Suite A-3307, Los Angeles, CA 90048, USA
| |
Collapse
|
27
|
Yin C, Mohanta SK, Srikakulapu P, Weber C, Habenicht AJR. Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Front Immunol 2016; 7:387. [PMID: 27777573 PMCID: PMC5056324 DOI: 10.3389/fimmu.2016.00387] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/14/2016] [Indexed: 11/15/2022] Open
Abstract
Artery tertiary lymphoid organs (ATLOs) are atherosclerosis-associated lymphoid aggregates with varying degrees of complexity ranging from small T/B-cell clusters to well-structured lymph node-like though unencapsulated lymphoid tissues. ATLOs arise in the connective tissue that surrounds diseased arteries, i.e., the adventitia. ATLOs have been identified in aged atherosclerosis-prone hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice: they are organized into distinct immune cell compartments, including separate T-cell areas, activated B-cell follicles, and plasma cell niches. Analyses of ATLO immune cell subsets indicate antigen-specific T- and B-cell immune reactions within the atherosclerotic arterial wall adventitia. Moreover, ATLOs harbor innate immune cells, including a large component of inflammatory macrophages, B-1 cells, and an aberrant set of antigen-presenting cells. There is marked neoangiogenesis, irregular lymphangiogenesis, neoformation of high endothelial venules, and de novo synthesis of lymph node-like conduits. Molecular mechanisms of ATLO formation remain to be identified though media vascular smooth muscle cells may adopt features of lymphoid tissue organizer-like cells by expressing lymphorganogenic chemokines, i.e., CXCL13 and CCL21. Although these data are consistent with the view that ATLOs participate in primary T- and B-cell responses against elusive atherosclerosis-specific autoantigens, their specific protective or disease-promoting roles remain to be identified. In this review, we discuss what is currently known about ATLOs and their potential impact on atherosclerosis and make attempts to define challenges ahead.
Collapse
Affiliation(s)
- Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Prasad Srikakulapu
- Cardiovascular Research Center (CVRC), University of Virginia, Charlottesville, VA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
28
|
Pan Y, Ke H, Yan Z, Geng Y, Asner N, Palani S, Munirathinam G, Dasari S, Nitiss KC, Bliss S, Patel P, Shen H, Reardon CA, Getz GS, Chen A, Zheng G. The western-type diet induces anti-HMGB1 autoimmunity in Apoe(-/-) mice. Atherosclerosis 2016; 251:31-38. [PMID: 27240253 PMCID: PMC4983250 DOI: 10.1016/j.atherosclerosis.2016.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Anti-HMGB1 autoimmunity plays a role in systemic lupus erythematosus (SLE). Because SLE increases atherosclerosis, we asked whether the same autoimmunity might play a role in atherogenesis. METHODS We looked for the induction of HMGB1-specific B and T cell responses by a western-type diet (WTD) in the Apoe(-/-) mouse model of atherosclerosis. We also determined whether modifying the responses modulates atherosclerosis. RESULTS In the plasma of male Apoe(-/-) mice fed WTD, the level of anti-HMGB1 antibodies (Abs) was detected at ∼50 μg/ml, which was ∼6 times higher than that in either Apoe(-/-) mice fed a normal chow or Apoe(+/+) mice fed WTD (p ≤ 0.0005). The Abs were directed largely toward a novel, dominant epitope of HMGB1 named HMW4; accordingly, compared with chow-fed mice, WTD-fed Apoe(-/-) mice had more activated HMW4-reactive B and T cells (p = 0.005 and p = 0.01, respectively). Compared with mock-immunized mice, Apoe(-/-) mice immunized with HMW4 along with an immunogenic adjuvant showed proportional increases in anti-HMW4 IgG and IgM Abs, HMW4-reactive B-1 and B-2 cells, and HMW4-reactive Treg and Teff cells, which was associated with ∼30% increase in aortic arch lesions (p ≤ 0.01) by two methods. In contrast, Apoe(-/-) mice immunized with HMW4 using a tolerogenic adjuvant showed preferential increases in anti-HMW4 IgM (over IgG) Abs, HMW4-reactive B-1 (over B-2) cells, and HMW4-specific Treg (over Teff) cells, which was associated with ∼40% decrease in aortic arch lesions (p ≤ 0.03). CONCLUSIONS Anti-HMGB1 autoimmunity may potentially play a role in atherogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Hanzhong Ke
