1
|
Chen F, Qiu Y, Liu J. NIR responsive nanosystem based on upconversion nanoparticle-engineered bacteria for immune/photodynamic combined therapy with bacteria self-clearing capability. J Colloid Interface Sci 2025; 678:583-594. [PMID: 39305626 DOI: 10.1016/j.jcis.2024.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/11/2024] [Accepted: 09/11/2024] [Indexed: 10/27/2024]
Abstract
Biological engineering bacteria hold great promise in tumor therapy due to their targeted delivery, tumor penetration, and tumor-specific activation capabilities. However, the use of live bacteria raises safety concerns, as they can potentially cause infections or adverse immune responses in patients. Additionally, most biological engineering bacteria are only responsive to blue light, which has limited penetration depth within biological tissues. To address these limitations, we have developed a nanoplatform that combines dual-emission upconversion nanoparticles (referred to as DDUCNPs), which can realize dual-wavelength emission under dual-wavelength excitation, with biological engineering bacteria for tumor treatment and the self-clearance of biological engineering bacteria after therapy in the near-infrared (NIR) window. This design allows us to utilize 980 nm light, which is converted to blue light by the DDUCNPs, to activate the bacteria and promote the controlled release of tumor necrosis factor-alpha (TNF-α) for precise tumor ablation. Subsequently, we employ 808 nm excitation to achieve light conversion into the red light, thereby activating photosensitizer molecules and generating singlet oxygen (ROS) for in vivo clearance of the bacteria involved in the treatment. Simultaneously, the generated ROS also undergoes photodynamic therapy (PDT) on the tumor to enhance the therapeutic effect. By combining these elements on a single platform, our system achieves the activation and self-clearance of biological engineering bacteria in the NIR window, effectively enabling tumor treatment. This approach overcomes the limitations of blue light penetration and addresses safety concerns associated with live bacteria, offering a promising strategy for precise and controlled tumor therapy.
Collapse
Affiliation(s)
- Feiyan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Kiemen AL, Almagro-Pérez C, Matos V, Forjaz A, Braxton AM, Dequiedt L, Parksong J, Cannon CD, Yuan X, Shin SM, Babu JM, Thompson ED, Cornish TC, Ho WJ, Wood LD, Wu PH, Barrutia AM, Hruban RH, Wirtz D. 3D histology reveals that immune response to pancreatic precancers is heterogeneous and depends on global pancreas structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606493. [PMID: 39149369 PMCID: PMC11326156 DOI: 10.1101/2024.08.03.606493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer for which few effective therapies exist. Immunotherapies specifically are ineffective in pancreatic cancer, in part due to its unique stromal and immune microenvironment. Pancreatic intraepithelial neoplasia, or PanIN, is the main precursor lesion to PDAC. Recently it was discovered that PanINs are remarkably abundant in the grossly normal pancreas, suggesting that the vast majority will never progress to cancer. Here, through construction of 48 samples of cm3-sized human pancreas tissue, we profiled the immune microenvironment of 1,476 PanINs in 3D and at single-cell resolution to better understand the early evolution of the pancreatic tumor microenvironment and to determine how inflammation may play a role in cancer progression. We found that bulk pancreatic inflammation strongly correlates to PanIN cell fraction. We found that the immune response around PanINs is highly heterogeneous, with distinct immune hotspots and cold spots that appear and disappear in a span of tens of microns. Immune hotspots generally mark locations of higher grade of dysplasia or locations near acinar atrophy. The immune composition at these hotspots is dominated by naïve, cytotoxic, and regulatory T cells, cancer associated fibroblasts, and tumor associated macrophages, with little similarity to the immune composition around less-inflamed PanINs. By mapping FOXP3+ cells in 3D, we found that regulatory T cells are present at higher density in larger PanIN lesions compared to smaller PanINs, suggesting that the early initiation of PanINs may not exhibit an immunosuppressive response. This analysis demonstrates that while PanINs are common in the pancreases of most individuals, inflammation may play a pivotal role, both at the bulk and the microscopic scale, in demarcating regions of significance in cancer progression.
