1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Knowles P, Schneider K, Bugwadia AK, Sorcar P, Pea RD, Daneshvar DH, Baugh CM. The importance of language in describing concussions: A qualitative analysis. PM R 2025; 17:6-13. [PMID: 39189352 DOI: 10.1002/pmrj.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Concussions are mild traumatic brain injuries that are often undiagnosed due to difficulties in identifying symptoms. To minimize the negative sequelae associated with undiagnosed concussion, efforts have targeted improving concussion reporting. However, knowing more about concussions does not indicate how likely an athlete is to report their concussion. Alternatively, the attitudes and beliefs of athletes and surrounding stakeholders have shown to be a better indication of whether an athlete intends to report their concussion. Prior research has shown that athletes report concussions less often when the injury is described using language that minimizes their severity, such as when it is referred to as a "ding." This study evaluated whether describing concussions using the word "brain" was associated with individuals' underlying attitudes and beliefs about the injury's severity. OBJECTIVE To measure the relationship between perceived concussion severity and the language used to describe concussions, specifically whether participants used the word "brain" in describing the injury. METHODS One-on-one semi-structured telephone interviews were conducted, and a cross sectional secondary qualitative analysis was performed to assess participants' perceived concussion severity and their use of the word "brain" to describe concussions. DESIGN Cross-sectional secondary qualitative analysis. SETTING One-on-one semistructured telephone interviews. PARTICIPANTS In 2017, 94 individuals involved in high school sports, including athletes, coaches, educators, parents of athletes, and athletic directors were recruited via convenience sampling. MAIN OUTCOME MEASURES Respondents' perceived severity of concussions. RESULTS Individuals who used a brain phrase to describe concussion also perceived concussions as more severe (p < .001). Specifically, those who described concussions with maximum severity had higher odds of using brain phrases than those who described concussions as having minimum (odds ratio [OR] = 0.05, 95% confidence interval [CI] = 0.002-0.299, p < .001) or moderate severity (OR = 0.24, 95% CI = 0.086-0.647, p = .003), with the most significant relationship found among coaches. CONCLUSIONS These findings demonstrate the relationship between medical terminology and perceived severity of concussions. This relationship may play a role in concussion reporting behavior for coaches, athletes, and parents. Education programs using similar medical terminology may promote concussion reporting behaviors.
Collapse
Affiliation(s)
- Peter Knowles
- Department of Psychology, Stanford University, Stanford, California, USA
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
| | - Katherine Schneider
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Amy K Bugwadia
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Piya Sorcar
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
- Stanford Center for Innovation in Global Health, Stanford University, Stanford, California, USA
- Stanford University Graduate School of Education, Stanford University, Stanford, California, USA
| | - Roy D Pea
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
- Stanford University Graduate School of Education, Stanford University, Stanford, California, USA
| | - Daniel H Daneshvar
- TeachAids, Institute for Brain Research and Innovation, Palo Alto, California, USA
- Spaulding Rehabilitation Network, Division of Brain Injury Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Rehabilitation Outcomes Center at Spaulding, Spaulding Rehabilitation Network, Boston, Massachusetts, USA
| | - Christine M Baugh
- Center for Bioethics and Humanities, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Lee K, Kim SI, Shim YM, Kim EE, Yoo S, Won JK, Park SH. Current Status and Future Perspective of Seoul National University Hospital-Dementia Brain Bank with Concordance of Clinical and Neuropathological Diagnosis. Exp Neurobiol 2024; 33:295-311. [PMID: 39806943 PMCID: PMC11738475 DOI: 10.5607/en24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate. Between 2015 and September 2024, 162 brain specimens were collected via brain donation and autopsy. The median donor age was 73 years (1-94) with a male-to -female ratio of 2:1. The median postmortem interval was 9.5 hours (range: 2.5-65). Common neuropathological diagnoses included pure Lewy body disease (10.6%), Lewy body disease (LBD) with other brain diseases (10.6%), pure Alzheimer's disease-neuropathological change (ADNC) (6.0%), ADNC with other brain diseases (10.7%), vascular brain injury (15.2%), and primary age-related tauopathy (7.3%). APOE genotype distribution was following: ε3/ε3: 62.3%, ε2/ε3: 9.6%, ε2/ε4: 3.4%, ε3/ε4: 24.0%, and ε4/ε4: 0.7%. Concordance rates between pathological and clinical diagnoses were: ADNC/AD at 42.4%; LBD at 59.0%; PSP at 100%; ALS at 85.7%; Huntington's disease 100%. The varying concordance rates across different diseases emphasize the need for improved diagnostic criteria and biomarkers, particularly for AD and LBD. Tissues have been distributed to over 40 national studies. SNUH-DBB provides high-quality brain tissues and cell models for neuroscience research, operating under standardized procedures and international guidelines. It supports translational research in dementia and neurodegenerative diseases, potentially advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yu-Mi Shim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eric Enshik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sooyeon Yoo
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae-Kyung Won
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Hye Park
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Brain Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
5
|
Escarcega JD, Okamoto RJ, Alshareef AA, Johnson CL, Bayly PV. Effects of anatomy and head motion on spatial patterns of deformation in the human brain. Ann Biomed Eng 2024:10.1007/s10439-024-03671-1. [PMID: 39739082 DOI: 10.1007/s10439-024-03671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE To determine how the biomechanical vulnerability of the human brain is affected by features of individual anatomy and loading. METHODS To identify the features that contribute most to brain vulnerability, we imparted mild harmonic acceleration to the head and measured the resulting brain motion and deformation using magnetic resonance elastography (MRE). Oscillatory motion was imparted to the heads of adult participants using a lateral actuator (n = 24) or occipital actuator (n = 24) at 20 Hz, 30 Hz, and 50 Hz. Displacement vector fields and strain tensor fields in the brain were obtained from MRE measurements. Anatomical images, as well as displacement and strain fields from each participant were rigidly and deformably aligned to a common atlas (MNI-152). Vulnerability of the brain to deformation was quantified by the ratio of strain energy (SE) to kinetic energy (KE) for each participant. Similarity of deformation patterns between participants was quantified using strain field correlation (CV). Linear regression models were used to identify the effect of similarity of brain size, shape, and age, as well as similarity of loading, on CV. RESULTS The SE/KE ratio decreased with frequency and was larger for participants undergoing lateral, rather than occipital, actuation. Head rotation about the inferior-superior axis was correlated with larger SE/KE ratio. Strain field correlations were primarily affected by the similarity of rigid-body motion. CONCLUSION The motion applied to the skull is the most important factor in determining both the vulnerability of the brain to deformation and the similarity between strain fields in different individuals.
Collapse
Affiliation(s)
- Jordan D Escarcega
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA
| | - Ahmed A Alshareef
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores-Almazan V, Afzal R, De Sanctis C, Maldonado-Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2024. [PMID: 39737785 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Timothy C Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Rohde
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Emma L Thorn
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas D Christie
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robina Afzal
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia De Sanctis
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satomi Hiya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Cheyanne Slocum
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Samanamud
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Clare
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Scibetta
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Daniel Koenigsberg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel A Marx
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Kauffman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam Goldstein
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas Wisniewski
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alison M Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Kevin F Bieniek
- Department of Pathology & Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie M Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Çemç MS, Ağduman F. Evaluating the impact of boxing on prefrontal cortex activation and cognitive performance: A pilot study using fNIRS technology and the Stroop test. PLoS One 2024; 19:e0314979. [PMID: 39671403 PMCID: PMC11643274 DOI: 10.1371/journal.pone.0314979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024] Open
Abstract
This research sets out to investigate the differences in hemoglobin concentration occurring in the prefrontal cortex (PFC) during the administration of the Stroop test in active amateur boxers and to compare the obtained data regarding chronic traumatic brain injury with those of healthy individuals. The research was conducted at the Atatürk University Neuropsychology Laboratory. Participants consisted of 6 male boxers, aged 19.66 ± 2.94 years, who had been actively boxing for 7.5 ± 3.8 years and had received at least high school level education, with right-hand dominance, and 8 healthy males, aged 19.62 ± 1.18 years, who had not engaged in any combat sports. fNIRS recordings were taken over the Prefrontal Cortex (PFC) while Stroop test stimuli were presented to the participants in a block design. The data were analyzed using the JASP program. Mann-Whitney U test was applied to evaluate the differences between groups in Stroop test data. The activation levels on the prefrontal cortex during the test were evaluated using the Repeated Measures ANOVA test. A significance level of p <0.05 was accepted for the analyses. In conclusion, compared to the control group, boxers demonstrated a significantly higher level of cerebral activation in the right dlPFC/vlPFC regions during the congruent task and in the right dmPFC as well as the left dmPFC/vmPFC/OFC regions during the incongruent task in the Stroop test. When the Stroop test results of the participants were evaluated between groups, it was found that although statistically insignificant compared to healthy subjects, boxers generally exhibited failure. In conclusion, it was found that boxers exhibit higher neural activation responses and lower cognitive performance during neurophysiological testing compared to healthy controls. These two conditions are thought to be interconnected and are considered to result from neural inefficiency.