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Zhaoqi Yan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Yajun Geng
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Nathan Asner
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Sunil Palani
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Subramanyam Dasari
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Karin C Nitiss
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Sarah Bliss
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Priyanka Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Hongming Shen
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Catherine A Reardon
- Department of Pathology (C.A.R., G.S.G.), University of Chicago, Chicago, IL 60637, USA
| | - Godfrey S Getz
- Department of Pathology (C.A.R., G.S.G.), University of Chicago, Chicago, IL 60637, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Guoxing Zheng
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
29
|
Wierzbicki AS, Grant P. Drugs for hypercholesterolaemia - from statins to pro-protein convertase subtilisin kexin 9 (PCSK9) inhibition. Clin Med (Lond) 2016; 16:353-7. [PMID: 27481380 PMCID: PMC6280202 DOI: 10.7861/clinmedicine.16-4-353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease (CVD) remains one of the commonest sources of morbidity and mortality in the world. Lipids and especially low density lipoprotein cholesterol (LDL-C) contribute to the risk of CVD events. Statins are the primary therapy for hypercholesterolaemia and recent evidence supports the use of ezetimibe as a second-line agent. Pro-protein convertase subtilisin kexin 9 (PCSK9) is a regulator of LDL receptor expression. Activating mutations in PCSK9 give rise to a form of familial hypercholesterolaemia, while inactivating mutations lead to lower LDL-C levels and fewer CVD events. Therapies to inhibit PCSK9 are in development and two antibody-based therapies - alirocumab and evolocumab - have recently been licensed. This article reviews the actions of PCSK9, the novel therapeutics targeted on this molecule and how they are likely to be used in clinical practice until large scale CVD outcome studies with PCSK9 inhibitors are published.
Collapse
Affiliation(s)
| | - Paul Grant
- OCDEM, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
30
|
Chistiakov DA, Orekhov AN, Bobryshev YV. ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. J Transl Med 2016; 96:708-18. [PMID: 27183204 DOI: 10.1038/labinvest.2016.56] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/21/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a main protein moiety in high-density lipoprotein (HDL) particles. Generally, ApoA1 and HDL are considered as atheroprotective. In prooxidant and inflammatory microenvironment in the vicinity to the atherosclerotic lesion, ApoA1/HDL are subjected to modification. The chemical modifications such as oxidation, nitration, etc result in altering native architecture of ApoA1 toward dysfunctionality and abnormality. Neutrophil myeloperoxidase has a prominent role in this mechanism. Neo-epitopes could be formed and then exposed that makes them immunogenic. Indeed, these epitopes may be recognized by immune cells and induce production of proatherogenic ApoA1-specific IgG antibodies. These antibodies are biologically relevant because they are able to react with Toll-like receptor (TLR)-2 and TLR4 in target cells and induce a variety of pro-inflammatory responses. Epidemiological and functional studies underline a prognostic value of ApoA1 self-antibodies for several cardiovascular diseases, including myocardial infarction, acute coronary syndrome, and severe carotid stenosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
31
|
İşgüven P, Gündüz Y, Kılıç M. Effects of Thyroid Autoimmunity on Early Atherosclerosis in Euthyroid Girls with Hashimoto's Thyroiditis. J Clin Res Pediatr Endocrinol 2016; 8:150-6. [PMID: 26761929 PMCID: PMC5096469 DOI: 10.4274/jcrpe.2145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE In the current study, we aimed to investigate whether thyroid autoimmunity (TA) had any effect on carotid intima-media thickness (cIMT) and enhanced the risk of cardiovascular disease (CVD) independent of thyroid function (TF) in pubertal girls with Hashimoto's thyroiditis (HT). METHODS Sixty-six newly diagnosed euthyroid girls with HT with a mean age of 14.4±2.4 