Collapse
Affiliation(s)
- Ashley L. Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Functional Anatomy & Evolution, Johns Hopkins School of Medicine, Baltimore, MD
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
| | - Valentina Matos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
| | - Andre Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Alicia M. Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lucie Dequiedt
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jeeun Parksong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Courtney D. Cannon
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xuan Yuan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Elizabeth D. Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Toby C. Cornish
- Department of Pathology and Data Science Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Arrate Muñoz Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Bioengineering Division, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Institute for NanoBioTechnology, Johns Hopkins University
| |
Collapse
|
3
|
Chen Z, Wang Z, Bao H, Ma S. Gut microbiota and pancreatic cancer risk, and the mediating role of immune cells and inflammatory cytokines: a Mendelian randomization study. Front Immunol 2024; 15:1408770. [PMID: 39119339 PMCID: PMC11306078 DOI: 10.3389/fimmu.2024.1408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Gut microbiota (GM) influences the occurrence and development of pancreatic cancer (PC), potentially through the involvement of inflammatory cytokines (IC) and immune cells (IM). We aimed to investigate the causal impact of the gut microbiota (GM) on pancreatic cancer (PC) and identify potential IC and IM mediators. Methods The summary statistics data from whole-genome association studies of gut microbiota, immune cells, inflammatory cytokines, and four types of pancreatic tumors (MNP: Malignant neoplasm of pancreas; BNP: Benign neoplasm of pancreas; ADCP: Adenocarcinoma and ductal carcinoma of pancreas; NTCP: Neuroendocrine tumor and carcinoma of pancreas). Two-sample univariable Mendelian randomization (UVMR), multivariable Mendelian randomization (MVMR), and mediation analysis were employed to assess the causal relationship between gut microbiota (GM) and pancreatic cancer (PC), as well as potential IC and IM mediators. Results The two-sample UVMR analysis showed causal relationships between 20 gut microbiota species and pancreatic cancer, with pancreatic cancer affecting the abundance of 37 gut microbiota species. Mediation analysis revealed that Interleukin-6 (IL-6), "CD4 on naive CD4+ T cell" and "SSC-A on HLA DR+ Natural Killer" mediated the causal effects of gut microbiota on pancreatic cancer. Conclusion This Mendelian randomization study demonstrates causal relationships between several specific gut microbiota and pancreatic cancer, as well as potential mediators (IC, IM).
Collapse
Affiliation(s)
- Zhiting Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hejing Bao
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Abal-Sanisidro M, De Luca M, Roma S, Ceraolo MG, de la Fuente M, De Monte L, Protti MP. Anakinra-Loaded Sphingomyelin Nanosystems Modulate In Vitro IL-1-Dependent Pro-Tumor Inflammation in Pancreatic Cancer. Int J Mol Sci 2024; 25:8085. [PMID: 39125655 PMCID: PMC11312284 DOI: 10.3390/ijms25158085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
| | - Michele De Luca
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Roma
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Grazia Ceraolo
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782 Santiago de Compostela, Spain
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
5
|
Lyu J, Jiang M, Zhu Z, Wu H, Kang H, Hao X, Cheng S, Guo H, Shen X, Wu T, Chang J, Wang C. Identification of biomarkers and potential therapeutic targets for pancreatic cancer by proteomic analysis in two prospective cohorts. CELL GENOMICS 2024; 4:100561. [PMID: 38754433 PMCID: PMC11228889 DOI: 10.1016/j.xgen.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Pancreatic cancer (PC) is the deadliest malignancy due to late diagnosis. Aberrant alterations in the blood proteome might serve as biomarkers to facilitate early detection of PC. We designed a nested case-control study of incident PC based on a prospective cohort of 38,295 elderly Chinese participants with ∼5.7 years' follow-up. Forty matched case-control pairs passed the quality controls for the proximity extension assay of 1,463 serum proteins. With a lenient threshold of p < 0.005, we discovered regenerating family member 1A (REG1A), REG1B, tumor necrosis factor (TNF), and phospholipase A2 group IB (PLA2G1B) in association with incident PC, among which the two REG1 proteins were replicated using the UK Biobank Pharma Proteomics Project, with effect sizes increasing steadily as diagnosis time approaches the baseline. Mendelian randomization analysis further supported the potential causal effects of REG1 proteins on PC. Taken together, circulating REG1A and REG1B are promising biomarkers and potential therapeutic targets for the early detection and prevention of PC.
