1
|
Sasso E, Baticic L, Sotosek V. Postprandial Dysmetabolism and Its Medical Implications. Life (Basel) 2023; 13:2317. [PMID: 38137918 PMCID: PMC10744591 DOI: 10.3390/life13122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
An unbalanced diet increases the risk of developing a variety of chronic diseases and cancers, leading to higher morbidity and mortality rates worldwide. Low-grade systemic chronic inflammation mediated by the activation of the innate immune system is common to all these pathologies. Inflammation is a biological response of the body and a normal part of host defense to combat the effects of bacteria, viruses, toxins and macronutrients. However, when the innate immune system is constantly activated, it can promote the development of low-grade systemic chronic inflammation, which could play an important role in the development of chronic diseases and cancer. Since most chronic inflammatory diseases are associated with diet, a balanced healthy diet high in anti-inflammatory food components could prevent chronic diseases and cancer. The cells of the body's immune system produce chemokines and cytokines which can have pro-inflammatory and tumor-promoting as well as anti-inflammatory and tumor-fighting functions. A challenge in the future will be to assess whether polymorphisms in immune-related genes may play a role in promoting pro-inflammatory activity. Thanks to this duality, future research on immune regulation could focus on how innate immune cells can be modified to convert a pro-inflammatory and tumor-friendly microenvironment into an anti-inflammatory and anti-tumor one. This review describes inflammatory responses mediated by the innate immune system in various diseases such as hyperglycemia and/or hyperlipemia, obesity, type II diabetes, cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Emanuel Sasso
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
2
|
Tomlinson B, Chan P, Lam CWK. Postprandial hyperlipidemia as a risk factor in patients with type 2 diabetes. Expert Rev Endocrinol Metab 2020; 15:147-157. [PMID: 32292091 DOI: 10.1080/17446651.2020.1750949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Postprandial hyperlipidemia is a common feature of the atherogenic dyslipidemia in patients with type 2 diabetes. Quantification of this with oral fat tolerance tests is not used routinely in clinical practice and abnormal postprandial lipids are usually inferred from non-fasting plasma triglyceride levels. Identifying excessive postprandial hyperlipidemia may help to refine cardiovascular risk assessment but there are no treatments currently available which selectively target postprandial lipids and no large cardiovascular outcome trials using this as the entry criterion.Areas covered: In this review of relevant published material, we summarize the findings from the most important publications in this area.Expert opinion: Postprandial hyperlipidemia appears to contribute to the cardiovascular risk in patients with diabetes. Non-fasting triglyceride levels provide a surrogate marker of postprandial hyperlipidemia but more specific markers such as apoB48 levels may prove to be more reliable. Omega-3 fatty acids, fibrates and ezetimibe can reduce postprandial lipids but may not correct them completely. Several novel treatments have been developed to target hypertriglyceridemia and some of these may be particularly effective in improving postprandial levels. Further clinical trials are needed to establish the role of postprandial lipids in assessment of cardiovascular risk and to identify the most effective treatments.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
3
|
Davis DW, Navalta JW, McGinnis GR, Serafica R, Izuora K, Basu A. Effects of Acute Dietary Polyphenols and Post-Meal Physical Activity on Postprandial Metabolism in Adults with Features of the Metabolic Syndrome. Nutrients 2020; 12:E1120. [PMID: 32316418 PMCID: PMC7230938 DOI: 10.3390/nu12041120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Approximately 22% of U.S. adults and 25% of adults globally have metabolic syndrome (MetS). Key features, such as dysglycemia and dyslipidemia, predict type 2 diabetes, cardiovascular disease, premature disability, and death. Acute supplementation of dietary polyphenols and post-meal physical activity hold promise in improving postprandial dysmetabolism. To our knowledge, no published review has described the effects of either intervention on postprandial glucose, insulin, lipids, and markers of oxidative damage and inflammation in adults with features of MetS. Thus, we conducted this review of controlled clinical trials that provided dietary polyphenols from oils, fruits, teas, and legumes during a dietary challenge, or implemented walking, cycling, and stair climbing and descending after a dietary challenge. Clinical trials were identified using ClinicalTrials.gov, PubMed, and Google Scholar and were published between 2000 and 2019. Dietary polyphenols from extra virgin olive oil, grapes, blackcurrants, strawberries, black tea, and black beans improved postprandial glucose, insulin, and markers of oxidative damage and inflammation, but results were not consistent among clinical trials. Freeze-dried strawberry powder distinctly improved postprandial insulin and markers of oxidative damage and inflammation. Post-meal physical activity attenuated postprandial glucose, but effects on postprandial lipids and markers of oxidative damage and inflammation were inconclusive. Consuming dietary polyphenols with a meal and completing physical activity after a meal may mitigate postprandial dysmetabolism in adults with features of MetS.