Collapse
Affiliation(s)
- Muhammed Sıddık Çemç
- Department of Physical Education and Sports, Boğaziçi University, Istanbul, Türkiye
| | - Fatih Ağduman
- Department of Recreation, Faculty of Sport Sciences, Atatürk University, Erzurum, Türkiye
- Sport Sciences Research and Application Center, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
8
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
9
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography. J Neurotrauma 2024. [PMID: 39639808 DOI: 10.1089/neu.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.
Collapse
Affiliation(s)
| | - Cecelia J Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, USA
| | - Desarae A Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
10
|
Nicks R, Shah A, Stathas SA, Kirsch D, Horowitz SM, Saltiel N, Calderazzo SM, Butler MLMD, Cormier KA, Aytan N, Tu-Zahra F, Mathias R, Faheem F, Marcus S, Spurlock E, Fishbein L, Esnault CD, Boden A, Rosen G, Xia W, Daley S, Meng G, Martin BR, Daneshvar DH, Nowinski CJ, Alosco ML, Mez J, Tripodis Y, Huber BR, Alvarez VE, Cherry JD, McKee AC, Stein TD. Neurodegeneration in the cortical sulcus is a feature of chronic traumatic encephalopathy and associated with repetitive head impacts. Acta Neuropathol 2024; 148:79. [PMID: 39643767 PMCID: PMC11624223 DOI: 10.1007/s00401-024-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Neurodegeneration is a seminal feature of many neurological disorders. Chronic traumatic encephalopathy (CTE) is caused by repetitive head impacts (RHI) and is characterized by sulcal tau pathology. However, quantitative assessments of regional neurodegeneration in CTE have not been described. In this study, we quantified three key neurodegenerative measures, including cortical thickness, neuronal density, and synaptic proteins, in contact sport athletes (n = 185) and non-athlete controls (n = 52) within the sulcal depth, middle, and gyral crest of the dorsolateral frontal cortex. Cortical thickness and neuronal density were decreased within the sulcus in CTE compared to controls (p's < 0.05). Measurements of synaptic proteins within the gyral crest showed a reduction of α-synuclein with CTE stage (p = 0.002) and variable changes in PSD-95 density. After adjusting for age, multiple linear regression models demonstrated a strong association between the duration of contact sports play and cortical thinning (p = 0.001) and neuronal loss (p = 0.032) within the sulcus. Additional regression models, adjusted for tau pathology, suggest that within the sulcus, the duration of play was associated with neuronal loss predominantly through tau pathology. In contrast, the association of duration of play with cortical thinning was minimally impacted by tau pathology. Overall, CTE is associated with cortical atrophy and a predominant sulcal neurodegeneration. Furthermore, the duration of contact sports play is associated with measures of neurodegeneration that are more severe in the cortical sulcus and may occur through tau-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Arsal Shah
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Spiro Anthony Stathas
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Daniel Kirsch
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah M Horowitz
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Samantha M Calderazzo
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Morgane L M D Butler
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tu-Zahra
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Farwa Faheem
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | | | - Elizabeth Spurlock
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Lucas Fishbein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Camille D Esnault
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Alexandra Boden
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Grace Rosen
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Biological Sciences, Kennedy College of Science, University of Massachusetts, Lowell, MA, USA
| | - Sarah Daley
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | | | - Brett R Martin
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Abdolmohammadi B, Tuz-Zahra F, Uretsky M, Nicks R, Mosaheb S, Labonte J, Yhang E, Durape S, Martin B, Palmisano J, Nowinski C, Cherry JD, Alvarez VE, Huber BR, Dams-O’Connor K, Crary J, Dwyer B, Daneshvar DH, Goldstein LE, Au R, Katz DI, Kowall NW, Cantu RC, Stern RA, Alosco ML, Stein TD, Tripodis Y, McKee AC, Mez J. Duration of Ice Hockey Play and Chronic Traumatic Encephalopathy. JAMA Netw Open 2024; 7:e2449106. [PMID: 39630446 PMCID: PMC11618473 DOI: 10.1001/jamanetworkopen.2024.49106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 12/08/2024] Open
Abstract
Importance Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHIs). Prior research suggests a dose-response association between American football play duration and CTE risk and severity, but this association has not been studied for ice hockey. Objective To investigate associations of duration of ice hockey play with CTE diagnosis and severity, functional status, and dementia. Design, Setting, and Participants This cross-sectional study was conducted among male brain donors in the Understanding Neurological Injury and Traumatic Encephalopathy and Framingham Heart Study Brain Banks whose primary RHI exposure was from ice hockey. Donors died, brains were donated, and data were collected between July 1997 and January 2023. Data analysis was conducted from January 2023 to May 2024. Exposures Ice hockey years played as an RHI proxy. Main Outcomes and Measures CTE neuropathological diagnosis, cumulative phosphorylated tau (ptau) burden across 11 brain regions commonly affected in CTE, informant-reported Functional Activities Questionnaire (FAQ) score at death, and consensus dementia diagnosis were assessed. Results Among 77 male donors (median [IQR] age, 51 [33-73] years), 42 individuals (54.5%) had CTE, including 27 of 28 professional players (96.4%). CTE was found in 5 of 26 donors (19.2%) who played fewer than 13 years, 14 of 27 donors (51.9%) who played 13 to 23 years, and 23 of 24 donors (95.8%) who played more than 23 years of hockey. Increased years played was associated with increased odds for CTE (odds ratio [OR] per 1-year increase, 1.34; 95% CI, 1.15-1.55; P < .001) and with increased ptau burden (SD increase per 1-year increase = 0.037; 95% CI, 0.017-0.057; P < .001) after adjusting for age at death, other contact sports played, age of first hockey exposure, concussion count, and hockey position. Simulation demonstrated that years played remained associated with CTE when years played and CTE were both associated with brain bank selection across widely ranging scenarios (median [full range] OR across all simulations, 1.34 [1.29-1.40]). Increased ptau burden was associated with FAQ score (βstandardized = 0.045; 95% CI, 0.021-0.070; P < .001) and dementia (OR per SD increase, 1.12; 95% CI, 1.01-1.26; P = .04) after adjusting for age at death, other contact sports played, hockey years played, enforcer status, age of first hockey exposure, concussion count, and hockey position. Conclusions and Relevance In this study of male former ice hockey players, a dose-response association was observed between hockey years played and risk and severity of CTE. Simulation suggested that brain bank selection may not bias the magnitude of outcomes in the association.
Collapse
Affiliation(s)
- Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Sydney Mosaheb
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Jacob Labonte
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Shruti Durape
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Christopher Nowinski
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Crary
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Daniel H. Daneshvar
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lee E. Goldstein
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Rhoda Au
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Douglas I. Katz
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Neil W. Kowall
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
- Department of Neurosurgery, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurosurgery, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
12
|
de Sena Barbosa MG, Francisco GGDOA, de Souza RLV, de Souza JMA, Almeida Carneiro R, Rabelo NN, Chaurasia B. Chronic traumatic encephalopathy in athletes, players, boxers and military: systematic review. Ann Med Surg (Lond) 2024; 86:7238-7247. [PMID: 39649931 PMCID: PMC11623818 DOI: 10.1097/ms9.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
The objective of the study was to demonstrate whether athletes, players, boxers and military personnel can really be victims of Chronic traumatic encephalopathy (CTE), and to elucidate this pathology. In 53 articles, 14 were selected for qualitative synthesis in the results table that addresses CTE in football, soccer and rugby players, boxers and the military. Neuropathologically, CTE shows cerebral atrophy, a pelvic septum cavity with fenestrations, dense diffuse immunoreactive inclusions and a TDP-43 proteinopathy. Microscopically, there are extensive neurofibrillary tangles and spindle-shaped neurites throughout the brain. Thus, CTE is characterized by being a distinct tauopathy and with a clear environmental etiology. American football players, boxers and the military are more likely to trigger CET, due to the constant mechanical shocks from their heads. The most frequent clinical manifestations were: headache, aggressiveness, dementia, executive dysfunction and suicide. CET is definitely diagnosed only at autopsy, there is no specific treatment for it, but support and safety measures can help the patient. Advances to definitively diagnose CTE in living people and specific treatment for this disease are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birginj, Nepal
| |
Collapse
|
13
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Seidenbecher S, Kaufmann J, Schöne M, Dobrowolny H, Schiltz K, Frodl T, Steiner J, Bogerts B, Nickl-Jockschat T. Association between white matter microstructural changes and aggressiveness. A case-control diffusion tensor imaging study. Neuroimage Clin 2024; 45:103712. [PMID: 39603043 PMCID: PMC11626826 DOI: 10.1016/j.nicl.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Research has focused on identifying neurobiological risk factors associated with aggressive behavior in order to improve prevention and treatment efforts. This study aimed to characterize microstructural differences in white matter (WM) integrity in individuals prone to aggression. We hypothesized that altered cerebral WM microstructure may underlie normal individual variability in aggression and tested this using a case-control design in healthy individuals. Diffusion tensor imaging (DTI) was used to examine WM changes in martial artists (n = 29) and age-matched controls (n = 31). We performed tract-based spatial statistics (TBSS) to identify differences in axial diffusivity (AD), fractional anisotropy (FA) and mean diffusivity (MD) between the two groups at the whole-brain level. Martial artists were significantly more aggressive than controls, with increased MD in parietal and occipital areas and increased AD in widespread fiber tracts in the frontal, parietal and temporal areas. Positive associations between AD/MD and (physical) appetitive aggression were identified in several clusters, including the corpus callosum, the superior longitudinal fasciculus and the corona radiata. Our study found evidence for WM microstructural changes associated with aggressiveness in a community case-control sample. Longitudinal studies with larger cohorts, taking into account the dimensional nature of aggressiveness, are needed to better understand the underlying neurobiology.