years were included in the study. The control group consisted of 41 age- and body mass index (BMI)-matched healthy girls. At enrollment, all subjects underwent physical examination including blood pressure, standing height, weight, waist circumference (WC), and hip circumference measurements. The lipid profile, high-sensitivity C-reactive protein (hs-CRP), homocysteine, blood glucose, insulin, TF, and thyroid antibodies were measured, and thyroid ultrasound and cIMT were performed. RESULTS There were no significant differences in anthropometric variables between the two groups, but the patients with HT had significantly higher waist-to-hip ratio (WHR). Thyroid hormones, insulin, homocysteine, and homeostatic model assessment-insulin resistance were not different between the two groups. Serum hs-CRP levels were significantly higher in patients than controls (3.4 ng/mL vs. 2.03 ng/mL), (p<0.001). Patients were also characterized by significantly higher total cholesterol (166.4±27 mg/dL vs. 151±22 mg/dL), (p<0.01) and low-density cholesterol (95.8±24.4 mg/dL vs. 82.6±20.7 mg/dL), (p<0.01) levels. Patients, regardless of TF, had significantly increased cIMT compared with controls [0.28 mm vs. 0.25 mm, (p<0.001)], and cIMT was correlated with weight-standard deviation score (SDS), BMI-SDS, WC-SDS, and WHR. This increase in cIMT was associated independently with BMI-SDS and hs-CRP levels. CONCLUSION TA may be related to chronic inflammation, which may cause endothelial dysfunction, a promoter of atherosclerosis in girls with HT. cIMT is a good tool for the early detection and the monitoring of early atherosclerosis in euthyroid patients with HT. Early detection of risk factors of CVD, may be helpful for planning treatment and interventions, so as to prevent complications from the disease in adulthood.
Collapse
Affiliation(s)
- Pınar İşgüven
- Sakarya University Faculty of Medicine, Department of Pediatric Endocrinology, Sakarya, Turkey Phone: +90 216 495 68 26 E-mail:
| | - Yasemin Gündüz
- Sakarya University Faculty of Medicine, Department of Radiology, Sakarya, Turkey
| | - Mukaddes Kılıç
- Sakarya University Faculty of Medicine, Department of Pediatrics, Sakarya, Turkey
| |
Collapse
|
32
|
Yang H, Yan L, Qian P, Duan H, Wu J, Li B, Wang S. Icariin inhibits foam cell formation by down-regulating the expression of CD36 and up-regulating the expression of SR-BI. J Cell Biochem 2016; 116:580-8. [PMID: 25389062 DOI: 10.1002/jcb.25009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Icariin is an important pharmacologically active flavonol diglycoside that can inhibit inflammation in lipopolysaccharide (LPS)-stimulated macrophages. However, little is known about the molecular mechanisms underlying the inhibitory effect of Icariin in the formation of foam cells. In this study, macrophages were cultured with LPS and oxidized low-density lipoprotein (oxLDL) in the presence or absence of Icariin. RT-PCR and western blot were used to detect the levels of mRNA and protein expression of CD36, scavenger receptor class B type I (SR-BI) and the phosphorylation of p38MAPK. It was demonstrated that 4 µM or 20 µM Icariin treatment significantly inhibited the cholesterol ester (CE)/total cholesterol (TC) and oxLDL-mediated foam cell formation (P < 0.05). The binding of oxLDL to LPS-activated macrophages was also significantly hindered by Icariin (P < 0.05). Furthermore, Icariin down-regulated the expression of CD36 in LPS-activated macrophages in a dose-dependent manner and CD36 over-expression restored the inhibitory effect of Icariin on foam cell formation. The phosphorylation of p38MAPK was reduced by Icariin, indicating that Icariin reduced the expression of CD36 through the p38MAPK pathway. In addition, Icariin up-regulated SR-BI protein expression in a dose-dependent manner, and SR-BI gene silencing restored the inhibitory effect of Icariin on foam cell formation. These data demonstrate that Icariin inhibited foam cell formation by down-regulating the expression of CD36 and up-regulating the expression of SR-BI. Therefore, our findings provide a new explanation as to why Icariin could inhibit atherosclerosis.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 2016; 21:201-11. [PMID: 26577462 PMCID: PMC4786533 DOI: 10.1007/s12192-015-0659-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets.