Collapse
Affiliation(s)
- Dustin W Davis
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.W.N.); (G.R.M.)
| | - James W Navalta
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.W.N.); (G.R.M.)
| | - Graham R McGinnis
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.W.N.); (G.R.M.)
| | - Reimund Serafica
- School of Nursing, University of Nevada, Las Vegas, NV 89154, USA;
| | - Kenneth Izuora
- Department of Internal Medicine, School of Medicine, University of Nevada, Las Vegas, NV 89154, USA;
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.W.N.); (G.R.M.)
| |
Collapse
|
4
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17:157. [PMID: 30545359 PMCID: PMC6292070 DOI: 10.1186/s12933-018-0800-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes (T2DM) have a substantial risk of developing cardiovascular disease. The strong connection between the severity of hyperglycaemia, metabolic changes secondary to T2DM and vascular damage increases the risk of macrovascular complications. There is a challenging demand for the development of drugs that control hyperglycaemia and influence other metabolic risk factors to improve cardiovascular outcomes such as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina and heart failure (major adverse cardiovascular events). In recent years, introduction of the new drug class of glucagon-like peptide-1 receptor agonists (GLP-1RAs) has changed the treatment landscape as GLP-1RAs have become well-established therapies in T2DM. The benefits of GLP-1RAs are derived from their pleiotropic effects, which include appetite control, glucose-dependent secretion of insulin and inhibition of glucagon secretion. Importantly, their beneficial effects extend to the cardiovascular system. Large clinical trials have evaluated the cardiovascular effects of GLP-1RAs in patients with T2DM and elevated risk of cardiovascular disease and the results are very promising. However, important aspects still require elucidation, such as the specific mechanisms involved in the cardioprotective effects of these drugs. Careful interpretation is necessary because of the heterogeneity across the trials concerning the definition of cardiovascular risk or cardiovascular disease, baseline characteristics, routine care and event rates. The aim of this review is to describe the main clinical aspects of the GLP-1RAs, compare them using data from both the mechanistic and randomized controlled trials and discuss potential reasons for improved cardiovascular outcomes observed in these trials. This review may help clinicians to decide which treatment is most appropriate in reducing cardiovascular risk in patients with T2DM.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil.
| | - Otávio Berwanger
- Academic Research Organization (ARO), Albert Einstein Hospital, Av. Albert Einstein 627, Sao Paulo, SP, 05651-901, Brazil
| | - Luiz Sérgio F de Carvalho
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil
| | - José Francisco Kerr Saraiva
- Cardiology Division, Pontifical Catholic University of Campinas Medicine School, Rua Engenheiro Carlos Stevenson 560, Campinas, Sao Paulo, 13092-132, Brazil
| |
Collapse
|
6
|
Mangat R, Borthwick F, Haase T, Jacome M, Nelson R, Kontush A, Vine DF, Proctor SD. Intestinal lymphatic HDL miR‐223 and ApoA‐I are reduced during insulin resistance and restored with niacin. FASEB J 2018; 32:1602-1612. [DOI: 10.1096/fj.201600298rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Tina Haase
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Miriam Jacome
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Randy Nelson
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Anatol Kontush
- National Institute for Health and Medical Research University of Pierre and Marie Curie, Salpétrière University Hospital Paris France
| | - Donna F. Vine
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| |
Collapse
|
7
|
Grace MS, Dempsey PC, Sethi P, Mundra PA, Mellett NA, Weir JM, Owen N, Dunstan DW, Meikle PJ, Kingwell BA. Breaking Up Prolonged Sitting Alters the Postprandial Plasma Lipidomic Profile of Adults With Type 2 Diabetes. J Clin Endocrinol Metab 2017; 102:1991-1999. [PMID: 28323950 DOI: 10.1210/jc.2016-3926] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