Collapse
Affiliation(s)
- Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Kolja Schiltz
- Department of Forensic Psychiatry, Psychiatric Hospital of the Ludwig-Maximilians-University, Munich, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany; Salus-Institute, Salus gGmbH, Magdeburg, Germany.
| | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
15
|
D'Arcy RCN, McCarthy D, Harrison D, Levenberg Z, Wan J, Hepburn A, Kirby ED, Yardley T, Yamada-Bagg N, Fickling SD, Munce TA, Dodick DW, Ahmad C, Stein KS. An objective neurophysiological study of subconcussion in female and male high school student athletes. Sci Rep 2024; 14:28929. [PMID: 39572747 PMCID: PMC11582815 DOI: 10.1038/s41598-024-80262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Emerging evidence from neurophysiological brain vital sign studies show repeatable sensitivity to cumulative subconcussive impairments over a season of contact sports. The current study addressed the need for research comparing a low-contact control group to high-contact group. Importantly, the study also expanded the scope of neurophysiological changes related to repetitive head impacts to include female athletes in addition to male athletes. In total, 89 high school student athletes underwent 231 brain vital sign scans over a full calendar year. The results replicated prior subconcussive cognitive impairments (N400 delays) and sensory impairments (N100 amplitude reductions) in male athletes and demonstrated similar subconcussive impairments for the first time in female athletes. While there was no significant subconcussive difference between female and male athletes, female athletes show overall larger responses in general. The findings demonstrated that subconcussive impairments are detectable in a controlled experimental comparison for both female and male high school athletes. The study highlights the opportunity to monitor subconcussive changes in cognitive processing for both female and male athletes to help advance prevention, mitigation and management efforts aimed at reducing athletes' risk of potential long-term negative health outcomes related to cumulative exposure to repetitive head impacts.
Collapse
Affiliation(s)
- Ryan C N D'Arcy
- BrainNET, Health and Technology District, Surrey, BC, Canada.
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada.
- Faculty of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - David McCarthy
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Derek Harrison
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | | | - Julian Wan
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Aidan Hepburn
- Brentwood College School, BRAIN Team, Mill Bay, BC, Canada
| | - Eric D Kirby
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Tanja Yardley
- Surrey Neuroplasticity Clinic, HealthTech Connex, Surrey, BC, Canada
| | | | - Shaun D Fickling
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
| | - Thayne A Munce
- Environmental Influences on Health & Disease Group, Sanford Research, Sioux Falls, SD, USA
| | - David W Dodick
- Mayo Clinic College of Medicine, Rochester, MN, USA
- Atria Academy of Science and Medicine, New York City, NY, USA
| | - Christopher Ahmad
- New York Presbyterian Hospital, New York City, NY, USA
- Columbia University Irving Medical Center, New York City, NY, USA
| | - Ken Shubin Stein
- Atria Academy of Science and Medicine, New York City, NY, USA
- Hospital for Special Surgery, New York City, NY, USA
| |
Collapse
|
16
|
Ferrazzoli D, Ortelli P, Versace V, Stolz J, Dezi S, Vos P, Giladi N, Saltuari L, Sebastianelli L. Post-traumatic parkinsonism: The intricate twist between trauma, inflammation and neurodegeneration. A narrative review. J Neurol Sci 2024; 466:123242. [PMID: 39303348 DOI: 10.1016/j.jns.2024.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Post-traumatic Parkinsonism (PTP) is a complex neurological disorder that is often associated with the occurrence of a traumatic brain injury (TBI). PTP can occur either in the acute or chronic phase of TBI. There is still uncertainty about the mechanisms provoking PTP, which can be the result of the acute blast itself or secondary neurodegenerative process occurring months to years post the acute trauma. Currently there is an underestimation of the clinical importance of PTP and lack of specific and proven therapeutic interventions, both in the pharmacological and the neurorehabilitation field. This narrative review aims to summarize the actual knowledge about PTP in terms of its pathophysiology, clinical aspects, treatments and perspective of care in the neurorehabilitative setting.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jakob Stolz
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, the Netherlands
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| |
Collapse
|
17
|
Ryniejska M, El-Hachami H, Mrzyglod A, Liu J, Thom M. The prevalence of chronic traumatic encephalopathy in a historical epilepsy post-mortem collection. Brain Pathol 2024:e13317. [PMID: 39528258 DOI: 10.1111/bpa.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Previous post-mortem epilepsy series showed phosphorylated tau (pTau) accumulation in relation to traumatic brain injury (TBI) rather than driven by seizure frequency. The Corsellis Epilepsy Collection, established in the mid-20th century, represents brain samples collected from patients living with a range of epilepsies from the 1880s to 1990s. Our aim was to interrogate this historical archive to explore relationships between epilepsy, trauma and tau pathology. AT8 immunohistochemistry for pTau was carried out in 102 cases (55% male, with mean age at death of 62 years) on frontal, temporal, amygdala, hippocampal and lesional cortical regions and evaluated using current NINDS criteria for chronic traumatic encephalopathy (CTE) and Braak staging with beta-amyloid, AT8-GFAP and other pTau markers (CP13, PHF1, AT100, AT180) in selected cases. CTE-neuropathologic change (CTE-NC) was identified in 15.7% and was associated with the presence of astroglial tau, a younger age of onset of epilepsy, evidence of TBI and institutionalisation for epilepsy compared to cases without CTE-NC, but not for seizure type or frequency. Memory impairment was noted in 43% of cases with CTE-NC, and a significantly younger age of death; more frequent reports of sudden and unexpected death (p <0.05-0.001) were noted in cases with CTE-NC. In contrast, a higher Braak stage was associated with late-onset epilepsy and cognitive decline. Of note, 9% of cases showed no pTau, including cases with long epilepsy duration, poor seizure control and a history of prior TBI. In summary, this cohort includes patients with more severe and diverse forms of epilepsy, with CTE-NC observed more frequently than reported in non-epilepsy community-based studies (0%-8%) but lower than published series from contact sports participants (32%-87%). Although the literature does not report increased epilepsy occurring in CTE syndrome, our findings support an increased risk of CTE in epilepsy syndromes, likely primarily related to increased TBI.
Collapse
Affiliation(s)
- Maritchka Ryniejska
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Hanaa El-Hachami
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Alicja Mrzyglod
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Joan Liu
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- School of Life Sciences, University of Westminster, London, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| |
Collapse
|
18
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
19
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
20
|
Li L, Nguyen A, Zhao B, Vest R, Yerra L, Sun B, Luo J. Small Molecule Drug C381 Attenuates Brain Vascular Damage Following Repetitive Mild Traumatic Injury. Neurotrauma Rep 2024; 5:1016-1026. [PMID: 39464529 PMCID: PMC11499285 DOI: 10.1089/neur.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Traumatic brain injury (TBI) remains a significant public health concern, with no effective therapeutic interventions to ameliorate the enduring consequences. The prevailing understanding of TBI pathophysiology indicates a central role for vascular dysfunction. Transforming growth factor-β (TGF-β) is a multifunctional cytokine crucial for vascular development. Aberrant TGF-β signaling is implicated in vascular pathologies associated with various neurological conditions. We recently developed a novel small molecule drug, C381, a TGF-β activator with the ability to restore lysosomal function. Here we used a mouse model of repetitive mild TBI (mTBI) to examine whether C381 would attenuate vascular injury. We first employed RNA-seq analysis to investigate the gene expression patterns associated with mTBI and evaluated the therapeutic potential of C381 in mitigating these changes. Our results demonstrate distinct mTBI-related gene expression signatures, prominently implicating pathways related to vascular integrity and endothelial function. Notably, treatment with C381 reversed these mTBI-induced gene expression changes. Immunohistochemical analysis further corroborated these findings, revealing that C381 treatment attenuated vascular damage in mTBI-affected brain tissue. These findings strongly support the potential clinical usefulness of C381 as a novel therapeutic intervention for mTBI.
