1
|
Knoedler L, Dean J, Diatta F, Thompson N, Knoedler S, Rhys R, Sherwani K, Ettl T, Mayer S, Falkner F, Kilian K, Panayi AC, Iske J, Safi AF, Tullius SG, Haykal S, Pomahac B, Kauke-Navarro M. Immune modulation in transplant medicine: a comprehensive review of cell therapy applications and future directions. Front Immunol 2024; 15:1372862. [PMID: 38650942 PMCID: PMC11033354 DOI: 10.3389/fimmu.2024.1372862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Noelle Thompson
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richmond Rhys
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Khalil Sherwani
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Ettl
- Department of Dental, Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Simon Mayer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Katja Kilian
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Adriana C. Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali-Farid Safi
- Faculty of Medicine, University of Bern, Bern, Switzerland
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Siba Haykal
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bohdan Pomahac
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kauke-Navarro
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Guinan EC, Contreras-Ruiz L, Crisalli K, Rickert C, Rosales I, Makar R, Colvin R, Geissler EK, Sawitzki B, Harden P, Tang Q, Blancho G, Turka LA, Markmann JF. Donor antigen-specific regulatory T cell administration to recipients of live donor kidneys: A ONE Study consortium pilot trial. Am J Transplant 2023; 23:1872-1881. [PMID: 37422112 DOI: 10.1016/j.ajt.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Regulatory T cells (Tregs) can inhibit cellular immunity in diverse experimental models and have entered early phase clinical trials in autoimmunity and transplantation to assess safety and efficacy. As part of the ONE Study consortium, we conducted a phase I-II clinical trial in which purified donor antigen reactive (dar)-Tregs (CD4+CD25+CD127lo) were administered to 3 patients, 7 to 11 days after live donor renal transplant. Recipients received a modified immunosuppression regimen, without induction therapy, consisting of maintenance tacrolimus, mycophenolate mofetil, and steroids. Steroids were weaned off over 14 weeks. No rejection was seen on any protocol biopsy. Therefore, all patients discontinued mycophenolate mofetil 11 to 13 months posttransplant, per protocol. An early for-cause biopsy in 1 patient, 5 days after dar-Treg infusion, revealed absence of rejection and accumulation of Tregs in the kidney allograft. All patients had Treg-containing lymphoid aggregates evident on protocol biopsies performed 8 months posttransplant. The patients are now all >6 years posttransplant on tacrolimus monotherapy with excellent graft function. None experienced rejection episodes. No serious adverse events were attributable to Treg administration. These results support a favorable safety profile of dar-Tregs administered early after renal transplant, suggest early biopsy might be an instructive research endpoint and provide preliminary evidence of potential immunomodulatory activity.
Collapse
Affiliation(s)
- Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Laura Contreras-Ruiz
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Kerry Crisalli
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Charles Rickert
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Ivy Rosales
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Robert Makar
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Robert Colvin
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Edward K Geissler
- University Hospital Regensburg, Department of Surgery, Regensburg, Germany.
| | - Birgit Sawitzki
- Institute of Medical Immunology, Virchow - Klinikum, Berlin, Germany.
| | - Paul Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Qizhi Tang
- Division of Transplantation, Department of Surgery, University of California, San Francisco, California, USA.
| | - Giles Blancho
- Centre of Research in Transplantation and Immunology, Nantes University, Nantes, France.
| | - Laurence A Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - James F Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Lim TY, Perpiñán E, Londoño MC, Miquel R, Ruiz P, Kurt AS, Kodela E, Cross AR, Berlin C, Hester J, Issa F, Douiri A, Volmer FH, Taubert R, Williams E, Demetris AJ, Lesniak A, Bensimon G, Lozano JJ, Martinez-Llordella M, Tree T, Sánchez-Fueyo A. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J Hepatol 2023; 78:153-164. [PMID: 36087863 DOI: 10.1016/j.jhep.2022.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS CD4+CD25+Foxp3+ regulatory T cells (Tregs) are essential to maintain immunological tolerance and have been shown to promote liver allograft tolerance in both rodents and humans. Low-dose IL-2 (LDIL-2) can expand human endogenous circulating Tregs in vivo, but its role in suppressing antigen-specific responses and promoting Treg trafficking to the sites of inflammation is unknown. Likewise, whether LDIL-2 facilitates the induction of allograft tolerance has not been investigated in humans. METHODS We conducted a clinical trial in stable liver transplant recipients 2-6 years post-transplant to determine the capacity of LDIL-2 to suppress allospecific immune responses and allow for the complete discontinuation of maintenance immunosuppression (ClinicalTrials.gov NCT02949492). One month after LDIL-2 was initiated, those exhibiting at least a 2-fold increase in circulating Tregs gradually discontinued immunosuppression over a 4-month period while continuing LDIL-2 for a total treatment duration of 6 months. RESULTS All participants achieved a marked and sustained increase in circulating Tregs. However, this was not associated with the preferential expansion of donor-reactive Tregs and did not promote the accumulation of intrahepatic Tregs. Furthermore, LDIL-2 induced a marked IFNγ-orchestrated transcriptional response in the liver even before immunosuppression weaning was initiated. The trial was terminated after the first 6 participants failed to reach the primary endpoint owing to rejection requiring reinstitution of immunosuppression. CONCLUSIONS The expansion of circulating Tregs in response to LDIL-2 is not sufficient to control alloimmunity and to promote liver allograft tolerance, due, at least in part, to off-target effects that increase liver immunogenicity. Our trial provides unique insight into the mechanisms of action of immunomodulatory therapies such as LDIL-2 and their limitations in promoting alloantigen-specific effects and immunological tolerance. CLINICAL TRIALS REGISTRATION The study is registered at ClinicalTrials.gov (NCT02949492). IMPACT AND IMPLICATIONS The administration of low-dose IL-2 is an effective way of increasing the number of circulating regulatory T cells (Tregs), an immunosuppressive lymphocyte subset that is key for the establishment of immunological tolerance, but its use to promote allograft tolerance in the setting of clinical liver transplantation had not been explored before. In liver transplant recipients on tacrolimus monotherapy, low-dose IL-2 effectively expanded circulating Tregs but did not increase the number of Tregs with donor specificity, nor did it promote their trafficking to the transplanted liver. Low-dose IL-2 did not facilitate the discontinuation of tacrolimus and elicited, as an off-target effect, an IFNγ-orchestrated inflammatory response in the liver that resembled T cell-mediated rejection. These results, supporting an unexpected role for IL-2 in regulating the immunogenicity of the liver, highlight the need to carefully evaluate systemic immunoregulatory strategies with investigations that are not restricted to the blood compartment and involve target tissues such as the liver.