Collapse
Affiliation(s)
- Cecilia Wick
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Center for Molecular Medicine (CMM) L8:04, Karolinska University Hospital Solna, S-17176, Stockholm, Sweden.
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria.
| |
Collapse
|
34
|
Chumachenko PV, Ivanova AG, Belokon EV, Akchurin RS. [Adhesion molecules and mononuclear cell subpopulations in the coronary and pulmonary arteries of patients with coronary heart disease]. Arkh Patol 2016; 77:9-14. [PMID: 26841644 DOI: 10.17116/patol20157769-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Atherosclerosis is a multifactor disease, in which dysfunction of the endothelium leads to the emergence of its adhesion molecules. OBJECTIVE to investigate the expression of the endothelial adhesion molecules PECAM (CD31), ICAM, and VCAM, as well as adherent endothelial T cells and monocytes. The material examined was en face pulmonary and coronary artery samples taken during autopsies (10 men), and en face specimens obtained from the coronary artery fragments taken from coronary heart disease patients during endarterectomy (37 men). This investigation used antibodies to the adhesion molecules ICAM-1, VCAM-1, and PECAM and those to CD3, CD4, CD8 T-cells and CD68 monocytes. RESULTS The endothelial cells in the atherosclerotically intact coronary arteries had an elongated shape and were aligned along the blood flow. Those located above atheromas and fibroatheromas changed their shape from elongated to polygonal. Above the fatty streaks and atheromas, the reaction with antibodies to CD31 antigens became weaker at the edge of endothelial cells and disappeared in places. While the atherosclerotic process progressed, the reaction with the CD31 antigen at the edge of endothelial cells was similar in intensity to that on the surface of the endothelium. Adhesion of T cells and monocytes to the endothelium of coronary arteries increased as the atherosclerotic vascular process progressed. T cells and monocytes more often adhered to the endothelium at the sites where the endothelial cells contacted each other. CONCLUSION Heterogeneity was found in the endothelial cells: their shape, the expression of adhesion molecules, and the adhesion of lymphocytes and monocytes to them changed during the progression of the atherosclerotic process.
Collapse
Affiliation(s)
| | - A G Ivanova
- Laboratory of Pathological Anatomy, Russian Surgery Research Center, Moscow, Russia
| | - E V Belokon
- Department of Cardiovascular Surgery, A.L. Myasnikov Institute of Clinical Cardiology, Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - R S Akchurin
- Department of Cardiovascular Surgery, A.L. Myasnikov Institute of Clinical Cardiology, Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
35
|
Wang Y, Wang YS, Song SL, Liang H, Ji AG. Icariin inhibits atherosclerosis progress in Apoe null mice by downregulating CX3CR1 in macrophage. Biochem Biophys Res Commun 2016; 470:845-50. [PMID: 26802470 DOI: 10.1016/j.bbrc.2016.01.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Horny Goat Weed is a commonly used in Chinese herbal medicine. And it is used in multiple kinds of diseases including cardiovascular diseases. Icariin is the major component isolated from Horny Goat Weed. It is reported to have lipid-lowering effect. In atherosclerosis, icariin attenuate the enhanced prothrombotic state independently of its lipid-lowering effects. However, its detail mechanism is remaining unclear. This study aimed to investigate the effect and mechanism of icariin on atherosclerosis. We performed gene expression profiling on icariin treated LPS-stimulated RAW264.7 and its control cells. Microarray analyses identified a list of genes significantly differentially expressed after icariin treated including downregulation of CX3CR1. Apoe null mice were assigned into 3 groups: control group, diet with 30 mg/kg/d icariin and diet with 60 mg/kg/d icariin. The results showed that icariin treatment significantly reduced lesion area and macrophage infiltration. Also icariin reduced CX3CR1 and CX3CL1 protein levels in the artery wall. In conclusion, icariin could be a potential anti-atherosclerosis agent by downregulating the expression of CX3CR1.