Collapse
Affiliation(s)
- Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Andy Nguyen
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Brian Zhao
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Lakshmi Yerra
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
21
|
McAllister TW, Broglio SP, Perkins SM, Katz BP, Pasquina PF, McCrea MA. Characterizing the Effects of Concussion and Head Impact Exposure: Design, Methods, and Participant Traits of the CARE 2.0 Study. J Neuropsychiatry Clin Neurosci 2024:appineuropsych20240022. [PMID: 39385574 DOI: 10.1176/appi.neuropsych.20240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
OBJECTIVE This article describes the design, methods, and participant characteristics of the second phase of the Concussion Assessment, Research, and Education (CARE) Consortium study ("CARE 2.0") of the effects of concussion and repetitive head impact exposure on neuropsychiatric health. METHODS The authors conducted a prospective multisite observational study of male and female collegiate athletes and military service academy cadets and midshipmen participating in the CARE study. Participants were assessed at three time points: undergraduate baseline (UB), before departure from university or service academy (exit), and up to 6 years following graduation (postgrad) via an online battery of brain health assessments. Participant characteristics were compared across the three time points and four levels of head impact exposure. RESULTS A total of 4,643 participants completed the exit assessment, and 3,981 completed the postgrad assessment. Relative to the UB assessment cohort, the exit and postgrad assessment cohorts differed with respect to the percentage of women, baseline Wechsler Test of Adult Reading scores, National Collegiate Athletic Association division category, sport contact level, and number of previous concussions. The median standardized difference across balancing variables, assessment time points, and degree of head impact exposure was 0.12 (with 90% of effect sizes ≤0.29). CONCLUSIONS Although there were some statistically significant differences between participants across assessments, the effect sizes were modest, and overall the data suggest that the exit and postgrad cohorts reflect the characteristics of the baseline cohort. The CARE study design and its large, richly characterized sample provide an opportunity to answer important questions about cumulative and persistent effects of concussion and repetitive head impact exposure on neuropsychiatric health.
Collapse
Affiliation(s)
- Thomas W McAllister
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Steven P Broglio
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Susan M Perkins
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Barry P Katz
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Paul F Pasquina
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| | - Michael A McCrea
- Department of Psychiatry (McAllister) and Department of Biostatistics and Health Data Science (Perkins, Katz), Indiana University School of Medicine, Indianapolis; Michigan Concussion Center, University of Michigan, Ann Arbor (Broglio); Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis (Perkins, Katz); Department of Physical Medicine and Rehabilitation, Uniformed Services University, and Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Md. (Pasquina); Department of Neurosurgery, Medical College of Wisconsin, Milwaukee (McCrea)
| |
Collapse
|
22
|
Arciniega H, Baucom ZH, Tuz-Zahra F, Tripodis Y, John O, Carrington H, Kim N, Knyazhanskaya EE, Jung LB, Breedlove K, Wiegand TLT, Daneshvar DH, Rushmore RJ, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Koerte IK, Lin AP, Cummings JL, Reiman EM, Stern RA, Shenton ME, Bouix S. Brain morphometry in former American football players: findings from the DIAGNOSE CTE research project. Brain 2024; 147:3596-3610. [PMID: 38533783 PMCID: PMC11449133 DOI: 10.1093/brain/awae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Exposure to repetitive head impacts in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE), which currently can be diagnosed only at post-mortem. American football players are at higher risk of developing CTE given their exposure to repetitive head impacts. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at post-mortem in living individuals using structural MRI. MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 54, age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each traumatic encephalopathy syndrome (TES) diagnosis, core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula, temporal pole and superior frontal gyrus. Post hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus, amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe Age × Group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggested that MRI morphometrics detect abnormalities in individuals with a history of repetitive head impact exposure that resemble the anatomic distribution of pathological findings from post-mortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggested that brain morphometry must be complemented by other types of measures to characterize individuals with repetitive head impacts.
Collapse
Affiliation(s)
- Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Zachary H Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Omar John
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Nicholas Kim
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Evdokiya E Knyazhanskaya
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Katherine Breedlove
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02115, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
| | - R Jarrett Rushmore
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Laura J Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10017, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, 82152 Munich, Bavaria, Germany
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Eric M Reiman
- Banner Alzheimer’s Institute and Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ 85004, USA
- Department of Psychiatry, Arizona State University, Phoenix, AZ 85008, USA
- Neurogenomics Division, Translational Genomics Research Institute and Alzheimer’s Consortium, Phoenix, AZ 85004, USA
| | - Robert A Stern
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada
| |
Collapse
|
23
|
Arciniega H, Jung LB, Tuz-Zahra F, Tripodis Y, John O, Kim N, Carrington HW, Knyazhanskaya EE, Chamaria A, Breedlove K, Wiegand TLT, Daneshvar D, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Lin AP, Koerte IK, Cummings JL, Reiman EM, Stern RA, Bouix S, Shenton ME. Cavum Septum Pellucidum in Former American Football Players: Findings From the DIAGNOSE CTE Research Project. Neurol Clin Pract 2024; 14:e200324. [PMID: 39161749 PMCID: PMC11332980 DOI: 10.1212/cpj.0000000000200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 08/21/2024]
Abstract
Background and Objectives Exposure to repetitive head impacts (RHI) is linked to the development of chronic traumatic encephalopathy (CTE), which can only be diagnosed at post-mortem. The presence of a cavum septum pellucidum (CSP) is a common finding in post-mortem studies of confirmed CTE and in neuroimaging studies of individuals exposed to RHI. This study examines CSP in living former American football players, investigating its association with RHI exposure, traumatic encephalopathy syndrome (TES) diagnosis, and provisional levels of certainty for CTE pathology. Methods Data from the DIAGNOSE CTE Research Project were used to compare the presence and ratio of CSP in former American football players (n = 175), consisting of former college (n = 58) and former professional players (n = 117), and asymptomatic unexposed controls without RHI exposure (n = 55). We further evaluated potential associations between CSP measures and cumulative head impact index (CHII) measures (frequency, linear acceleration, and rotational force), a TES diagnosis (yes/no), and a provisional level of certainty for CTE pathology (suggestive, possible, and probable). Results Former American football players exhibited a higher CSP presence and ratio than unexposed asymptomatic controls. Among player subgroups, professional players showed a greater CSP ratio than former college players and unexposed asymptomatic controls. Among all football players, CHII rotational forces correlated with an increased CSP ratio. No significant associations were found between CSP measures and diagnosis of TES or provisional levels of certainty for CTE pathology. Discussion This study confirms previous findings, highlighting a greater prevalence of CSP and a greater CSP ratio in former American football players compared with unexposed asymptomatic controls. In addition, former professional players showed a greater CSP ratio than college players. Moreover, the relationship between estimates of CHII rotational forces and CSP measures suggests that cumulative frequency and strength of rotational forces experienced in football are associated with CSP. However, CSP does not directly correlate with TES diagnosis or provisional levels of certainty for CTE, indicating that it may be a consequence of RHI associated with rotational forces. Further research, especially longitudinal studies, is needed for confirmation and to explore changes over time.
Collapse
Affiliation(s)
- Hector Arciniega
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Leonard B Jung
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Fatima Tuz-Zahra
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Yorghos Tripodis
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Omar John
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Nicholas Kim
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Holly W Carrington
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Evdokiya E Knyazhanskaya
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Arushi Chamaria
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Katherine Breedlove
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Tim L T Wiegand
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Daniel Daneshvar
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Tashrif Billah
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Ofer Pasternak
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Michael J Coleman
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Charles H Adler
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Charles Bernick
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Laura J Balcer
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Michael L Alosco
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Alexander P Lin
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Inga K Koerte
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Jeffrey L Cummings
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Eric M Reiman
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Robert A Stern
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Sylvain Bouix
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Martha E Shenton
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| |
Collapse
|
24
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
25
|
Edelstein R, Gutterman S, Newman B, Van Horn JD. Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? Neuroinformatics 2024; 22:607-618. [PMID: 39078562 PMCID: PMC11579174 DOI: 10.1007/s12021-024-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.