Context Postprandial dysmetabolism in type 2 diabetes (T2D) is exacerbated by prolonged sitting and may trigger inflammation and oxidative stress. It is unknown what impact countermeasures to prolonged sitting have on the postprandial lipidome. Objective In this study, we investigated the effects of regular interruptions to sitting, compared with prolonged sitting, on the postprandial plasma lipidome. Design Randomized crossover experimental trial. Setting Participants underwent three 7-hour conditions: uninterrupted sitting (SIT); light-intensity walking interruptions (LW); and simple resistance activity interruptions (SRA). Participants and Samples Baseline (fasting) and 7-hour (postprandial) plasma samples from 21 inactive overweight/obese adults with T2D were analyzed for 338 lipid species using mass spectrometry. Main Outcome Measures Using mixed model analysis (controlling for baseline outcome variable, gender, body mass index, and condition order), the percentage change in lipid species (baseline to 7 hours) was compared between conditions with Benjamini-Hochberg correction. Results Thirty-seven lipids were different between conditions (P < 0.05). Compared with SIT, postprandial elevations in diacylglycerols, triacylglycerols, and phosphatidylethanolamines were attenuated in LW and SRA. Plasmalogens and lysoalkylphosphatidylcholines were reduced in SIT, compared with attenuated reductions or elevations in LW and SRA. Phosphatidylserines were elevated with LW, compared with reductions in SIT and SRA. Conclusion Compared with SIT, LW and SRA were associated with reductions in lipids associated with inflammation; increased concentrations of lipids associated with antioxidant capacity; and differential changes in species associated with platelet activation. Acutely interrupting prolonged sitting time may impart beneficial effects on the postprandial plasma lipidome of adults with T2D. Evidence on longer-term intervention is needed.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Paddy C Dempsey
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Parneet Sethi
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | - Natalie A Mellett
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jacquelyn M Weir
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Neville Owen
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Centre of Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | - Bronwyn A Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
8
|
Liver-specific overexpression of LPCAT3 reduces postprandial hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr Diabetes 2016; 6:e206. [PMID: 27110687 PMCID: PMC4855257 DOI: 10.1038/nutd.2016.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that group 1B phospholipase A2-mediated absorption of lysophospholipids inhibits hepatic fatty acid β-oxidation and contributes directly to postprandial hyperglycemia and hyperlipidemia, leading to increased risk of cardiometabolic disease. The current study tested the possibility that increased expression of lysophosphatidylcholine acyltransferase-3 (LPCAT3), an enzyme that converts lysophosphatidylcholine to phosphatidylcholine in the liver, may alleviate the adverse effects of lysophospholipids absorbed after a lipid-glucose mixed meal. The injection of an adenovirus vector harboring the human LPCAT3 gene into C57BL/6 mice increased hepatic LPCAT3 expression fivefold compared with mice injected with a control LacZ adenovirus. Postprandial glucose tolerance tests after feeding these animals with a bolus lipid-glucose mixed meal revealed that LPCAT3 overexpression improved postprandial hyperglycemia and glucose tolerance compared with control mice with LacZ adenovirus injection. Mice with LPCAT3 overexpression also showed reduced very low density lipoprotein production and displayed elevated levels of the metabolic- and cardiovascular-protective large apoE-rich high density lipoproteins in plasma. The mechanism underlying the metabolic benefits of LPCAT3 overexpression was shown to be due to the alleviation of lysophospholipid inhibition of fatty acid β-oxidation in hepatocytes. Taken together, these results suggest that specific LPCAT3 induction in the liver may be a viable strategy for cardiometabolic disease intervention.