Collapse
Affiliation(s)
- Yao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yun-Shan Wang
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Shu-Liang Song
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Hao Liang
- Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China
| | - Ai-Guo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan, China; Weihai International Biotechnology Research and Development Centre, Shandong University, Weihai, China.
| |
Collapse
|
36
|
Huang S, Ding R, Lin Y, He Z, Wu F, Dai X, Chen Y, Gui Y, Huang Z, Wu Z, Liang C. Reduced T-Cell Thymic Export Reflected by sj-TREC in Patients with Coronary Artery Disease. J Atheroscler Thromb 2016; 23:632-43. [PMID: 26754173 DOI: 10.5551/jat.31575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Immunologic dysfunction was recently found to be one of the most important mechanisms underlying the initiation and development of atherosclerosis. Thymus involution can contribute to immune disturbance and disequilibrium of T-cell subsets. This study aimed to explore whether recent thymic emigration (RTE) is impaired in patients with coronary artery disease (CAD). METHODS Content of signal-joint T cell receptor excision circles (sj-TREC) in T lymphocytes, a molecular marker of RTE, was assessed among CAD patients and age-matched controls. Monochrome multiplex quantitative PCR method was used to assess the samples' telomere length in order to exclude the potential influence of T cell proliferation on the dilution of sj-TREC. Patients were grouped according to Gensini score (GS) (low, GS <18; intermediate, GS 18-41; high, GS >41). Ordinary logistic regression models were used to determine potential risk factors for CAD and GS tertiles. RESULTS Average copy numbers of sj-TREC per 10(6) T lymphocytes among patients with unstable angina, stable angina, and controls were 726±429, 1213±465, and 1795±838, respectively (P<0.001). However, there was no significant difference in telomere length among groups. Moreover, the content of sj-TREC in the high GS group was most significantly reduced than the low GS group (P<0.001). Multivariate logistic regression analysis revealed that lower sj-TREC was independently associated with the progression of CAD (OR=0.44, P<0.001) and higher GS (OR=0.4, P<0.001). CONCLUSION Impaired RTE could be partly responsible for CAD development. Mechanisms may be involved in the disturbance of T lymphocyte compartment and interruption of maintained immune tolerance resulting from thymus involution.
Collapse
Affiliation(s)
- Shuaibo Huang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Promotion of atherosclerosis in high cholesterol diet-fed rabbits by immunization with the P277 peptide. Immunol Lett 2015; 170:80-7. [PMID: 26730848 DOI: 10.1016/j.imlet.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/12/2015] [Accepted: 12/20/2015] [Indexed: 01/25/2023]
Abstract
Previous evidence has proved the ability of immunization with heat shock protein (HSP) 60/65 to induce atherosclerosis. P277, a 24-residue peptide of human HSP60, is a promising peptide vaccine against autoimmune diabetes. But as a fragment of HSP60, its potential ability of promoting atherosclerosis has never been investigated yet. In the present study, the rabbits fed with normal standard diet or high cholesterol diet were immunized with P277 or PBS emulsified in incomplete Freund's adjuvant 4 times at 4-week intervals. Atherosclerotic lesions of the rabbits receiving P277 treatment and fed with high cholesterol diet increased significantly compared with those of the rabbits receiving PBS treatment and the same diet. However, no obvious lesions were found in the two groups of rabbits fed with the normal standard diet. Significant expression of P277 was detected in the high cholesterol diet-induced atherosclerotic lesions and heat-stressed endothelial cells. Surface exposure of P277 was also observed in the stressed cells. In the subsequent assay of endothelial cells in vitro, the purified anti-P277 antibodies mediated a noticeable cytotoxicity to the stressed cells with the participation of complement. In conclusion, subcutaneous immunization with P277 emulsified in IFA can aggravate the atherosclerosis in high cholesterol diet-fed rabbits. Surface expression of P277 was observed on stressed endothelial cells, and were suggested to mediate the autoimmune attack and promote the disease.