Collapse
Affiliation(s)
- Rachel Edelstein
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.
| | - Sterling Gutterman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - Benjamin Newman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| |
Collapse
|
26
|
Conway Kleven B, Chien LC, Young DL, Cross CL, Labus B, Bernick C. Repetitive head impacts among professional fighters: a pilot study evaluating Traumatic Encephalopathy Syndrome and postural balance. PHYSICIAN SPORTSMED 2024; 52:513-519. [PMID: 38418380 DOI: 10.1080/00913847.2024.2325331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES Clinical criteria for Traumatic Encephalopathy Syndrome (ccTES) were developed for research purposes to reflect the clinical symptoms of Chronic Traumatic Encephalopathy (CTE). The aims of this study were to 1) determine whether there was an association between the research diagnosis of TES and impaired postural balance among retired professional fighters, and 2) determine repetitive head impacts (RHI) exposure thresholds among both TES positive and TES negative groups in retired professional fighters when evaluating for balance impairment. METHODS This was a pilot study evaluating postural balance among participants of the Professional Athletes Brain Health Study (PABHS). Among the cohort, 57 retired professional fighters met the criteria for inclusion in this study. A generalized linear model with generalized estimating equations was used to compare various balance measures longitudinally between fighters with and without TES. RESULTS A significant association was observed between a TES diagnosis and worsening performance on double-leg balance assessments when stratifying by RHI exposure thresholds. Additionally, elevated exposure to RHI was significantly associated with increased odds of developing TES; The odds for TES diagnosis were 563% (95% CI = 113, 1963; p-value = 0.0011) greater among athletes with 32 or more professional fights compared to athletes with less than 32 fights when stratifying by balance measures. Likewise, the odds for TES diagnosis were 43% (95% CI = 10, 102; p-value = 0.0439) greater with worsening double leg stance balance in athletes exposed to 32 or more fights. CONCLUSION This pilot study provides preliminary evidence of a relationship between declining postural balance and a TES diagnosis among retired professional fighters with elevated RHI exposure. Further research exploring more complex assessments such as the Functional Gait Assessment may be of benefit to improve clinical understanding of the relationship between TES, RHI, and balance.
Collapse
Affiliation(s)
- Brooke Conway Kleven
- Sports Innovation Institute, University of Nevada, Las Vegas, Las Vegas, NV, USA
- School of Public Health, Department of Epidemiology and Biostatistics, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Lung-Chang Chien
- School of Public Health, Department of Epidemiology and Biostatistics, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel L Young
- School of Integrated Health Sciences, Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chad L Cross
- School of Public Health, Department of Epidemiology and Biostatistics, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Brian Labus
- School of Public Health, Department of Epidemiology and Biostatistics, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Charles Bernick
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
27
|
Harej Hrkać A, Pilipović K, Belančić A, Juretić L, Vitezić D, Mršić-Pelčić J. The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals (Basel) 2024; 17:1313. [PMID: 39458954 PMCID: PMC11510130 DOI: 10.3390/ph17101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), which is a global public health concern, can take various forms, from mild concussions to blast injuries, and each damage type has a particular mechanism of progression. However, TBI is a condition with complex pathophysiology and heterogenous clinical presentation, which makes it difficult to model for in vitro and in vivo studies and obtain relevant results that can easily be translated to the clinical setting. Accordingly, the pharmacological options for TBI management are still scarce. Since a wide spectrum of processes, such as glucose homeostasis, food intake, body temperature regulation, stress response, neuroprotection, and memory, were demonstrated to be modulated after delivering glucagon-like peptide 1 (GLP-1) or GLP-1 receptor agonists into the brain, we aimed to speculate on their potential role in TBI management by comprehensively overviewing the preclinical and clinical body of evidence. Based on promising preclinical data, GLP-1 receptor agonists hold the potential to extend beyond metabolic disorders and address unmet needs in neuroprotection and recovery after TBI, but also other types of central nervous system injuries such as the spinal cord injury or cerebral ischemia. This overview can lay the basis for tailoring new research hypotheses for future in vitro and in vivo models in TBI settings. However, large-scale clinical trials are crucial to confirm their safety and efficacy in these new therapeutic applications.
Collapse
Affiliation(s)
- Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| |
Collapse
|
28
|
Silverstein SM. The Potential Utility of Retinal Biomarkers to Index Central Nervous System Effects of Repetitive Blast Exposure in Military Personnel. Mil Med 2024:usae443. [PMID: 39292534 DOI: 10.1093/milmed/usae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Military personnel exposed to blasts receive repeated subconcussive head impacts. Although these events typically do not cause immediate symptoms and do not lead to medical evaluation, the cumulative effects of subconcussive impacts can be significant and can include postconcussive symptoms, changes in brain structure and function, long-term cognitive dysfunction, depression, and chronic traumatic encephalopathy. Retinal measures such as thickness of retinal neural layers, density of retinal microvasculature, and strength of retinal neuronal firing are associated with cognitive function and brain structure and function in healthy populations and in neurodegenerative disease cohorts, and changes over time in retinal indices predict cognitive decline and brain atrophy in longitudinal studies in a range of medical populations. This commentary highlights the potential benefits of using retinal biomarkers in the routine screening and monitoring of brain health in warfighters and veterans. Retinal measures can be rapidly acquired (often in a matter of seconds) using methods that are inexpensive and noninvasive, and they can be collected with movable and often portable equipment that uses automated scoring routines that can be used for prediction and decision-making at the individual level. To date, however, retinal biomarkers have not been included in studies of blast overpressure exposures in military personnel. Despite this, preclinical and human evidence suggests that they could be among the most effective methods for tracking central nervous system damage in people exposed to repeated blasts. Retinal biomarkers could also contribute to brief test batteries to determine who is most at risk for long-term negative effects of future exposures. In addition, the sensitivity of retinal indices to blast exposure and mild traumatic brain injury suggests that they should be incorporated into research on strategies to minimize or prevent blast-related short- and long-term central nervous system changes in blast-exposed military personnel.
Collapse
Affiliation(s)
- Steven M Silverstein
- Departments of Psychiatry, Neuroscience, and Ophthalmology, University of Rochester Medical Center , Rochester, NY 14642, USA
| |
Collapse
|
29
|
Alkaslasi MR, Lloyd EYH, Gable AS, Silberberg H, Yarur HE, Tsai VS, Sohn M, Margolin G, Tejeda HA, Le Pichon CE. The transcriptional response of cortical neurons to concussion reveals divergent fates after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.581939. [PMID: 38463961 PMCID: PMC10925231 DOI: 10.1101/2024.02.26.581939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how different neuron types respond to this kind of injury. In this study, we follow neuronal populations over several months after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI. We show that neurons that activate ATF3 upregulate stress-related genes while repressing many genes, including commonly used markers for these cell types. Using an inducible reporter linked to ATF3, we genetically mark damaged cells to track them over time. Notably, we find that a population in layer V undergoes cell death acutely after injury, while another in layer II/III survives long term and retains the ability to fire action potentials. To investigate the mechanism controlling layer V neuron death, we genetically silenced candidate stress response pathways. We found that the axon injury responsive kinase MAP3K12, also known as dual leucine zipper kinase (DLK), is required for the layer V neuron death. This work provides a rationale for targeting the DLK signaling pathway as a therapeutic intervention for traumatic brain injury. Beyond this, our novel approach to track neurons after a mild, subclinical injury can inform our understanding of neuronal susceptibility to repeated impacts.
Collapse
Affiliation(s)
- Mor R. Alkaslasi
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Eliza Y. H. Lloyd
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Austin S. Gable
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Silberberg
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Valerie S. Tsai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Claire E. Le Pichon
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Fortington LV, Cassidy JD, Castellani RJ, Gardner AJ, McIntosh AS, Austen M, Kerr ZY, Quarrie KL. Epidemiological Principles in Claims of Causality: An Enquiry into Repetitive Head Impacts (RHI) and Chronic Traumatic Encephalopathy (CTE). Sports Med 2024:10.1007/s40279-024-02102-4. [PMID: 39277838 DOI: 10.1007/s40279-024-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Determining whether repetitive head impacts (RHI) cause the development of chronic traumatic encephalopathy (CTE)-neuropathological change (NC) and whether pathological changes cause clinical syndromes are topics of considerable interest to the global sports medicine community. In 2022, an article was published that used the Bradford Hill criteria to evaluate the claim that RHI cause CTE. The publication garnered international media attention and has since been promoted as definitive proof that causality has been established. Our counterpoint presents an appraisal of the published article in terms of the claims made and the scientific literature used in developing those claims. We conclude that the evidence provided does not justify the causal claims. We discuss how causes are conceptualised in modern epidemiology and highlight shortcomings in the current definitions and measurement of exposures (RHI) and outcomes (CTE). We address the Bradford Hill arguments that are used as evidence in the original review and conclude that assertions of causality having been established are premature. Members of the scientific community must be cautious of making causal claims until the proposed exposures and outcomes are well defined and consistently measured, and findings from appropriately designed studies have been published. Evaluating and reflecting on the quality of research is a crucial step in providing accurate evidence-based information to the public.