Collapse
|
9
|
Sottero B, Gargiulo S, Russo I, Barale C, Poli G, Cavalot F. Postprandial Dysmetabolism and Oxidative Stress in Type 2 Diabetes: Pathogenetic Mechanisms and Therapeutic Strategies. Med Res Rev 2015; 35:968-1031. [PMID: 25943420 DOI: 10.1002/med.21349] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Postprandial dysmetabolism in type 2 diabetes (T2D) is known to impact the progression and evolution of this complex disease process. However, the underlying pathogenetic mechanisms still require full elucidation to provide guidance for disease prevention and treatment. This review focuses on the marked redox changes and inflammatory stimuli provoked by the spike in blood glucose and lipids in T2D individuals after meals. All the causes of exacerbated postprandial oxidative stress in T2D were analyzed, also considering the consequence of enhanced inflammation on vascular damage. Based on this in-depth analysis, current strategies of prevention and pharmacologic management of T2D were critically reexamined with particular emphasis on their potential redox-related rationale.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Cristina Barale
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Franco Cavalot
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| |
Collapse
|
10
|
Zhong J, Maiseyeu A, Rajagopalan S. Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors. ACTA ACUST UNITED AC 2015; 10:103-112. [PMID: 26005496 DOI: 10.2217/clp.14.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elevated post-prandial lipoprotein levels are common in patients with type 2 diabetes. Post-prandial lipoprotein alterations in type 2 diabetics are widely believed to drive inflammation and are considered a major risk factor for cardiovascular disease in diabetic patients. The incretins glucagon like peptide-1 (GLP-1) and glucose insulinotropic peptide (GIP) modulate post-prandial lipoproteins through a multitude of pathways that are independent of insulin and weight loss. Evidence from both animal models and humans seems to suggest an important effect on triglyceride rich lipoproteins (Apo48 containing) with little to no effects on other lipoproteins at least in humans. Dipeptidyl peptidase-4 (DPP4) inhibitors also appear to share these effects suggesting an important role for incretins in these effects. In this review, we will summarize lipid modulating effects of incretin analogs and DPP-4 inhibitors in both animal models and human studies and provide an overview of mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201, USA
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Chan DC, Barrett PHR, Watts GF. The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia. Best Pract Res Clin Endocrinol Metab 2014; 28:369-85. [PMID: 24840265 DOI: 10.1016/j.beem.2013.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is characterized by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed high-density lipoprotein (HDL) and increased small dense low-density lipoprotein (LDL) particle concentrations. Dysregulation of lipoprotein metabolism in the metabolic syndrome may be due to a combination of overproduction of very-low density lipoprotein (VLDL) apoB, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities are due to a global metabolic effect of insulin resistance and visceral obesity. Lifestyle modifications (dietary restriction and increased exercise) and pharmacological treatments favourably alter lipoprotein transport by decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. The safety and tolerability of combination drug therapy based on statins is important and merits further investigation. There are several pipeline therapies for correcting triglyceride-rich lipoprotein and HDL metabolism. However, their clinical efficacy, safety and cost-effectiveness remain to be demonstrated.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Faculty of Engineering, Computing and Mathematics, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
12
|
Concomitant intake of quercetin with a grain-based diet acutely lowers postprandial plasma glucose and lipid concentrations in pigs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:748742. [PMID: 24847478 PMCID: PMC4009213 DOI: 10.1155/2014/748742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Treatment goals of diabetes mellitus type 2 (DMT2) include glycemic control and reduction of nonglycemic risk factors, for example, dyslipidemia. Quercetin, a plant-derived polyphenol, often discussed for possible antidiabetic effects, was investigated for acute postprandial glucose- and lipid-lowering effects in healthy growing pigs. Male pigs (n = 16, body weight = BW 25–30 kg) were fed flavonoid-poor grain-based meals without (GBM) or with quercetin (GBMQ). In a first experiment, postprandial plasma concentrations of glucose, nonesterified fatty acids (NEFA), and triacylglycerols were analyzed in 8 pigs receiving 500 g of either GBM or GBMQ (10 mg/kg BW) in a cross-over design. Blood samples were collected before, and up to 5 h every 30 min, as well as 6 and 8 h after the feeding. In the second experiment, 2 h after ingestions of 1000 g of either GBM or GBMQ (50 mg/kg BW) animals were sacrificed; gastric content was collected and analyzed for dry matter content. Quercetin ingestion reduced postprandial glucose, NEFA, and TG concentration, but two hours after ingestion of the meal no effect on gastric emptying was observed. Our results point to inhibitory effects of quercetin on nutrient absorption, which appear not to be attributable to delayed gastric emptying.
Collapse
|
13
|
Dhindsa S, Jialal I. Potential anti-atherosclerotic effects of dipeptidyl peptidase-4 inhibitors in type 2 diabetes mellitus. Curr Diab Rep 2014; 14:463. [PMID: 24390468 DOI: 10.1007/s11892-013-0463-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in patients with diabetes. Pharmacotherapy that can reduce hyperglycemia and also exhibit pleiotropic effects that can result in a reduction in cardiovascular disease will be a major advance. Recently, the dipeptidyl-peptidase-4 inhibitors were introduced as ant-hyperglycemic therapy. Studies from numerous groups have reported effects that could potentially result in a reduction in CVD. Some of the drugs in this class, especially vildagliptin and sitagliptin, have been shown to reduce postprandial hyperlipidemia following a fat load, improve endothelial function as evidenced by increased forearm blood flow, and also display anti-inflammatory effects. Their effects on platelet function, blood pressure, and oxidative stress are very preliminary and need to be confirmed. Finally, they have been shown to reduce subclinical atherosclerosis by reducing carotid intimal-medial thickness. However, the final arbiter with respect to a reduction in CVD will be the ongoing clinical trials.