Collapse
|
38
|
Ahearn J, Shields KJ, Liu CC, Manzi S. Cardiovascular disease biomarkers across autoimmune diseases. Clin Immunol 2015; 161:59-63. [DOI: 10.1016/j.clim.2015.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
|
39
|
Ryu H, Chung Y. Regulation of IL-17 in atherosclerosis and related autoimmunity. Cytokine 2015; 74:219-27. [DOI: 10.1016/j.cyto.2015.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
|
40
|
Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal 2015; 22:1681-702. [PMID: 25365742 DOI: 10.1089/ars.2014.6166] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress provokes the peroxidation of polyunsaturated fatty acids in cellular membranes, leading to the formation of aldheydes that, due to their high chemical reactivity, are considered to act as second messengers of oxidative stress. Among the aldehydes formed during lipid peroxidation (LPO), 4-hydroxy-2-nonenal (HNE) is produced at a high level and easily reacts with both low-molecular-weight compounds and macromolecules, such as proteins and DNA. In particular, HNE-protein adducts have been extensively investigated in diseases characterized by the pathogenic contribution of oxidative stress, such as cancer, neurodegenerative, chronic inflammatory, and autoimmune diseases. RECENT ADVANCES In this review, we describe and discuss recent insights regarding the role played by covalent adducts of HNE with proteins in the development and evolution of those among the earlier mentioned disease conditions in which the functional consequences of their formation have been characterized. CRITICAL ISSUES Results obtained in recent years have shown that the generation of HNE-protein adducts can play important pathogenic roles in several diseases. However, in some cases, the generation of HNE-protein adducts can represent a contrast to the progression of disease or can promote adaptive cell responses, demonstrating that HNE is not only a toxic product of LPO but also a regulatory molecule that is involved in several biochemical pathways. FUTURE DIRECTIONS In the next few years, the refinement of proteomical techniques, allowing the individuation of novel cellular targets of HNE, will lead to a better understanding the role of HNE in human diseases.
Collapse
Affiliation(s)
- Giuseppina Barrera
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Stefania Pizzimenti
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | - Martina Daga
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Chiara Ullio
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Alessia Arcaro
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| | | | - Carlo Ferretti
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Chiara Dianzani
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Alessio Lepore
- 5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Fabrizio Gentile
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| |
Collapse
|
41
|
Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:296146. [PMID: 26078803 PMCID: PMC4452872 DOI: 10.1155/2015/296146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed.
Collapse
|
42
|
Xia M, Chen D, Endresz V, Lantos I, Szabo A, Kakkar V, Lu X. Modulation of recombinant antigenic constructs containing multi-epitopes towards effective reduction of atherosclerotic lesion in B6;129S-Ldlr(tm1Her)Apob(tm2Sgy)/J mice. PLoS One 2015; 10:e0123393. [PMID: 25830298 PMCID: PMC4382319 DOI: 10.1371/journal.pone.0123393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/18/2015] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is increasingly recognized as a complex chronic inflammatory disease. Many more studies have extended vaccination against atherosclerosis by using epitopes from self-antigens or beyond and demonstrated that vaccination with antigens or derivatives could reduce the extent of the lesions in atherosclerosis-prone mice. Our previous study has demonstrated that construct AHHC [ApoB100688-707 + hHSP60303-312 + hHSP60153-163 + Cpn derived peptide (C)] significantly reduced atherosclerotic lesion. The aim of this study was to investigate whether AHHC can be modulated towards increased lesion reduction in mice by creating two other derivatives with a sequential epitope-substitution named RHHC in which A was replaced by an "R" (C5aR1-31) and RPHC with a further "H" (hHSP60303-312) conversion into "P" (protease-activated receptor-142-55) in mice. Antigenic epitopes were incorporated into a dendroaspin scaffold. Immunization of B6;129S-Ldlrtm1HerApobtm2Sgy/J mice with three constructs elicited production of high levels of antibodies against each epitope (apart from hHSP60153-163 and P which induced a low antibody response). Histological analyses demonstrated that the mice immunized with either RPHC or RHHC showed significant reductions in the size of atherosclerostic lesions compared to those with AHHC (69.5±1.1% versus 55.7±3.4%, P<0.01 or 65.6±1.3% versus 55.7±3.4%, P<0.01). Reduction of plaque size in the aortic sinus and descending aorta correlated with alterations in cellular immune responses when compared with controls. We conclude that a recombinant construct RPHC may provide new antigenic and structural features which are favorable for significant reduction in atherosclerotic lesion formation. This approach offers a novel strategy for developing anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Min Xia