Collapse
Affiliation(s)
- Lauren V Fortington
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Rudolph J Castellani
- Division of Neuropathology, Northwestern University Feinberg School of Medicine and Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Chicago, IL, USA
| | - Andrew J Gardner
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew S McIntosh
- Monash University Accident Research Centre, Monash University, Clayton, VIC, Australia
| | - Michael Austen
- Australasian Faculty of Occupational and Environmental Medicine, Royal Australasian College of Physicians, Sydney, Australia
- Royal New Zealand College of Urgent Care, Auckland, New Zealand
- High Court of New Zealand, Auckland, New Zealand
| | - Zachary Yukio Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth L Quarrie
- New Zealand Rugby, 100 Molesworth Street, Wellington, New Zealand
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Majeed A, Naz N, Namal F, Tahir S, Karmani VK. Chronic Traumatic Encephalopathy: A Comprehensive Narrative Review of Its Biomarkers. Cureus 2024; 16:e69510. [PMID: 39421082 PMCID: PMC11485022 DOI: 10.7759/cureus.69510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive and fatal neurological disorder linked to repeated traumatic brain injuries (TBIs), including concussions and blows to the head. This condition is characterized by the accumulation of abnormally structured hyperphosphorylated tau proteins (p-tau), forming neurofibrillary tangles, astrocytic tangles, and neurites in the brain. CTE is often diagnosed post-mortem, making it challenging to diagnose and predict its progression in living individuals. Despite recent advancements, no definitive pathological, radiological, or neurobiological marker consistently shows promise in diagnosing and predicting the disease. This review aims to summarize the available techniques and advancements in imaging-based, genetic, neuropsychological, and fluid biomarkers for CTE, evaluating their specificity and sensitivity. It will also highlight the limitations of each marker in diagnosing CTE and provide future research directions to enhance the accuracy of CTE diagnosis in living individuals.
Collapse
Affiliation(s)
- Aleena Majeed
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Nageen Naz
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Fnu Namal
- Internal Medicine, Social Security Hospital, Faisalabad, PAK
| | - Sohaira Tahir
- Internal Medicine, Avicenna Medical College, Lahore, PAK
| | | |
Collapse
|
32
|
Adams JW, Kirsch D, Calderazzo SM, Tuz-Zahra F, Tripodis Y, Mez J, Alosco ML, Alvarez VE, Huber BR, Kubilus C, Cormier KA, Nicks R, Uretsky M, Nair E, Kuzyk E, Aytan N, Cherry JD, Crary JF, Daneshvar DH, Nowinski CJ, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, McKee AC, Stein TD. Substantia Nigra Pathology, Contact Sports Play, and Parkinsonism in Chronic Traumatic Encephalopathy. JAMA Neurol 2024; 81:916-924. [PMID: 39008284 PMCID: PMC11250391 DOI: 10.1001/jamaneurol.2024.2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 07/16/2024]
Abstract
Importance Parkinsonism is associated with traumatic brain injury and chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head impact (RHI) exposure, but the neuropathologic substrates that underlie parkinsonism in individuals with CTE are yet to be defined. Objective To evaluate the frequency of parkinsonism in individuals with CTE and the association of RHI and neuropathologic substrates with parkinsonism in these individuals. Design, Setting, and Participants This cross-sectional study included brain donors with neuropathologically diagnosed CTE without other significant neurodegenerative disease and with information on parkinsonism from the Understanding Neurologic Injury and Traumatic Encephalopathy brain bank between July 2015 and May 2022. Exposure Years of contact sports participation as a proxy for RHI. Main Outcomes and Measures The main outcomes were frequency of parkinsonism in individuals with CTE and associations between (1) RHI with substantia nigra (SN) Lewy bodies (LBs) and neurofibrillary tangles (NFTs); (2) LBs, NFTs, and arteriolosclerosis with SN neuronal loss; and (3) SN neuronal loss, LBs, NFTs, and arteriolosclerosis with parkinsonism, tested by age-adjusted logistic regressions. Results Of 481 male brain donors with neuropathologically diagnosed CTE, parkinsonism occurred frequently in individuals with CTE (119 [24.7%]; 362 [75.3%] did not have parkinsonism). Participants with parkinsonism had a higher mean (SD) age at death (71.5 [13.0] years) than participants without parkinsonism (54.1 [19.3] years) (P < .001) and higher rates of dementia (104 [87.4%] vs 105 [29.0%]), visual hallucinations (45 [37.8%] vs 51 [14.1%]), and probable rapid eye movement sleep behavior disorder (52 [43.7%] vs 58 [16.0%]) (P < .001 for all). Participants with parkinsonism had a more severe CTE stage (eg, stage IV: 35 [29.4%] vs 39 [10.8%]) and nigral pathology than those without parkinsonism (NFTs: 50 of 117 [42.7%] vs 103 of 344 [29.9%]; P = .01; neuronal loss: 61 of 117 [52.1%] vs 59 of 344 [17.1%]; P < .001; and LBs: 28 of 116 [24.1%] vs 20 of 342 [5.8%]; P < .001). Years of contact sports participation were associated with SN NFTs (adjusted odds ratio [AOR], 1.04; 95% CI, 1.00-1.07; P = .03) and neuronal loss (AOR, 1.05; 95% CI, 1.01-1.08; P = .02). Nigral neuronal loss (AOR, 2.61; 95% CI, 1.52-4.47; P < .001) and LBs (AOR, 2.29; 95% CI, 1.15-4.57; P = .02) were associated with parkinsonism. However, SN neuronal loss was associated with SN LBs (AOR, 4.48; 95% CI, 2.25-8.92; P < .001), SN NFTs (AOR, 2.51; 95% CI, 1.52-4.15; P < .001), and arteriolosclerosis (AOR, 2.27; 95% CI, 1.33-3.85; P = .002). In American football players, regression analysis demonstrated that SN NFTs and neuronal loss mediated the association between years of play and parkinsonism in the context of CTE (β, 0.012; 95% CI, 0.001-0.038). Conclusions and Relevance In this cross-sectional study of contact sports athletes with CTE, years of contact sports participation were associated with SN tau pathology and neuronal loss, and these pathologies were associated with parkinsonism. Repetitive head impacts may incite neuropathologic processes that lead to symptoms of parkinsonism in individuals with CTE.
Collapse
Affiliation(s)
- Jason W. Adams
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla
| | - Daniel Kirsch
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Samantha M. Calderazzo
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Fatima Tuz-Zahra
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
| | - Caroline Kubilus
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Kerry A. Cormier
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Evan Nair
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Eva Kuzyk
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Nurgul Aytan
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - John F. Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, Massachusetts
| | - Christopher J. Nowinski
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Lee E. Goldstein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Clay AM, Carr RL, DuBien JL, To F. Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model. Brain Inj 2024; 38:827-834. [PMID: 38704844 DOI: 10.1080/02699052.2024.2349144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PRIMARY OBJECTIVE It is unclear of the correlation between a mild traumatic brain injury (mTBI) and repeated subconcussive (RSC) impacts with respect to injury biomechanics. Thus, the present study was designed to determine the behavioral and histological differences between a single mTBI impact and RSC impacts with subdivided cumulative kinetic energies of the single mTBI impact. RESEARCH DESIGN Adult male Sprague-Dawley rats were randomly assigned to a single mTBI impact, RSC impact, sham, or repeated sham groups. METHODS AND PROCEDURES Following a weight drop injury, anxiety-like behavior and general locomotive activity and were assessed using the open field test, while motor coordination was evaluated using a rotarod unit. Neuronal loss, astrogliosis, and microgliosis were assessed using NeuN, GFAP and Iba-1 immunohistochemistry. All assessments were undertaken at 3- and 7-days post impact. MAIN OUTCOMES AND RESULTS No behavioral disturbances were observed in injury groups, however, both injury groups did lead to microgliosis following 3-days post-impact. CONCLUSIONS No pathophysiological differences were observed between a single mTBI impact and RSC impacts of the same energy input. Even though a cumulative injury threshold for RSC impacts was not determined, a threshold still may exist where no pathodynamic shift occurs.