Collapse
Affiliation(s)
- Sandeep Dhindsa
- Division of Endocrinology and Metabolism, Texas Tech University Health Sciences Center, Permian Basin Campus, Odessa, TX, 79763, USA
| | | |
Collapse
|
14
|
Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis 2014; 233:608-615. [PMID: 24534456 DOI: 10.1016/j.atherosclerosis.2013.12.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of dyslipidemia. Here we review recent developments in this field and present evidence that intestinal lipoprotein production is a process with metabolic plasticity and that modulation of intestinal lipoprotein secretion may be a feasible therapeutic strategy in the treatment of dyslipidemia and possibly prevention of atherosclerosis.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Cecilia Morgantini
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Gary F Lewis
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
15
|
Fernemark H, Jaredsson C, Bunjaku B, Rosenqvist U, Nystrom FH, Guldbrand H. A randomized cross-over trial of the postprandial effects of three different diets in patients with type 2 diabetes. PLoS One 2013; 8:e79324. [PMID: 24312178 PMCID: PMC3842308 DOI: 10.1371/journal.pone.0079324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/19/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the clinic setting both fasting levels of glucose and the area under the curve (AUC) of glucose, by determination of HbA1c levels, are used for risk assessments, in type 2 diabetes (NIDDM). However little is known about postprandial levels, and hence AUC, regarding other traditional risk factors such as insulin and blood-lipids and how this is affected by different diets. OBJECTIVE To study postprandial effects of three diets, during a single day, in NIDDM. METHODS A low-fat diet (45-56 energy-% from carbohydrates), and a low-carbohydrate diet (16-24 energy-% from carbohydrates) was compared with a Mediterranean-style diet (black coffee for breakfast and the same total-caloric intake as the other two diets for lunch with red wine, 32-35 energy-% from carbohydrates) in a randomized cross-over design. Total-caloric intake/test-day at the clinic from food was 1025-1080 kCal in men and 905-984 kCal in women. The test meals were consumed at a diabetes ward under supervision. RESULTS Twenty-one participants were recruited and 19 completed the studies. The low-carbohydrate diet induced lower insulin and glucose excursions compared with the low-fat diet (p<0.0005 for both AUC). The insulin-response following the single Mediterranean-style lunch-meal was more pronounced than during the low-fat diet lunch (insulin increase-ratio of the low-fat diet: 4.35 ± 2.2, of Mediterranean-style diet: 8.12 ± 5.2, p = 0.001) while postprandial glucose levels were similar. The increase-ratio of insulin correlated with the elevation of the incretin glucose-dependent insulinotropic-polypeptide following the Mediterranean-style diet lunch (Spearman, r = 0.64, p = 0.003). CONCLUSIONS The large Mediterranean-style lunch-meal induced similar postprandial glucose-elevations as the low-fat meal despite almost double amount of calories due to a pronounced insulin-increase. This suggests that accumulation of caloric intake from breakfast and lunch to a single large Mediterranean style lunch-meal in NIDDM might be advantageous from a metabolic perspective. TRIAL REGISTRATION ClinicalTrials.gov NCT01522157 NCT01522157.
Collapse
Affiliation(s)
- Hanna Fernemark
- Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Christine Jaredsson
- Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Bekim Bunjaku
- Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Ulf Rosenqvist
- Department of Internal Medicine, Motala Hospital, Motala, Sweden
| | - Fredrik H. Nystrom
- Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Hans Guldbrand
- Department of Medical and Health Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Watts GF, Chan DC. Novel insights into the regulation of postprandial lipemia by glucagon-like peptides: significance for diabetes. Diabetes 2013; 62:336-8. [PMID: 23349538 PMCID: PMC3554347 DOI: 10.2337/db12-1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gerald F Watts
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia.