Collapse
Affiliation(s)
- Tiong Y Lim
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elena Perpiñán
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Maria-Carlota Londoño
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Unit, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Rosa Miquel
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Paula Ruiz
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ada S Kurt
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amy R Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Claudia Berlin
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | | | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gilbert Bensimon
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière et UPMC Pharmacologie, Paris-Sorbonne Université, Paris, France; Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France
| | - Juan José Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Carlos III Health Institute, Barcelona, Spain
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tim Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
6
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
7
|
Hirai T, Lin PY, Ramos TL, Simonetta F, Su LL, Picton LK, Baker J, Lohmeyer JK, Garcia KC, Negrin RS. IL-2 receptor engineering enhances regulatory T cell function suppressed by calcineurin inhibitor. Am J Transplant 2022; 22:3061-3068. [PMID: 36031344 PMCID: PMC10184573 DOI: 10.1111/ajt.17181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Clinical trials utilizing regulatory T cell (Treg) therapy in organ transplantation have shown promising results, however, the choice of a standard immunosuppressive regimen is still controversial. Calcineurin inhibitors (CNIs) are one of the most common immunosuppressants for organ transplantation, although they may negatively affect Tregs by inhibiting IL-2 production by conventional T cells. As a strategy to replace IL-2 signaling selectively in Tregs, we have introduced an engineered orthogonal IL-2 (ortho IL-2) cytokine/cytokine receptor (R) pair that specifically binds with each other but does not bind with their wild-type counterparts. Murine Tregs were isolated from recipients and retrovirally transduced with ortho IL-2Rβ during ex vivo expansion. Transduced Tregs (ortho Tregs) were transferred into recipient mice in a mixed hematopoietic chimerism model with tacrolimus administration. Ortho IL-2 treatment significantly increased the ortho IL-2Rβ(+) Treg population in the presence of tacrolimus without stimulating other T cell subsets. All the mice treated with tacrolimus plus ortho IL-2 achieved heart allograft tolerance, even after tacrolimus cessation, whereas those receiving tacrolimus treatment alone did not. These data demonstrate that Treg therapy can be adopted into a CNI-based regimen by utilizing cytokine receptor engineering.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L. Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K. Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
9
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
MacDonald KN, Hall MG, Ivison S, Gandhi S, Klein Geltink RI, Piret JM, Levings MK. Consequences of adjusting cell density and feed frequency on serum-free expansion of thymic regulatory T cells. Cytotherapy 2022; 24:1121-1135. [PMID: 36008207 DOI: 10.1016/j.jcyt.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Given the promising results from phase 1/2 clinical trials of therapy involving regulatory T cells (Tregs), it is critical to develop Treg manufacturing methods that use well-defined reagents. METHODS Seeking to maximize expansion of human thymic Tregs activated with anti-CD3/CD28 antibody-coated beads and cultured in serum-free medium, the authors investigated the effect of adjusting process parameters including cell density and cell concentration, and feeding strategy on Treg yield and quality. RESULTS The authors found that levels of expansion and viability varied with cell density on the day of restimulation. Tregs restimulated at low cell densities (1 × 105 cells/cm2) initially had high growth rates, viability and FOXP3 expression, but these parameters decreased with time and were less stable than those observed in cultures of Tregs restimulated at high cell densities (5 × 105 cells/cm2), which had slower growth rates. High-density expansion was associated with expression of inhibitory molecules and lower intracellular oxygen and extracellular nutrient concentrations as well as extracellular lactate accumulation. Experiments to test the effect of low oxygen revealed that transient exposure to low oxygen levels had little impact on expansion, viability or phenotype. Similarly, blockade of inhibitory molecules had little effect. By contrast, replenishing nutrients by increasing the feeding frequency between 2 days and 4 days after restimulation increased FOXP3, viability and expansion in high-density cultures. CONCLUSION These data show the previously undescribed consequences of adjusting cell density on Treg expansion and establish a Good Manufacturing Practice-relevant protocol using non-cell-based activation reagents and serum-free media that supports sustained expansion without loss of viability or phenotype.
Collapse
Affiliation(s)
- Katherine N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Michael G Hall
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Sabine Ivison
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Sanjiv Gandhi
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Ramon I Klein Geltink
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada
| | - James M Piret
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Brook MO, Hester J, Petchey W, Rombach I, Dutton S, Bottomley MJ, Black J, Abdul-Wahab S, Bushell A, Lombardi G, Wood K, Friend P, Harden P, Issa F. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open 2022; 12:e061864. [PMID: 35428650 PMCID: PMC9014059 DOI: 10.1136/bmjopen-2022-061864] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Regulatory T cell (Treg) therapy has been demonstrated to facilitate long-term allograft survival in preclinical models of transplantation and may permit reduction of immunosuppression and its associated complications in the clinical setting. Phase 1 clinical trials have shown Treg therapy to be safe and feasible in clinical practice. Here we describe a protocol for the TWO study, a phase 2b randomised control trial of Treg therapy in living donor kidney transplant recipients that will confirm safety and explore efficacy of this novel treatment strategy. METHODS AND ANALYSIS 60 patients will be randomised on a 1:1 basis to Treg therapy (TR001) or standard clinical care (control). Patients in the TR001 arm will receive an infusion of autologous polyclonal ex vivo expanded Tregs 5 days after transplantation instead of standard monoclonal antibody induction. Maintenance immunosuppression will be reduced over the course of the post-transplant period to low-dose tacrolimus monotherapy. Control participants will receive a standard basiliximab-based immunosuppression regimen with long-term tacrolimus and mycophenolate mofetil immunosuppression. The primary endpoint is biopsy proven acute rejection over 18 months; secondary endpoints include immunosuppression burden, chronic graft dysfunction and drug-related complications. ETHICS AND DISSEMINATION Ethical approval has been provided by the National Health Service Health Research Authority South Central-Oxford A Research Ethics Committee (reference 18/SC/0054). The study also received authorisation from the UK Medicines and Healthcare products Regulatory Agency and is being run in accordance with the principles of Good Clinical Practice, in collaboration with the registered trials unit Oxford Clinical Trials Research Unit. Results from the TWO study will be published in peer-reviewed scientific/medical journals and presented at scientific/clinical symposia and congresses. TRIAL REGISTRATION NUMBER ISRCTN: 11038572; Pre-results.
Collapse
Affiliation(s)
- Matthew Oliver Brook
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - William Petchey
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ines Rombach
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Susan Dutton
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Matthew James Bottomley
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joanna Black
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Seetha Abdul-Wahab
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre GMP unit, Guy's Hospital, London, UK
| | - Andrew Bushell
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Giovanna Lombardi
- NIHR Biomedical Research Centre GMP unit, Guy's Hospital, London, UK
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, London, UK
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Lavazza C, Budelli S, Montelatici E, Viganò M, Ulbar F, Catani L, Cannone MG, Savelli S, Groppelli E, Lazzari L, Lemoli RM, Cescon M, La Manna G, Giordano R, Montemurro T. Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. J Transl Med 2022; 20:14. [PMID: 34986854 PMCID: PMC8729072 DOI: 10.1186/s12967-021-03200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A growing number of clinical trials have shown that regulatory T (Treg) cell transfer may have a favorable effect on the maintenance of self-tolerance and immune homeostasis in different conditions such as graft-versus-host disease (GvHD), solid organ transplantation, type 1 diabetes, and others. In this context, the availability of a robust manufacturing protocol that is able to produce a sufficient number of functional Treg cells represents a fundamental prerequisite for the success of a cell therapy clinical protocol. However, extended workflow guidelines for nonprofit manufacturers are currently lacking. Despite the fact that different successful manufacturing procedures and cell products with excellent safety profiles have been reported from early clinical trials, the selection and expansion protocols for Treg cells vary a lot. The objective of this study was to validate a Good Manufacturing Practice (GMP)-compliant protocol for the production of Treg cells that approaches the whole process with a risk-management methodology, from process design to completion of final product development. High emphasis was given to the description of the quality control (QC) methodologies used for the in-process and release tests (sterility, endotoxin test, mycoplasma, and immunophenotype). RESULTS The GMP-compliant protocol defined in this work allows at least 4.11 × 109 Treg cells to be obtained with an average purity of 95.75 ± 4.38% and can be used in different clinical settings to exploit Treg cell immunomodulatory function. CONCLUSIONS These results could be of great use for facilities implementing GMP-compliant cell therapy protocols of these cells for different conditions aimed at restoring the Treg cell number and function, which may slow the progression of certain diseases.