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
| | - Daxin Chen
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- MRC Centre for Transplantation, King's College London, London, United Kingdom
| | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Ildiko Lantos
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Andrea Szabo
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Vijay Kakkar
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- Thrombosis Research Institute, Bangalore, India
| | - Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Obradovic MM, Trpkovic A, Bajic V, Soskic S, Jovanovic A, Stanimirovic J, Panic M, Isenovic ER. Interrelatedness between C-reactive protein and oxidized low-density lipoprotein. ACTA ACUST UNITED AC 2015; 53:29-34. [DOI: 10.1515/cclm-2014-0590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/19/2014] [Indexed: 11/15/2022]
Abstract
AbstractC-reactive protein (CRP) is a marker of inflammation. Atherosclerosis is now recognized as inflammatory disease, and it seems that CRP directly contributes to atherogenesis. Oxidation of low-density lipoprotein (LDL) molecule increases the uptake of lipid products by macrophages leading to cholesterol accumulation and subsequent foam cell formation. The elevated levels of high sensitivity CRP (hsCRP) and oxidized LDL (OxLDL) in the blood were found to be associated with cardiovascular diseases (CVD). In this review, we highlighted the evidence that CRP and OxLDL are involved in interrelated (patho) physiological pathways. The findings on association between hsCRP and OxLDL in the clinical setting will be also summarized.
Collapse
|
44
|
Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D, Isenovic ER. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 2014; 52:70-85. [DOI: 10.3109/10408363.2014.992063] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Shah PK, Chyu KY, Dimayuga PC, Nilsson J. Vaccine for Atherosclerosis. J Am Coll Cardiol 2014; 64:2779-91. [DOI: 10.1016/j.jacc.2014.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
|
46
|
Abstract
The development of atherosclerosis is the major etiological factor causing cardiovascular disease and constitutes a lipid-induced, chronic inflammatory and autoimmune disease of the large arteries. A long-standing view of the protective role of B cells in atherosclerosis has been challenged by recent studies using B cell depletion in animal models. Whereas complete B cell deficiency increases atherosclerosis, depletion of B2 but not B1 cells reduces atherosclerosis. This has led to a re-evaluation of the multiple potential pathways by which B cells can regulate atherosclerosis, and the apparent opposing roles of B1 and B2 cells. B cells, in addition to having the unique ability to produce antibodies, are now recognized to play a number of important roles in the immune system, including cytokine production and direct regulation of T cell responses. This review summarizes current knowledge on B cell subsets and functions, and how these could distinctly influence atherosclerosis development.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
47
|
Abstract
Atherosclerosis is a chronic, multifactorial disease that starts in youth, manifests clinically later in life, and can lead to myocardial infarction, stroke, claudication, and death. Although inflammatory processes have long been known to be involved in atherogenesis, interest in this subject has grown in the past 30-40 years. Animal experiments and human analyses of early atherosclerotic lesions have shown that the first pathogenic event in atherogenesis is the intimal infiltration of T cells at arterial branching points. These T cells recognize heat shock protein (HSP)60, which is expressed together with adhesion molecules by endothelial cells in response to classic risk factors for atherosclerosis. Although these HSP60-reactive T cells initiate atherosclerosis, antibodies to HSP60 accelerate and perpetuate the disease. All healthy humans develop cellular and humoral immunity against microbial HSP60 by infection or vaccination. Given that prokaryotic (bacterial) and eukaryotic (for instance, human) HSP60 display substantial sequence homology, atherosclerosis might be the price we pay for this protective immunity, if risk factors stress the vascular endothelial cells beyond physiological conditions.