| | | |
Collapse
|
17
|
Vors C, Pineau G, Gabert L, Drai J, Louche-Pélissier C, Defoort C, Lairon D, Désage M, Danthine S, Lambert-Porcheron S, Vidal H, Laville M, Michalski MC. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 2013; 97:23-36. [PMID: 23235199 DOI: 10.3945/ajcn.112.043976] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prolonged postprandial hypertriglyceridemia is a potential risk factor for cardiovascular diseases. In the context of obesity, this is associated with a chronic imbalance of lipid partitioning oriented toward storage and not toward β-oxidation. OBJECTIVE We tested the hypothesis that the physical structure of fat in a meal can modify the absorption, chylomicron transport, and further metabolic handling of dietary fatty acids. DESIGN Nine normal-weight and 9 obese subjects were fed 40 g milk fat (+[(13)C]triacylglycerols), either emulsified or nonemulsified, in breakfasts of identical composition. We measured the postprandial triacylglycerol content and size of the chylomicron-rich fraction, plasma kinetics of [(13)C]fatty acids, exogenous lipid oxidation with breath-test/indirect calorimetry, and fecal excretion. RESULTS The emulsified fat resulted in earlier (>1 h) and sharper chylomicron and [(13)C]fatty acid peaks in plasma than in spread fat in both groups (P < 0.0001). After 2 h, the emulsified fat resulted in greater apolipoprotein B-48 concentrations (9.7 ± 0.7 compared with 7.1 ± 0.9 mg/L; P < 0.05) in the normal-weight subjects than did the spread fat. In the obese subjects, emulsified fat resulted in a 3-fold greater chylomicron size (218 ± 24 nm) compared with the spread fat (P < 0.05). The emulsified fat induced higher dietary fatty acid spillover in plasma and a sharper (13)CO(2) appearance, which provoked increased exogenous lipid oxidation in each group: from 45% to 52% in normal-weight subjects (P < 0.05) and from 40% to 57% in obese subjects (P < 0.01). CONCLUSION This study supports a new concept of "slow vs fast fat," whereby intestinal absorption can be modulated by structuring dietary fat to modulate postprandial lipemia and lipid β-oxidation in humans with different BMIs. This trial was registered at clinicaltrials.gov as NCT01249378.
Collapse
Affiliation(s)
- Cécile Vors
- From INRA, USC1362, CarMeN, Cardiovascular Metabolism Diabetes and Nutrition laboratory, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamaaki N, Yagi K, Kobayashi J, Nohara A, Ito N, Asano A, Nakano K, Liu J, Okamoto T, Mori Y, Ohbatake A, Okazaki S, Takeda Y, Yamagishi M. Impact of serum retinol-binding protein 4 levels on regulation of remnant-like particles triglyceride in type 2 diabetes mellitus. J Diabetes Res 2013; 2013:143515. [PMID: 23671852 PMCID: PMC3647570 DOI: 10.1155/2013/143515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background. Although retinol-binding protein 4 (RBP4) associates with insulin resistance and remnant-like particles triglyceride (RLP-TG) elevated in the insulin resistant state, few data exist regarding the relationship between RBP4 and RLP-TG. Subjects and Methods. The study included 92 Japanese type 2 diabetic mellitus (T2DM) male patients (age 60.5 ± 13.6 years, body mass index (BMI) 24.7 ± 4.1 kg/m(2), waist circumference (WC) 88.4 ± 10.7 cm, and HbA1c (NGSP) 7.2 ± 1.9%). Patients on medications affecting insulin sensitivity, including fibrates, biguanides, and thiazolidinedione, were excluded. Visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography. Results. RBP4 levels showed a significant positive correlation with RLP-TG (r = 0.2544 and P = 0.0056), TG (r = 0.1852 and P = 0.041), RLP-TG/TG (r = 0.23765 and P = 0.0241), and age (r = -0.2082 and P = 0.0219), although there was no significant correlation with VFA, SFA, adiponectin levels, or homeostasis model of assessment insulin resistance (HOMA-R). Multiple regression analysis revealed that RBP4 was an independent determinant of RLP-TG (P = 0.0193) but was not a determinant of TG. Conclusions. RBP4 correlates positively with serum RLP-TG independent of fat accumulation in T2DM. RBP4 may regulate remnant metabolism independent of glycemic control in T2DM.
Collapse
Affiliation(s)
- Naoto Yamaaki
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Kunimasa Yagi
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
- *Kunimasa Yagi:
| | - Junji Kobayashi
- Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Atsushi Nohara
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Naoko Ito
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Akimichi Asano
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Kaoru Nakano
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Jianhui Liu
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Takuya Okamoto
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Yukiko Mori
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Azusa Ohbatake
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Satoko Okazaki
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Yoshiyu Takeda
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | - Masakazu Yamagishi
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| |
Collapse
|