Collapse
Affiliation(s)
- Cristiana Lavazza
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Budelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Montelatici
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariele Viganò
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Ulbar
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica E Sperimentale, Università di Bologna, Bologna, Italy
| | - Lucia Catani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica E Sperimentale, Università di Bologna, Bologna, Italy
| | - Marta Giulia Cannone
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Savelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Groppelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Lazzari
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto M Lemoli
- Department of Internal Medicine (DiMI), Clinic of Hematology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Cescon
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of General Surgery and Transplantation, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital IRCCS, University of Bologna, Bologna, Italy
| | - Rosaria Giordano
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Montemurro
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
13
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
14
|
Rickert CG, Markmann JF. Transplantation in the Age of Precision Medicine: The Emerging Field of Treg Therapy. Semin Nephrol 2022; 42:76-85. [DOI: 10.1016/j.semnephrol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kaiser D, Otto NM, McCallion O, Hoffmann H, Zarrinrad G, Stein M, Beier C, Matz I, Herschel M, Hester J, Moll G, Issa F, Reinke P, Roemhild A. Freezing Medium Containing 5% DMSO Enhances the Cell Viability and Recovery Rate After Cryopreservation of Regulatory T Cell Products ex vivo and in vivo. Front Cell Dev Biol 2021; 9:750286. [PMID: 34926446 PMCID: PMC8677839 DOI: 10.3389/fcell.2021.750286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
Cell therapies have significant therapeutic potential in diverse fields including regenerative medicine, transplantation tolerance, and autoimmunity. Within these fields, regulatory T cells (Treg) have been deployed to ameliorate aberrant immune responses with great success. However, translation of the cryopreservation strategies employed for other cell therapy products, such as effector T cell therapies, to Treg therapies has been challenging. The lack of an optimized cryopreservation strategy for Treg products presents a substantial obstacle to their broader application, particularly as administration of fresh cells limits the window available for sterility and functional assessment. In this study, we aimed to develop an optimized cryopreservation strategy for our CD4+CD25+Foxp3+ Treg clinical product. We investigate the effect of synthetic or organic cryoprotectants including different concentrations of DMSO on Treg recovery, viability, phenotype, cytokine production, suppressive capacity, and in vivo survival following GMP-compliant manufacture. We additionally assess the effect of adding the extracellular cryoprotectant polyethylene glycol (PEG), or priming cellular expression of heat shock proteins as strategies to improve viability. We find that cryopreservation in serum-free freezing medium supplemented with 10% human serum albumin and 5% DMSO facilitates improved Treg recovery and functionality and supports a reduced DMSO concentration in Treg cryopreservation protocols. This strategy may be easily incorporated into clinical manufacture protocols for future studies.
Collapse
Affiliation(s)
- Daniel Kaiser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Maureen Otto
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Henrike Hoffmann
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Beier
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabell Matz
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marleen Herschel
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Wagner JC, Leicht S, Hofmann M, Seifert F, Gahn S, Germer CT, Beyersdorf N, Otto C, Klein I. CD28 Superagonist D665-mediated activation of mouse regulatory T cells maintains their phenotype without loss of suppressive quality. Immunobiology 2021; 226:152144. [PMID: 34624625 DOI: 10.1016/j.imbio.2021.152144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune homeostasis by regulating the activation of other immune cells. Preclinical studies show that the infusion of Tregs can promote immunological tolerance to allografts and prevent or cure multiple autoimmune diseases. However, Treg therapy is limited by high numbers of cells required to induce tolerance. In this study, we aimed at improving the in vitro expansion of sort purified mouse Tregs using the CD28 Superagonist (CD28-SA) D665 and comparing it to the conventional expansion using anti-CD3/anti-CD28 Dynabeads®. CD28-SA-stimulated Tregs expanded more than Dynabead®-stimulated Tregs while maintaining their phenotype by expressing the same level of CD4, CD25 and Foxp3. CD28-SA-expanded Tregs produced comparable amounts of IL-10 and TGFβ while showing a slightly superior suppressive capacity compared to Dynabead®-stimulated Tregs. Thus, stimulating murine Tregs with the CD28-SA is a promising alternative since it maintains their suppressive capacity without altering their phenotype and yields a higher fold expansion within 14 days.
Collapse
Affiliation(s)
- Johanna C Wagner
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Department of Surgery, Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA.
| | - Svenja Leicht
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Manuela Hofmann
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Franziska Seifert
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Sabine Gahn
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Christoph Otto
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| |
Collapse
|
17
|
Miyamoto E, Takahagi A, Ohsumi A, Martinu T, Hwang D, Boonstra KM, Joe B, Umana JM, Bei KF, Vosoughi D, Liu M, Cypel M, Keshavjee S, Juvet SC. Ex vivo delivery of regulatory T cells for control of alloimmune priming in the donor lung. Eur Respir J 2021; 59:13993003.00798-2021. [PMID: 34475226 DOI: 10.1183/13993003.00798-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesized that in vitro expanded, recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability.In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP.Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intragraft effector CD4+ T cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+, and CD15s+).Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post- transplant. Our organ-directed approach has potential for clinical translation.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Takahagi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kristen M Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Juan Mauricio Umana
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke F Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Pang LX, Cai WW, Li Q, Li HJ, Fei M, Yuan YS, Sheng B, Zhang K, An RC, Ou YW, Zeng WJ. Bone marrow-derived mesenchymal stem cells attenuate myocardial ischemia-reperfusion injury via upregulation of splenic regulatory T cells. BMC Cardiovasc Disord 2021; 21:215. [PMID: 33906602 PMCID: PMC8080373 DOI: 10.1186/s12872-021-02007-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is the main pathological manifestation of cardiovascular diseases such as myocardial infarction. The potential therapeutic effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) and the participation of regulatory T cells (Tregs) in MIRI remains to be defined. METHODS We used the experimental acute MIRI that was induced in mice by left ascending coronary ischemia, which were subsequently randomized to receive immunoglobulin G (IgG) or anti-CD25 antibody PC61 with or without intravenously injected BM-MSCs. The splenectomized mice underwent prior to experimental MIRI followed by intravenous administration of BM-MSCs. At 72 h post-MIRI, the hearts and spleens were harvested and subjected to cytometric and histologic analyses. RESULTS CD25+Foxp3+ regulatory T cells were significantly elevated after MIRI in the hearts and spleens of mice receiving IgG + BM-MSCs and PC61 + BM-MSCs compared to the respective control mice (all p < 0.01). This was accompanied by upregulation of interleukin 10 and transforming growth factor β1 and downregulation of creatinine kinase and lactate dehydrogenase in the serum. The post-MIRI mice receiving BM-MSCs showed attenuated inflammation and cellular apoptosis in the heart. Meanwhile, splenectomy compromised all therapeutic effects of BM-MSCs. CONCLUSION Administration of BM-MSCs effectively alleviates MIRI in mice through inducing Treg activation, particularly in the spleen.