Collapse
|
48
|
Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F, Weber C, Gerdes N, Habenicht AJ. Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circ Res 2014; 114:1772-87. [PMID: 24855201 DOI: 10.1161/circresaha.114.301137] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E–deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node–like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4
+
and CD8
+
effector and memory T cells, natural and induced CD4
+
regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall–derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.
Collapse
Affiliation(s)
- Sarajo Kumar Mohanta
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Changjun Yin
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Li Peng
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Prasad Srikakulapu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Vineela Bontha
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Desheng Hu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Falk Weih
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Norbert Gerdes
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Andreas J.R. Habenicht
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| |
Collapse
|
49
|
Chyu KY, Shah PK. Advances in immune-modulating therapies to treat atherosclerotic cardiovascular diseases. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:56-66. [PMID: 24757525 PMCID: PMC3991155 DOI: 10.1177/2051013613514327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In addition to hypercholesterolemia, innate and adaptive immune mechanisms play a critical role in atherogenesis, thus making immune-modulation therapy a potentially attractive way of managing atherosclerotic cardiovascular disease. These immune-modulation strategies include both active and passive immunization and confer beneficial reduction in atherosclerosis. Preclinical studies have demonstrated promising results and we review current knowledge on the complex role of the immune system and the potential for immunization as an immune-modulation therapy for atherosclerosis.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Prediman K Shah
- Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Suite A-3307, Los Angeles, CA 90048, USA
| |
Collapse
|
50
|
Moreira FT, Ramos SC, Monteiro AM, Helfenstein T, Gidlund M, Damasceno NRT, Neto AMF, Izar MC, Fonseca FAH. Effects of two lipid lowering therapies on immune responses in hyperlipidemic subjects. Life Sci 2014; 98:83-7. [PMID: 24447629 DOI: 10.1016/j.lfs.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 01/05/2023]
Abstract
AIMS To compare the effects of two of the most effective lipid-lowering therapies with similar LDL-cholesterol reduction capacity on the innate and adaptive immune responses through the evaluation of autoantibodies anti-oxidized LDL (anti-oxLDL Abs) and electronegative LDL [LDL(-)] levels. MAIN METHODS We performed a prospective, randomized, open label study, with parallel arms and blinded endpoints. One hundred and twelve subjects completed the study protocol and received rosuvastatin 40 mg or ezetimibe/simvastatin 10/40 mg for 12 weeks. Lipids, apolipoproteins, LDL(-), and anti-oxLDL Abs (IgG) were assayed at baseline and end of study. KEY FINDINGS Main clinical and laboratory characteristics were comparable at baseline. Lipid modifications were similar in both treatment arms, however, a significant raise in anti-oxLDL Abs levels was observed in subjects treated with rosuvastatin (p=0.026 vs. baseline), but not in those receiving simvastatin/ezetimibe. (p=0.233 vs. baseline), thus suggesting modulation of adaptive immunity by a potent statin. Titers of LDL(-) were not modified by the treatments. SIGNIFICANCE Considering atherosclerosis as an immune disease, this study adds new information, showing that under similar LDL-cholesterol reduction, the choice of lipid-lowering therapy can differently modulate adaptive immune responses.
Collapse
Affiliation(s)
| | | | - Andrea Moreira Monteiro
- Complex Fluids Laboratory, Institute of Physics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tatiana Helfenstein
- Department of Medicine, Federal University of São Paulo, Sao Paulo, SP, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Maria Cristina Izar
- Department of Medicine, Federal University of São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|