Collapse
Affiliation(s)
- Anna Marie Clay
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi University, Mississippi, USA
| | - Janice L DuBien
- Department of Statistics, Mississippi University, Mississippi, USA
| | - Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| |
Collapse
|
34
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
35
|
Pearson A, Koprivica M, Eisenbaum M, Ortiz C, Browning M, Vincennie T, Tinsley C, Mullan M, Crawford F, Ojo J. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J Neuroinflammation 2024; 21:194. [PMID: 39097742 PMCID: PMC11297749 DOI: 10.1186/s12974-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| | - Milica Koprivica
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | | | - Tessa Vincennie
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Cooper Tinsley
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
36
|
Wallingford A, Junn C. Chronic Traumatic Encephalopathy. Phys Med Rehabil Clin N Am 2024; 35:607-618. [PMID: 38945654 DOI: 10.1016/j.pmr.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article focuses on neuropathologic diagnostic criteria for chronic traumatic encephalopathy (CTE) and consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES). CTE as a tauopathy has a unique pattern for diagnosis and differs from other neurodegenerative diseases. We discuss the history, neuropathology, and mechanism of CTE as well as the preliminary reasearch diagnostic criteria for TES, which is the proposed clinical presentation of suspected CTE.
Collapse
Affiliation(s)
- Allison Wallingford
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Cherry Junn
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue Box 359740, Seattle, WA 98104, USA.
| |
Collapse
|
37
|
Khatib A, Post A, Hoshizaki T, Gilchrist MD. Brain trauma characteristics for lightweight and heavyweight fighters in professional mixed martial arts. Sports Biomech 2024; 23:1083-1105. [PMID: 34011240 DOI: 10.1080/14763141.2021.1922740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Mixed martial arts (MMA) is a sport where the fighters are at high risk of brain trauma, with characteristics, such as the frequency, magnitude, and interval of head impacts influencing the risk of developing short- and long-term negative brain health outcomes. These characteristics may be influenced by weight class as they may have unique fighting styles. The purpose of this research was to compare frequency, magnitude, and interval of head impacts between lightweight and heavyweight fighters in professional MMA. Frequency, interval, event type, velocity, and location of head impacts were documented for 60 fighters from 15 Lightweight and 15 Heavyweight professional MMA fights. Head impact reconstructions of these events were performed using physical and finite element modelling methods to determine the strain in the brain tissues. The results found that LW and HW fighters sustained similar head impact frequencies and intervals. The LW fighters sustained a significantly higher frequency of very low and high magnitude impacts to the head from punches; HW a larger frequency of high category strains from elbow strikes. These brain trauma profiles reflect different fight strategies and may inform methods to manage and mitigate the long-term effects of repetitive impacts to the head.
Collapse
Affiliation(s)
- Ali Khatib
- Department of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Andrew Post
- Department of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | | - Michael D Gilchrist
- Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Jung LB, Wiegand TLT, Tuz-Zahra F, Tripodis Y, Iliff JJ, Piantino J, Arciniega H, Kim CL, Pankatz L, Bouix S, Lin AP, Alosco ML, Daneshvar DH, Mez J, Sepehrband F, Rathi Y, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer L, Cummings JL, Reiman EM, Stern RA, Shenton ME, Koerte IK. Repetitive Head Impacts and Perivascular Space Volume in Former American Football Players. JAMA Netw Open 2024; 7:e2428687. [PMID: 39186275 DOI: 10.1001/jamanetworkopen.2024.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Importance Exposure to repetitive head impacts (RHI) is associated with increased risk for neurodegeneration. Accumulation of toxic proteins due to impaired brain clearance is suspected to play a role. Objective To investigate whether perivascular space (PVS) volume is associated with lifetime exposure to RHI in individuals at risk for RHI-associated neurodegeneration. Design, Setting, and Participants This cross-sectional study was part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project, a 7-year multicenter study consisting of 4 US study sites. Data were collected from September 2016 to February 2020 and analyses were performed between May 2021 and October 2023. After controlling for magnetic resonance image (MRI) and processing quality, former American football players and unexposed asymptomatic control participants were included in analyses. Exposure Prior exposure to RHI while participating in American football was estimated using the 3 cumulative head impact indices (CHII-G, linear acceleration; CHII-R, rotational acceleration; and CHII, number of head impacts). Main Outcomes and Measures Individual PVS volume was calculated in the white matter of structural MRI. Cognitive impairment was based on neuropsychological assessment. Linear regression models were used to assess associations of PVS volume with neuropsychological assessments in former American football players. All analyses were adjusted for confounders associated with PVS volume. Results Analyses included 224 participants (median [IQR] age, 57 [51-65] years), with 170 male former football players (114 former professional athletes, 56 former collegiate athletes) and 54 male unexposed control participants. Former football players had larger PVS volume compared with the unexposed group (mean difference, 0.28 [95% CI, 0.00-0.56]; P = .05). Within the football group, PVS volume was associated with higher CHII-R (β = 2.71 × 10-8 [95% CI, 0.50 × 10-8 to 4.93 × 10-8]; P = .03) and CHII-G (β = 2.24 × 10-6 [95% CI, 0.35 × 10-6 to 4.13 × 10-6]; P = .03). Larger PVS volume was also associated with worse performance on cognitive functioning in former American football players (β = -0.74 [95% CI, -1.35 to -0.13]; P = .04). Conclusions and Relevance These findings suggest that impaired perivascular brain clearance, as indicated by larger PVS volume, may contribute to the association observed between RHI exposure and neurodegeneration.
Collapse
Affiliation(s)
- Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle
- Department of Neurology, University of Washington School of Medicine, Seattle
- VISN 20 Northwest Network Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, New York
| | - Cara L Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Département de génie logiciel et TI, École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Farshid Sepehrband
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona Scottsdale, Arizona
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Laura Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
39
|
Tak H, Anirudh J, Chattopadhyay A, Naick BH. Argonaute protein assisted drug discovery for miRNA-181c-5p and target gene ATM translation repression: a computational approach. Mol Divers 2024:10.1007/s11030-024-10855-3. [PMID: 39026118 DOI: 10.1007/s11030-024-10855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
The miRNA binds to AGO's seed region, prompting the exploration of small molecules that can offset miRNA repression of target mRNA. This miRNA-181c-5p was found to be upregulated in the chronic traumatic encephalopathy, a prevalent neurodegenerative disease in contact sports and military personals. The research aimed to identify compounds that disrupt the AGO-assisted loop formation between miRNA-181c-5p and ATM, consequently repressing the translation of ATM. Target genes from commonly three databases (DIANA-microT-CDS, miRDB, RNA22 and TargetScan) were subjected to functional annotation and clustering analysis using DAVID bioinformatics tool. Haddock server were employed to make miRNA-181c-5p:ATM-AGO complex. A total of 2594 small molecules were screened using Glide XP based on their highest binding affinity towards the complex, through a three-phase docking approach. The top 5 compounds (DB00674-Galantamine, DB00371-Meprobamate, DB00694-Daunorubicin, DB00837-Progabide, and DB00851-Dacarbazine) were further analyzed for stability in the miRNA-181c-5p:ATM-AGO-ligand complex interaction using GROMACS (version 2023.2). Hence, these findings suggest that these molecules hold potential for facilitating AGO-assisted repression of ATM gene translation.
Collapse
Affiliation(s)
- Harshita Tak
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India
| | - Jivanage Anirudh
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India
| | - Arpan Chattopadhyay
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India
| | - B Hemanth Naick
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
40
|
Finan JD, Vogt TE, Samei Y. Cavitation in blunt impact traumatic brain injury. EXPERIMENTS IN FLUIDS 2024; 65:114. [PMID: 39036013 PMCID: PMC11255084 DOI: 10.1007/s00348-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Traumatic brain injury (TBI) poses a major public health challenge. No proven therapies for the condition exist so protective equipment that prevents or mitigates these injuries plays a critical role in minimizing the societal burden of this condition. Our ability to optimize protective equipment depends on our capacity to relate the mechanics of head impact events to morbidity and mortality. This capacity, in turn, depends on correctly identifying the mechanisms of injury. For several decades, a controversial theory of TBI biomechanics has attributed important classes of injury to cavitation inside the cranial vault during blunt impact. This theory explains counter-intuitive clinical observations, including the coup-contre-coup pattern of injury. However, it is also difficult to validate experimentally in living subjects. Also, blunt impact TBI is a broad term that covers a range of different head impact events, some of which may be better described by cavitation theory than others. This review surveys what has been learned about cavitation through mathematical modeling, physical modeling, and experimentation with living tissues and places it in context with competing theories of blunt injury biomechanics and recent research activity in the field in an attempt to understand what the theory has to offer the next generation of innovators in TBI biomechanics.