Collapse
Affiliation(s)
- Ling-Xiao Pang
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wen-Wei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qian Li
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Heng-Jie Li
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Min Fei
- Department of Health Management Center, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yong-Sheng Yuan
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Bin Sheng
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Ke Zhang
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Rong-Cheng An
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying-Wei Ou
- Department of Emergency, Zhejiang Provincial People's Hospital,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wen-Jie Zeng
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, ShangTang Road 158, Hangzhou, 310014, China.
| |
Collapse
|
19
|
Hirai T, Ramos TL, Lin PY, Simonetta F, Su LL, Picton LK, Baker J, Lin JX, Li P, Seo K, Lohmeyer JK, Bolivar-Wagers S, Mavers M, Leonard WJ, Blazar BR, Garcia KC, Negrin RS. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J Clin Invest 2021; 131:139991. [PMID: 33855972 DOI: 10.1172/jci139991] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of Tregs has been shown to improve alloengraftment in animal models. However, it is technically challenging to expand Tregs ex vivo for the purpose of infusing large numbers of cells in the clinic. We demonstrate an innovative approach to engineering an orthogonal IL-2/IL-2 receptor (IL-2R) pair, the parts of which selectively interact with each other, transmitting native IL-2 signals, but do not interact with the natural IL-2 or IL-2R counterparts, thereby enabling selective stimulation of target cells in vivo. Here, we introduced this orthogonal IL-2R into Tregs. Upon adoptive transfer in a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection significantly promoted orthogonal IL-2R+Foxp3GFP+CD4+ cell proliferation without increasing other T cell subsets and facilitated donor hematopoietic cell engraftment followed by acceptance of heart allografts. Our data indicate that selective target cell stimulation enabled by the engineered orthogonal cytokine receptor improves Treg potential for the induction of organ transplantation tolerance.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Teresa L Ramos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Stanford, California, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Regulatory T Cells for the Induction of Transplantation Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33523454 DOI: 10.1007/978-981-15-6407-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Organ transplantation is the optimal treatment for terminal and irreversible organ failure. Achieving transplantation tolerance has long been the ultimate goal in the field of transplantation. Regulatory T cell (Treg)-based therapy is a promising novel approach for inducing donor organ-specific tolerance. Tregs play critical roles in the maintenance of immune homeostasis and self-tolerance, by promoting transplantation tolerance through a variety of mechanisms on different target cells, including anti-inflammatory cytokine production, induction of apoptosis, disruption of metabolic pathways, and mutual interaction with dendritic cells. The continued success of Treg-based therapy in the clinical setting is critically dependent on preclinical studies that support its translational potential. However, although some initial clinical trials of adoptive Treg therapy have successively demonstrated safety and efficacy for immunosuppressant minimization and transplantation tolerance induction, most Treg-based hematopoietic stem cell and solid organ clinical trials are still in their infancy. These clinical trials have not only focused on safety and efficacy but also included optimization and standardization protocols of good manufacturing practice regarding cell isolation, expansion, dosing, timing, specificity, quality control, concomitant immunosuppressants, and post-administration monitoring. We herein report a brief introduction of Tregs, including their phenotypic and functional characterization, and focus on the clinical translation of Treg-based therapeutic applications in the setting of transplantation.
Collapse
|
21
|
Korniotis S, D'Aveni M, Hergalant S, Letscher H, Tejerina E, Gastineau P, Agbogan VA, Gras C, Fouquet G, Rossignol J, Chèvre JC, Cagnard N, Rubio MT, Hermine O, Zavala F. Mobilized Multipotent Hematopoietic Progenitors Stabilize and Expand Regulatory T Cells to Protect Against Autoimmune Encephalomyelitis. Front Immunol 2020; 11:607175. [PMID: 33424854 PMCID: PMC7786289 DOI: 10.3389/fimmu.2020.607175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Achieving immunoregulation via in vivo expansion of Foxp3+ regulatory CD4+ T cells (Treg) remains challenging. We have shown that mobilization confers to multipotent hematopoietic progenitors (MPPs) the capacity to enhance Treg proliferation. Transcriptomic analysis of Tregs co-cultured with MPPs revealed enhanced expression of genes stabilizing the suppressive function of Tregs as well as the activation of IL-1β-driven pathways. Adoptive transfer of only 25,000 MPPs effectively reduced the development of experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for multiple sclerosis (MS). Production of the pathogenic cytokines IL-17 and GM-CSF by spinal cord-derived CD4+ T-cells in MPP-protected recipients was reduced while Treg expansion was enhanced. Treg depletion once protection by MPPs was established, triggered disease relapse to the same level as in EAE mice without MPP injection. The key role of IL-1β was further confirmed in vivo by the lack of protection against EAE in recipients of IL-1β-deficient MPPs. Mobilized MPPs may thus be worth considering for cell therapy of MS either per se or for enrichment of HSC grafts in autologous bone marrow transplantation already implemented in patients with severe refractory multiple sclerosis.
Collapse
Affiliation(s)
- Sarantis Korniotis
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Maud D'Aveni
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | | | - Hélène Letscher
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Viviane A Agbogan
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Christophe Gras
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Guillemette Fouquet
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Julien Rossignol
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Jean-Claude Chèvre
- Université de Lorraine, Inserm U1256, NGERE, Vandoeuvre-lès-Nancy, France
| | | | - Marie-Thérèse Rubio
- Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | - Olivier Hermine
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Flora Zavala
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
22
|
Eskandari SK, Sulkaj I, Melo MB, Li N, Allos H, Alhaddad JB, Kollar B, Borges TJ, Eskandari AS, Zinter MA, Cai S, Assaker JP, Choi JY, Al Dulaijan BS, Mansouri A, Haik Y, Tannous BA, van Son WJ, Leuvenink HGD, Pomahac B, Riella LV, Tang L, Seelen MAJ, Irvine DJ, Azzi JR. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci Transl Med 2020; 12:eaaw4744. [PMID: 33177180 PMCID: PMC8519505 DOI: 10.1126/scitranslmed.aaw4744] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 07/30/2023]
Abstract
Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Ina Sulkaj
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Hazim Allos
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliano B Alhaddad
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thiago J Borges
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arach S Eskandari
- Department of Electrical Engineering, Delft University of Technology, 2628 CD Delft, Netherlands
| | - Max A Zinter
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Songjie Cai
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Pierre Assaker
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Y Choi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Basmah S Al Dulaijan
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amr Mansouri
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yousef Haik
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Willem J van Son
- Division of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Bohdan Pomahac
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo V Riella
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marc A J Seelen
- Division of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Janssens I, Cools N. Regulating the regulators: Is introduction of an antigen-specific approach in regulatory T cells the next step to treat autoimmunity? Cell Immunol 2020; 358:104236. [PMID: 33137651 DOI: 10.1016/j.cellimm.2020.104236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
In autoimmunity, the important and fragile balance between immunity and tolerance is disturbed, resulting in abnormal immune responses to the body's own tissues and cells. CD4+CD25hiFoxP3+ regulatory T cells (Tregs) induce peripheral tolerance in vivo by means of direct cell-cell contact and release of soluble factors, or indirectly through antigen-presenting cells (APC), thereby controlling auto-reactive effector T cells. Based on these unique capacities of Tregs, preclinical studies delivered proof-of-principle for the clinical use of Tregs for the treatment of autoimmune diseases. To date, the first clinical trials using ex vivo expanded polyclonal Tregs have been completed. These pioneering studies demonstrate the feasibility of generating large numbers of polyclonal Tregs in a good manufacturing practices (GMP)-compliant manner, and that infusion of Tregs is well tolerated by patients with no evidence of general immunosuppression. Nonetheless, only modest clinical results were observed, arguing that a more antigen-specific approach might be needed to foster a durable patient-specific clinical cell therapy without the risk for general immunosuppression. In this review, we discuss current knowledge, applications and future goals of adoptive immune-modulatory Treg therapy for the treatment of autoimmune disease and transplant rejection. We describe the key advances and prospects of the potential use of T cell receptor (TCR)- and chimeric antigen receptor (CAR)-engineered Tregs in future clinical applications. These approaches could deliver the long-awaited breakthrough in stopping undesired autoimmune responses and transplant rejections.
Collapse
Affiliation(s)
- Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
24
|
Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020; 356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Zavvar M, Assadiasl S, Zargaran S, Akhtari M, Poopak B, Dinarvand R, Fatahi Y, Tayebi L, Soleimanifar N, Nicknam MH. Adoptive Treg cell-based immunotherapy: Frontier therapeutic aspects in rheumatoid arthritis. Immunotherapy 2020; 12:933-946. [PMID: 32635779 DOI: 10.2217/imt-2020-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The major current focus on treating rheumatoid arthritis is to put an end to long-term treatments and instead, specifically block widespread immunosuppression by developing antigen-specific tolerance, while also permitting an intact immune response toward other antigens to occur. There have been promising preclinical findings regarding adoptive Treg cells immunotherapy with a critically responsible function in the prevention of autoimmunity, tissue repair and regeneration, which make them an attractive candidate to develop effective therapeutic approaches to achieve this interesting concept in many human immune-mediated diseases, such as rheumatoid arthritis. Ex vivo or invivo manipulation protocols are not only utilized to correct Treg cells defect, but also to benefit from their specific immunosuppressive properties by identifying specific antigens that are expressed in the inflamedjoint. The methods able to address these deficiencies can be considered as a target for immunity interventions to restore appropriate immune function.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Zargaran
- Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Akhtari
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Narjes Soleimanifar
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Abstract
Purpose of the review The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) following organ transplantation is an emerging treatment paradigm that may induce tolerance and reduce the risk for graft rejection. In particular, redirecting Treg specificity via expression of synthetic chimeric antigen receptors (CARs) has demonstrated therapeutic promise in several preclinical studies. In this review, we highlight recent progress and remaining barriers to the clinical translation of CAR-Treg therapies. Recent findings CAR Tregs targeting human leukocyte antigen (HLA)-A2 showed antigen-specific in vitro activation and superior in vivo protective function relative to polyclonal Tregs. Adoptively transferred anti-HLA-A2 CAR Tregs prolonged the survival of HLA-A2-positive grafts in humanized mouse models. Summary Donor HLA molecules are attractive candidate antigens to target with CAR Tregs in transplantation due to mismatched HLA only expressed on the transplanted organ. The feasibility of this approach has been demonstrated by several independent groups in recent years. However, substantial challenges in CAR design and preclinical modeling must be more extensively addressed prior to clinical application.
Collapse
|
27
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Alberú-Gómez J, Soldevila G. Large-Scale Generation of Human Allospecific Induced Tregs With Functional Stability for Use in Immunotherapy in Transplantation. Front Immunol 2020; 11:375. [PMID: 32300340 PMCID: PMC7142244 DOI: 10.3389/fimmu.2020.00375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells play an important role in the control of autoimmune diseases and maintenance of tolerance. In the context of transplantation, regulatory T cells (Tregs) have been proposed as new therapeutic tools that may induce allospecific tolerance toward the graft, avoiding the side effects induced by generalized immunosuppressors. Although most clinical trials are based on the use of thymic Tregs in adoptive therapy, some reports suggest the potential use of in vitro induced Tregs (iTregs), based on their functional stability under inflammatory conditions, indicating an advantage in a setting of allograft rejection. The aim of this work was to generate and expand large numbers of allospecific Tregs that maintain stable suppressive function in the presence of pro-inflammatory cytokines. Dendritic cells were derived from monocytes isolated from healthy donors and were co-cultured with CTV-labeled naïve T cells from unrelated individuals, in the presence of TGF-β1, IL-2, and retinoic acid. After 7 days of co-culture, proliferating CD4+CD25++CTV− cells (allospecific iTregs) were sorted and polyclonally expanded for 6 weeks in the presence of TGF-β1, IL-2, and rapamycin. After 6 weeks of polyclonal activation, iTregs were expanded 230,000 times, giving rise to 4,600 million allospecific iTregs. Allospecific iTregs were able to specifically suppress the proliferation of autologous CD4+ and CD8+ T cells in response to the allo-MoDCs used for iTreg generation, but not to third-party allo-MoDCs. Importantly, 88.5% of the expanded cells were CD4+CD25+FOXP3+, expressed high levels of CCR4 and CXCR3, and maintained their phenotype and suppressive function in the presence of TNF-α and IL-6. Finally, analysis of the methylation status of the FOXP3 TSDR locus demonstrated a 40% demethylation in the purified allospecific iTreg, prior to the polyclonal expansion. Interestingly, the phenotype and suppressive activity of expanded allospecific iTregs were maintained after 6 weeks of expansion, despite an increase in the methylation status of the FOXP3 TSDR. In conclusion, this is the first report that demonstrates a large-scale generation of allospecific iTregs that preserve a stable phenotype and suppressor function in the presence of pro-inflammatory cytokines and pave the way for adoptive cell therapy with iTregs in transplanted patients.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Arimelek Cortés-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Saúl Arteaga-Cruz
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Josefina Alberú-Gómez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
28
|
Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators Inflamm 2020; 2020:8405370. [PMID: 32410868 PMCID: PMC7204323 DOI: 10.1155/2020/8405370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia reperfusion syndrome is a complex entity where many inflammatory mediators play different roles, both to enhance myocardial infarction-derived damage and to heal injury. In such a setting, the establishment of an effective therapy to treat this condition has been elusive, perhaps because the experimental treatments have been conceived to block just one of the many pathogenic pathways of the disease, or because they thwart the tissue-repairing phase of the syndrome. Either way, we think that a discussion about the pathophysiology of the disease and the mechanisms of action of some drugs may shed some clarity on the topic.
Collapse
|
29
|
Treg-inducing microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation. Proc Natl Acad Sci U S A 2019; 116:25784-25789. [PMID: 31792185 DOI: 10.1073/pnas.1910701116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For individuals who sustain devastating composite tissue loss, vascularized composite allotransplantation (VCA; e.g., hand and face transplantation) has the potential to restore appearance and function of the damaged tissues. As with solid organ transplantation, however, rejection must be controlled by multidrug systemic immunosuppression with substantial side effects. As an alternative therapeutic approach inspired by natural mechanisms the body uses to control inflammation, we developed a system to enrich regulatory T cells (Tregs) in an allograft. Microparticles were engineered to sustainably release TGF-β1, IL-2, and rapamycin, to induce Treg differentiation from naïve T cells. In a rat hindlimb VCA model, local administration of this Treg-inducing system, referred to as TRI-MP, prolonged allograft survival indefinitely without long-term systemic immunosuppression. TRI-MP treatment reduced expression of inflammatory mediators and enhanced expression of Treg-associated cytokines in allograft tissue. TRI-MP also enriched Treg and reduced inflammatory Th1 populations in allograft draining lymph nodes. This local immunotherapy imparted systemic donor-specific tolerance in otherwise immunocompetent rats, as evidenced by acceptance of secondary skin grafts from the hindlimb donor strain and rejection of skin grafts from a third-party donor strain. Ultimately, this therapeutic approach may reduce, or even eliminate, the need for systemic immunosuppression in VCA or solid organ transplantation.