Collapse
Affiliation(s)
- John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Thea E. Vogt
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Yasaman Samei
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| |
Collapse
|
41
|
Dybing KM, McAllister TW, Wu YC, McDonald BC, Broglio SP, Mihalik JP, Guskiewicz KM, Goldman JT, Jackson JC, Risacher SL, Saykin AJ, Nudelman KNH. Association of Alzheimer's disease polygenic risk score with concussion severity and recovery metrics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.10.24309042. [PMID: 39040205 PMCID: PMC11261937 DOI: 10.1101/2024.07.10.24309042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. We assessed six outcomes in 931 total participants. The outcomes were two concussion recovery measures (number of days to asymptomatic status, number of days to return to play (RTP)) and four concussion severity measures (scores on SAC and BESS, SCAT symptom severity, and total number of symptoms). We calculated PRS using a published score [1] and performed multiple linear regression (MLR) to assess the relationship of PRS with the outcomes. We also used t-tests and chi-square tests to examine outcomes by APOE genotype, and MLR to analyze outcomes in European and African genetic ancestry subgroups. Higher PRS was associated with longer injury to RTP in the normal RTP (<24 days) subgroup ( p = 0.024), and one standard deviation increase in PRS resulted in a 9.89 hour increase to the RTP interval. There were no other consistently significant effects, suggesting that high AD genetic risk is not strongly associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
Collapse
|
42
|
Fernandes GCDAM, Lima EBDS, Lara PHS, Gandolfi ACDC, Pagura JR, Arliani GG, Cohen M. Sport-related concussion in Brazilian professional soccer: A four-year prospective epidemiological analysis. SPORTS MEDICINE AND HEALTH SCIENCE 2024. [DOI: 10.1016/j.smhs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
|
43
|
Garcia-Cordero I, Vasilevskaya A, Taghdiri F, Khodadadi M, Mikulis D, Tarazi A, Mushtaque A, Anssari N, Colella B, Green R, Rogaeva E, Sato C, Grinberg M, Moreno D, Hussain MW, Blennow K, Zetterberg H, Davis KD, Wennberg R, Tator C, Tartaglia MC. Functional connectivity changes in neurodegenerative biomarker-positive athletes with repeated concussions. J Neurol 2024; 271:4180-4190. [PMID: 38589629 DOI: 10.1007/s00415-024-12340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - David Mikulis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Apameh Tarazi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Asma Mushtaque
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Neda Anssari
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Brain Vision and Concussion Clinic, Winnipeg, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mohammed W Hussain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Karen D Davis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Krembil Brain Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Wennberg
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles Tator
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada.
| |
Collapse
|
44
|
Lindberg A, Murrell E, Tong J, Mason NS, Sohn D, Sandell J, Ström P, Stehouwer JS, Lopresti BJ, Viklund J, Svensson S, Mathis CA, Vasdev N. Ligand-based design of [ 18F]OXD-2314 for PET imaging in non-Alzheimer's disease tauopathies. Nat Commun 2024; 15:5109. [PMID: 38877019 PMCID: PMC11178805 DOI: 10.1038/s41467-024-49258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Positron emission tomography (PET) imaging of tau aggregation in Alzheimer's disease (AD) is helping to map and quantify the in vivo progression of AD pathology. To date, no high-affinity tau-PET radiopharmaceutical has been optimized for imaging non-AD tauopathies. Here we show the properties of analogues of a first-in-class 4R-tau lead, [18F]OXD-2115, using ligand-based design. Over 150 analogues of OXD-2115 were synthesized and screened in post-mortem brain tissue for tau affinity against [3H]OXD-2115, and in silico models were used to predict brain uptake. [18F]OXD-2314 was identified as a selective, high-affinity non-AD tau PET radiotracer with favorable brain uptake, dosimetry, and radiometabolite profiles in rats and non-human primate and is being translated for first-in-human PET studies.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Sohn
- Oxiant Discovery, SE-15136, Södertälje, Sweden
| | | | - Peter Ström
- Novandi Chemistry AB, SE-15136, Södertälje, Sweden
| | | | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
45
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Werner JK. Is neurotrauma-related rapid eye movement behavior disorder a harbinger of synucleinopathy? Sleep 2024; 47:zsae060. [PMID: 38436612 DOI: 10.1093/sleep/zsae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
- J Kent Werner
- Department of Neurology, Uniformed Services University, Bethesda, MD, USA
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Ye Z, Li Z, Zhong S, Xing Q, Li K, Sheng W, Shi X, Bao Y. The recent two decades of traumatic brain injury: a bibliometric analysis and systematic review. Int J Surg 2024; 110:3745-3759. [PMID: 38608040 PMCID: PMC11175772 DOI: 10.1097/js9.0000000000001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a serious public health burden worldwide, with a mortality rate of 20-30%; however, reducing the incidence and mortality rates of TBI remains a major challenge. This study provides a multidimensional analysis to explore the potential breakthroughs in TBI over the past two decades. MATERIALS AND METHODS The authors used bibliometric and Latent Dirichlet Allocation (LDA) analyses to analyze publications focusing on TBI published between 2003 and 2022 from the Web of Science Core Collection (WOSCC) database to identify core journals and collaborations among countries/regions, institutions, authors, and research trends. RESULTS Over the past 20 years, 41 545 articles on TBI from 3043 journals were included, with 12 916 authors from 20 449 institutions across 145 countries/regions. The annual number of publications has increased 10-fold compared to previous publications. This study revealed that high-income countries, especially the United States, have a significant influence. Collaboration was limited to several countries/regions. The LDA results indicated that the hotspots included four main areas: 'Clinical finding', 'Molecular mechanism', 'Epidemiology', and 'Prognosis'. Epidemiological research has consistently increased in recent years. Through epidemiological topic analysis, the main etiology of TBI has shifted from traffic accidents to falls in a demographically aging society. CONCLUSION Over the past two decades, TBI research has developed rapidly, and its epidemiology has received increasing attention. Reducing the incidence of TBI from a preventive perspective is emerging as a trend to alleviate the future social burden; therefore, epidemiological research might bring breakthroughs in TBI.
Collapse
Affiliation(s)
- Ziyin Ye
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Zhi Li
- Department of Oncology, The First Hospital of China Medical University, Heping
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Qichen Xing
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Weichen Sheng
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Xin Shi
- School of Health Management, China Medical University, Shenyang, People’s Republic of China
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| |
Collapse
|
48
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
49
|
Taghdiri F, Khodadadi M, Sadia N, Mushtaque A, Scott OFT, Hirsch‐Reinhagen V, Tator C, Wennberg R, Kovacs GG, Tartaglia MC. Unusual combinations of neurodegenerative pathologies with chronic traumatic encephalopathy (CTE) complicates clinical prediction of CTE. Eur J Neurol 2024; 31:e16259. [PMID: 38404144 PMCID: PMC11235773 DOI: 10.1111/ene.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND PURPOSE Chronic traumatic encephalopathy (CTE) has gained widespread attention due to its association with multiple concussions and contact sports. However, CTE remains a postmortem diagnosis, and the link between clinical symptoms and CTE pathology is poorly understood. This study aimed to investigate the presence of copathologies and their impact on symptoms in former contact sports athletes. METHODS This was a retrospective case series design of 12 consecutive cases of former contact sports athletes referred for autopsy. Analyses are descriptive and include clinical history as well as the pathological findings of the autopsied brains. RESULTS All participants had a history of multiple concussions, and all but one had documented progressive cognitive, psychiatric, and/or motor symptoms. The results showed that 11 of the 12 participants had evidence of CTE in the brain, but also other copathologies, including different combinations of tauopathies, and other rare entities. CONCLUSIONS The heterogeneity of symptoms after repetitive head injuries and the diverse pathological combinations accompanying CTE complicate the prediction of CTE in clinical practice. It is prudent to consider the possibility of multiple copathologies when clinically assessing patients with repetitive head injuries, especially as they age, and attributing neurological or cognitive symptoms solely to presumptive CTE in elderly patients should be discouraged.
Collapse
Affiliation(s)
- Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Mozhgan Khodadadi
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Nusrat Sadia
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Asma Mushtaque
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Olivia F. T. Scott
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Veronica Hirsch‐Reinhagen
- Division of NeuropathologyVancouver General HospitalVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Charles Tator
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Richard Wennberg
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders ClinicToronto Western HospitalTorontoOntarioCanada
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
50
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|