Collapse
|
30
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Ratnasothy K, Jacob J, Tung S, Boardman D, Lechler RI, Sanchez-Fueyo A, Martinez‐Llordella M, Lombardi G. IL-2 therapy preferentially expands adoptively transferred donor-specific Tregs improving skin allograft survival. Am J Transplant 2019; 19:2092-2100. [PMID: 30748096 PMCID: PMC6618286 DOI: 10.1111/ajt.15306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/04/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) have unique immunosuppressive properties and are essential to ensure effective immunoregulation. In animal models, Tregs have been shown to prevent autoimmune disorders and establish transplantation tolerance. Therefore, the prospect of harnessing Tregs, either by increasing their frequency or by conferring allospecificity, has prompted a growing interest in the development of immunotherapies. Here, employing a well-established skin transplant model with a single major histocompatibility complex mismatch, we compared the therapeutic efficacy of adoptively transfer Treg with or without donor specificity and the administration of IL-2 to promote in vivo expansion of Treg. We showed that IL-2 treatment preferentially enhances the proliferation of the allospecific Tregs adoptively transferred in an antigen-dependent manner. In addition, donor-specific Tregs significantly increased the expression of regulatory-related marker, such as CTLA4 and inducible costimulator (ICOS), in the skin allograft and draining lymph nodes compared to endogenous and polyclonal transferred Tregs. Importantly, by combining IL-2 with donor-specific Tregs, but not with polyclonal Tregs, a synergistic effect in prolonging skin allograft survival was observed. Altogether, our data suggest that this combination therapy could provide the appropriate conditions to enhance the immunoregulation of alloimmune responses in clinical transplantation.
Collapse
Affiliation(s)
- Kulachelvy Ratnasothy
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Jacintha Jacob
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Sim Tung
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Dominic Boardman
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Robert Ian Lechler
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Alberto Sanchez-Fueyo
- Department of Inflammation BiologyMRC Centre for TransplantationInstitute of Liver StudiesFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Marc Martinez‐Llordella
- Department of Inflammation BiologyMRC Centre for TransplantationInstitute of Liver StudiesFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Giovanna Lombardi
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
32
|
Abstract
With the advent of the concept of dominant tolerance and the subsequent discovery of CD4+ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all productive as well as nonproductive immune responses can be compartmentalized to a binary of immune effector T cells and immune regulatory Treg populations. A beneficial immune response warrants the timely regulation by Tregs, whereas a nonproductive immune response indicates insufficient effector functions or an outright failure of tolerance. There are ample reports supporting role of Tregs in suppressing spontaneous auto-immune diseases as well as promoting immune evasion by cancers. To top up their importance, several non-immune functions like tissue homeostasis and regeneration are also being attributed to Tregs. Hence, after being in the center stage of basic and translational immunological research, Tregs are making the next jump towards clinical studies. Therefore, newer small molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to augment or undermine Treg responses in the context of autoimmunity and cancer. In this brief review, we present the strategies to modulate Tregs towards a favorable clinical outcome.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| |
Collapse
|
33
|
Đedović N, Paunović V, Stojanović I. Isolation and enrichment of mouse insulin-specific CD4 + T regulatory cells. J Immunol Methods 2019; 470:46-54. [PMID: 31039339 DOI: 10.1016/j.jim.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 02/05/2023]
Abstract
Polyclonal T regulatory cells (Treg - CD4+CD25+CD127lowFoxp3+) are used in several protocols for the treatment of type 1 diabetes (T1D), multiple sclerosis and graft-versus host disease in clinical trials. However, general opinion is that autoantigen-specific Treg could be more efficient in autoimmunity suppression due to their direct effect on pathogenic autoantigen-specific effector T cells. This study describes isolation and expansion of insulin-specific Treg in vitro. Insulin-specific Treg are uniformly distributed in lymphoid tissues however their number is extremely low. To enrich the proportion of insulin-specific Treg, pure CD4+ cells were co-cultured with insulin B chain peptide-loaded dendritic cells, isolated from mice that develop T1D spontaneously - NOD mice. Insulin-specific CD4+ cell expansion peaked after 48 h of incubation and was in favour of Treg. These cells were then sorted using insulin peptide-loaded MHC class II tetramers and cultured in vitro for 48 h in the presence of TCR stimulators, TGF-β and IL-2. The proportion of gained insulin-specific cells with T regulatory phenotype (CD4+CD25highCD127lowGITR+FoxP3+) was in average between 93% and 97%. These cells have shown potent in vitro suppressive effect on T effector cells, produced IL-10 and TGF-β and expressed PD-1 and CD39. Further proliferation of these insulin-specific Treg required the presence of dendritic cells, anti-CD3 antibody and IL-2. This study provides new, reproducible experimental design for the enrichment and expansion of insulin-specific Treg that can be used for the cell-based therapy of autoimmunity.
Collapse
Affiliation(s)
- Neda Đedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
34
|
MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 2019; 197:52-63. [PMID: 30913302 DOI: 10.1111/cei.13297] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cell (Treg ) therapy has shown promise in early clinical trials for treating graft-versus-host disease, transplant rejection and autoimmune disorders. A challenge has been to isolate sufficiently pure Tregs and expand them to a clinical dose. However, there has been considerable progress in the development and optimization of these methods, resulting in a variety of manufacturing protocols being tested in clinical trials. In this review, we summarize methods that have been used to manufacture Tregs for clinical trials, including the choice of cell source and protocols for cell isolation and expansion. We also discuss alternative culture or genome editing methods for modulating Treg specificity, function or stability that could be applied to future clinical manufacturing protocols to increase the efficacy of Treg therapy.
Collapse
Affiliation(s)
- K N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - M K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC, McIver E, Huang Q, Gillies J, Speck M, Orban PC, Bush JW, Mojibian M, Levings MK. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019; 4:123672. [PMID: 30753169 DOI: 10.1172/jci.insight.123672] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.
Collapse
Affiliation(s)
- Nicholas Aj Dawson
- Department of Medicine and.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Caroline Lamarche
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug and Research and Development, Vancouver, British Columbia, Canada
| | - Vivian Cw Fung
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Emma McIver
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jana Gillies
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Madeleine Speck
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jonathan W Bush
- BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine and
| | - Majid Mojibian
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,School of Biomedical Engineering, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Gupta PK, McIntosh CM, Chong AS, Alegre ML. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 2019; 16:324-333. [PMID: 30760917 DOI: 10.1038/s41423-019-0203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
37
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
38
|
Optimizing regulatory T cells for therapeutic application in human organ transplantation. Curr Opin Organ Transplant 2018; 23:516-523. [DOI: 10.1097/mot.0000000000000561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Young JS, Yin D, Vannier AGL, Alegre ML, Chong AS. Equal Expansion of Endogenous Transplant-Specific Regulatory T Cell and Recruitment Into the Allograft During Rejection and Tolerance. Front Immunol 2018; 9:1385. [PMID: 29973932 PMCID: PMC6020780 DOI: 10.3389/fimmu.2018.01385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Despite numerous advances in the definition of a role for regulatory T cells (Tregs) in facilitating experimental transplantation tolerance, and ongoing clinical trials for Treg-based therapies, critical issues related to the optimum dosage, antigen-specificity, and Treg-friendly adjunct immunosuppressants remain incompletely resolved. In this study, we used a tractable approach of MHC tetramers and flow cytometry to define the fate of conventional (Tconvs) and Tregs CD4+ T cells that recognize donor 2W antigens presented by I-Ab on donor and recipient antigen-presenting cells (APCs) in a mouse cardiac allograft transplant model. Our study shows that these endogenous, donor-reactive Tregs comparably accumulate in the spleens of recipients undergoing acute rejection or exhibiting costimulation blockade-induced tolerance. Importantly, this expansion was not detected when analyzing bulk splenic Tregs. Systemically, the distinguishing feature between tolerance and rejection was the inhibition of donor-reactive conventional T cell (Tconv) expansion in tolerance, translating into increased percentages of splenic FoxP3+ Tregs within the 2W:I-Ab CD4+ T cell subset compared to rejection (~35 vs. <5% in tolerance vs. rejection). We further observed that continuous administration of rapamycin, cyclosporine A, or CTLA4-Ig did not facilitate donor-specific Treg expansion, while all three drugs inhibited Tconv expansion. Finally, donor-specific Tregs accumulated comparably in rejecting tolerant allografts, whereas tolerant grafts harbored <10% of the donor-specific Tconv numbers observed in rejecting allografts. Thus, ~80% of 2W:I-Ab CD4+ T cells in tolerant allografts expressed FoxP3+ compared to ≤10% in rejecting allografts. A similar, albeit lesser, enrichment was observed with bulk graft-infiltrating CD4+ cells, where ~30% were FoxP3+ in tolerant allografts, compared to ≤10% in rejecting allografts. Finally, we assessed that the phenotype of 2W:I-Ab Tregs and observed that the percentages of cells expressing neuropilin-1 and CD73 were significantly higher in tolerance compared to rejection, suggesting that these Tregs may be functionally distinct. Collectively, the analysis of donor-reactive, but not of bulk, Tconvs and Tregs reveal a systemic signature of tolerance that is stable and congruent with the signature within tolerant allografts. Our data also underscore the importance of limiting Tconv expansion for high donor-specific Tregs:Tconv ratios to be successfully attained in transplantation tolerance.
Collapse
Affiliation(s)
- James S Young
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - Dengping Yin
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | | | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
40
|
Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation. Transpl Int 2018; 30:776-784. [PMID: 28608637 DOI: 10.1111/tri.12998] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Modern immunosuppression drug regimens have produced excellent short-term survival after liver transplantation but it is generally accepted that the side effects of these medications remain a significant contributing factor for less satisfactory long term outcomes. The liver has unique tolerogenic properties as evidenced by the higher rates of operational tolerance seen in liver transplant recipients compared to other solid organ transplants, and therefore, liver transplantation offers an attractive setting in which to study tolerizing therapies. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) are crucial for maintenance of self-tolerance and prevention of autoimmune disease and are therefore an appealing potential candidate for use as a tolerizing cell therapy. In this review, we summarize the evidence from drug withdrawal trials of spontaneous operational tolerance in liver transplantation, the unique immunology of the hepatic microenvironment, the evidence for the use of CD4+ CD25+ FOXP3+ regulatory T cells as a tolerance inducing therapy in liver transplantation and the challenges in producing clinical grade Treg cell products.
Collapse
Affiliation(s)
- Gavin P Whitehouse
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew Hope
- CRF GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Alberto Sanchez-Fueyo
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
41
|
Mathew JM, H-Voss J, LeFever A, Konieczna I, Stratton C, He J, Huang X, Gallon L, Skaro A, Ansari MJ, Leventhal JR. A Phase I Clinical Trial with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Sci Rep 2018; 8:7428. [PMID: 29743501 PMCID: PMC5943280 DOI: 10.1038/s41598-018-25574-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
There is considerable interest in therapeutic transfer of regulatory T cells (Tregs) for controlling aberrant immune responses. Initial clinical trials have shown the safety of Tregs in hematopoietic stem cell transplant recipients and subjects with juvenile diabetes. Our hypothesis is that infusion(s) of Tregs may induce transplant tolerance thus avoiding long-term use of toxic immunosuppressive agents that cause increased morbidity/mortality. Towards testing our hypothesis, we conducted a phase I dose escalation safety trial infusing billions of ex vivo expanded recipient polyclonal Tregs into living donor kidney transplant recipients. Despite variability in recipient’s renal disease, our expansion protocol produced Tregs which met all release criteria, expressing >98% CD4+CD25+ with <1% CD8+ and CD19+ contamination. Our product displayed >80% FOXP3 expression with stable demethylation in the FOXP3 promoter. Functionally, expanded Tregs potently suppressed allogeneic responses and induced the generation of new Tregs in the recipient’s allo-responders in vitro. Within recipients, expanded Tregs amplified circulating Treg levels in a sustained manner. Clinically, all doses of Treg therapy tested were safe with no adverse infusion related side effects, infections or rejection events up to two years post-transplant. This study provides the necessary safety data to advance Treg cell therapy to phase II efficacy trials.
Collapse
Affiliation(s)
- James M Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Jessica H-Voss
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ann LeFever
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Iwona Konieczna
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cheryl Stratton
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Jie He
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xuemei Huang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lorenzo Gallon
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Anton Skaro
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Mohammed Javeed Ansari
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,TRACT Therapeutics, Inc; 125W. Oak Street; Suite D, Chicago, IL, 60610, USA.
| |
Collapse
|
42
|
Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol 2018; 79:294-303. [DOI: 10.1016/j.humimm.2017.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
|
43
|
Abstract
CD4+CD25highFoxP3+ T regulatory cells (Tregs) are immunodominant suppressors in the immune system. Tregs use various mechanisms to control immune responses. Preclinical data from animal models have confirmed the huge therapeutic potential of Tregs in many immune-mediated diseases. Hence, these cells are now on the road to translation to cell therapy in the clinic as the first clinical trials are accomplished. To date, clinical research has involved mainly hematopoietic stem cell transplantations, solid organ transplantations, and autoimmunity. Despite difficulties with legislation and technical issues, treatment is constantly evolving and may soon represent a valid alternative for patients with diseases that are currently incurable. This review focuses on the basic and clinical experience with Tregs with adoptive transfer of these cells, primarily from clinical trials, as well as on perspectives on clinical use and technical problems with implementing the therapy.
Collapse
|
44
|
Safinia N, Grageda N, Scottà C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol 2018. [PMID: 29535728 PMCID: PMC5834909 DOI: 10.3389/fimmu.2018.00354] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5). As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8). However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9). As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs) identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Niloufar Safinia
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Faculty of Medicine, Division of Digestive Disease, Imperial College London, London, United Kingdom
| | - Nathali Grageda
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah Thirkell
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Laura J Fry
- Clinical Research Facility GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Trishan Vaikunthanathan
- The Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
| | - Robert I Lechler
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
45
|
Gołąb K, Grose R, Trzonkowski P, Wickrema A, Tibudan M, Marek-Trzonkowska N, Matosz S, Solomina J, Ostrega D, Michael Millis J, Witkowski P. Utilization of leukapheresis and CD4 positive selection in Treg isolation and the ex-vivo expansion for a clinical application in transplantation and autoimmune disorders. Oncotarget 2018; 7:79474-79484. [PMID: 27821811 PMCID: PMC5346728 DOI: 10.18632/oncotarget.13101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Adoptive transfer of T regulatory cells (Tregs) is of great interest as a novel immunosuppressive therapy in autoimmune disorders and transplantation. Obtaining a sufficient number of stable and functional Tregs generated according to current Good Manufacturing Practice (cGMP) requirements has been a major challenge in introducing Tregs as a clinical therapy. Here, we present a protocol involving leukapheresis and CD4+ cell pre-enrichment prior to Treg sorting, which allows a sufficient number of Tregs for a clinical application to be obtained. With this method there is a decreased requirement for ex-vivo expansion. The protocol was validated in cGMP conditions. Our final Treg product passed all release criteria set for clinical applications. Moreover, during expansion Tregs presented their stable phenotype: percentage of CD4+CD25hiCD127− and CD4+FoxP3+ Tregs was > 95% and > 80%, respectively, and Tregs maintained proper immune suppressive function in vitro. Our results suggest that utilization of leukapheresis and CD4 positive selection during Treg isolation improves the likelihood of obtaining a sufficient number of high quality Treg cells during subsequent ex-vivo expansion and they can be applied clinically.
Collapse
Affiliation(s)
- Karolina Gołąb
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | - Randall Grose
- South Australian Health and Medical Research Institute, University of Adelaide, Australia
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Amittha Wickrema
- Department of Medicine, Section of Hematology-Oncology, Cancer Research Center, University of Chicago, Chicago, USA
| | - Martin Tibudan
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | | | - Sabrina Matosz
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | - Julia Solomina
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | - Diane Ostrega
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | - J Michael Millis
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| | - Piotr Witkowski
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, USA
| |
Collapse
|
46
|
Marshall GP, Cserny J, Perry DJ, Yeh WI, Seay HR, Elsayed AG, Posgai AL, Brusko TM. Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. CELL & GENE THERAPY INSIGHTS 2018; 4:405-429. [PMID: 34984106 PMCID: PMC8722436 DOI: 10.18609/cgti.2018.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell purity, stability and expansion capacity, while also achieving feasibility and GMP production. Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source materials represent important strides toward these considerations. Finally, we will review the emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to augment tissue-targeting and regenerative medicine.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ahmed G Elsayed
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M Brusko
- OneVax LLC, Sid Martin Biotechnology Institute, Alachua, Florida, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
47
|
Hong J, Kim BS. Regulatory T Cell-Mediated Tissue Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:221-233. [PMID: 30471036 DOI: 10.1007/978-981-13-0445-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T-cells (Treg cells) are a specific group of T-cells that maintain immune homeostasis by counteracting the immune responses of conventional T-cells. So far, the therapeutic applications of Treg cells have focused on the treatment of autoimmune diseases, as depletion of Treg cells or Treg-related genes is known to cause autoimmune defects. However, Treg cells can be a potential solution for tissue repair as they can terminate the pro-inflammatory phase and initiate the anti-inflammatory or regenerative phase at the tissue injury site. This review summarizes the known characteristics of Treg cells and lists examples of their therapeutic applications. The use of Treg cells in the treatment of myocardial infarctions, skeletal muscle injuries, and ischemia injuries has revealed their potential as a promising tissue repair method. We have also discussed the limitations and scope of Treg cells in tissue repair.
Collapse
Affiliation(s)
- Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea. .,School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea. .,Institute of Chemical Processes, Seoul National University, Seoul, South Korea.
| |
Collapse
|
48
|
Anti-donor regulatory T cell therapy in liver transplantation. Hum Immunol 2017; 79:288-293. [PMID: 29292027 DOI: 10.1016/j.humimm.2017.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Liver transplantation is accepted as the most reliable therapeutic option for patients with end-stage liver failure, but lifelong administration of immunosuppressive agents continues to be problematic due to various drug-induced morbidities and the risk of mortality. Complete cessation of immunosuppressive drugs while maintaining normal graft function and histology, called operational tolerance, has the potential to overcome these long-standing problems. Previously, we reported the results of a pilot study of anti- donor regulatory T cell therapy in 10 consecutive adult patients who underwent living donor liver transplantation (LDLT), of whom 7 patients successfully stopped immunosuppression for nearly 2 years. Described herein are the clinical follow-ups of these patients, a brief description of the protocol and its theoretical background, and a possible explanation for the immunological findings.
Collapse
|
49
|
Sula Karreci E, Eskandari SK, Dotiwala F, Routray SK, Kurdi AT, Assaker JP, Luckyanchykov P, Mihali AB, Maarouf O, Borges TJ, Alkhudhayri A, Patel KR, Radwan A, Ghobrial I, McGrath M, Chandraker A, Riella LV, Elyaman W, Abdi R, Lieberman J, Azzi J. Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation. JCI Insight 2017; 2:91599. [PMID: 29093262 DOI: 10.1172/jci.insight.91599] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Tregs hold great promise as a cellular therapy for multiple immunologically mediated diseases, given their ability to control immune responses. The success of such strategies depends on the expansion of healthy, suppressive Tregs ex vivo and in vivo following the transfer. In clinical studies, levels of transferred Tregs decline sharply in the blood within a few days of the transfer. Tregs have a high rate of apoptosis. Here, we describe a new mechanism of Treg self-inflicted damage. We show that granzymes A and -B (GrA and GrB), which are highly upregulated in human Tregs upon stimulation, leak out of cytotoxic granules to induce cleavage of cytoplasmic and nuclear substrates, precipitating apoptosis in target cells. GrA and GrB substrates were protected from cleavage by inhibiting granzyme activity in vitro. Additionally, we show - by using cytometry by time of flight (CYTOF) - an increase in GrB-expressing Tregs in the peripheral blood and renal allografts of transplant recipients undergoing rejection. These GrB-expressing Tregs showed an activated phenotype but were significantly more apoptotic than non-GrB expressing Tregs. This potentially novel finding improves our understanding of Treg survival and suggests that manipulating Gr expression or activity might be useful for designing more effective Treg therapies.
Collapse
Affiliation(s)
- Esilida Sula Karreci
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Farokh Dotiwala
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Sujit K Routray
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Ahmed T Kurdi
- Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Jean Pierre Assaker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Pavlo Luckyanchykov
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Albana B Mihali
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Omar Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Thiago J Borges
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Abdullah Alkhudhayri
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Kruti R Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Amr Radwan
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Leonardo V Riella
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital
| |
Collapse
|
50
|
Yang JH, Eun SC. Therapeutic application of T regulatory cells in composite tissue allotransplantation. J Transl Med 2017; 15:218. [PMID: 29073905 PMCID: PMC5658973 DOI: 10.1186/s12967-017-1322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
With growing number of cases in recent years, composite tissue allotransplantation (CTA) has been improving the quality of life of patient who seeks reconstruction and repair of damaged tissues. Composite tissue allografts are heterogeneous. They are composed of a variety of tissue types, including skin, muscle, vessel, bone, bone marrow, lymph nodes, nerve, and tendon. As a primary target of CTA, skin has high antigenicity with a rich repertoire of resident cells that play pivotal roles in immune surveillance. In this regard, understanding the molecular mechanisms involved in immune rejection in the skin would be essential to achieve successful CTA. Although scientific evidence has proved the necessity of immunosuppressive drugs to prevent rejection of allotransplanted tissues, there remains a lingering dilemma due to the lack of specificity of targeted immunosuppression and risks of side effects. A cumulative body of evidence has demonstrated T regulatory (Treg) cells have critical roles in induction of immune tolerance and immune homeostasis in preclinical and clinical studies. Presently, controlling immune susceptible characteristics of CTA with adoptive transfer of Treg cells is being considered promising and it has drawn great interests. This updated review will focus on a dominant form of Treg cells expressing CD4+CD25+ surface molecules and a forkhead box P3 transcription factor with immune tolerant and immune homeostasis activities. For future application of Treg cells as therapeutics in CTA, molecular and cellular characteristics of CTA and immune rejection, Treg cell development and phenotypes, Treg cell plasticity and stability, immune tolerant functions of Treg cells in CTA in preclinical studies, and protocols for therapeutic application of Treg cells in clinical settings are addressed in this review. Collectively, Treg cell therapy in CTA seems feasible with promising perspectives. However, the extreme high immunogenicity of CTA warrants caution.
Collapse
Affiliation(s)
- Jeong-Hee Yang
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seok-Chan Eun
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|