Collapse
Affiliation(s)
- Jingjing Lyu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Jiang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Zhu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongji Wu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haonan Kang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Cheng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Shen
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiang Chang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaolong Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Schwarcz S, Kovács P, Nyerges P, Ujlaki G, Sipos A, Uray K, Bai P, Mikó E. The bacterial metabolite, lithocholic acid, has antineoplastic effects in pancreatic adenocarcinoma. Cell Death Discov 2024; 10:248. [PMID: 38782891 PMCID: PMC11116504 DOI: 10.1038/s41420-024-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lithocholic acid (LCA) is a secondary bile acid. LCA enters the circulation after bacterial synthesis in the gastrointestinal tract, reaches distantly located cancer cells, and influences their behavior. LCA was considered carcinogenic, but recent studies demonstrated that LCA has antitumor effects. We assessed the possible role of LCA in pancreatic adenocarcinoma. At the serum reference concentration, LCA induced a multi-pronged antineoplastic program in pancreatic adenocarcinoma cells. LCA inhibited cancer cell proliferation and induced mesenchymal-to-epithelial (MET) transition that reduced cell invasion capacity. LCA induced oxidative/nitrosative stress by decreasing the expression of nuclear factor, erythroid 2-like 2 (NRF2) and inducing inducible nitric oxide synthase (iNOS). The oxidative/nitrosative stress increased protein nitration and lipid peroxidation. Suppression of oxidative stress by glutathione (GSH) or pegylated catalase (pegCAT) blunted LCA-induced MET. Antioxidant genes were overexpressed in pancreatic adenocarcinoma and decreased antioxidant levels correlated with better survival of pancreatic adenocarcinoma patients. Furthermore, LCA treatment decreased the proportions of cancer stem cells. Finally, LCA induced total and ATP-linked mitochondrial oxidation and fatty acid oxidation. LCA exerted effects through the farnesoid X receptor (FXR), vitamin D receptor (VDR), and constitutive androstane receptor (CAR). LCA did not interfere with cytostatic agents used in the chemotherapy of pancreatic adenocarcinoma. Taken together, LCA is a non-toxic compound and has antineoplastic effects in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
8
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
9
|
Khan S, Banerjee G, Setua S, Jones DH, Chauhan BV, Dhasmana A, Banerjee P, Yallapu MM, Behrman S, Chauhan SC. Metagenomic analysis unveils the microbial landscape of pancreatic tumors. Front Microbiol 2023; 14:1275374. [PMID: 38179448 PMCID: PMC10764597 DOI: 10.3389/fmicb.2023.1275374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The composition of resident microbes in the human body is linked to various diseases and their treatment outcomes. Although studies have identified pancreatic ductal adenocarcinoma (PDAC)-associated bacterial communities in the oral and gut samples, herein, we hypothesize that the prevalence of microbiota in pancreatic tumor tissues is different as compared with their matched adjacent, histologically normal appearing tissues, and these microbial molecular signatures can be highly useful for PDAC diagnosis/prognosis. In this study, we performed comparative profiling of bacterial populations in pancreatic tumors and their respective adjacent normal tissues using 16S rRNA-based metagenomics analysis. This study revealed a higher abundance of Proteobacteria and Actinomycetota in tumor tissues compared with adjacent normal tissues. Interestingly, the linear discriminant analysis (LDA) scores unambiguously revealed an enrichment of Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter exhibited a depletion in tumor tissues. Furthermore, we analyzed the microbial composition between different groups of patients with different tumor differentiation stages. The bacterial genera, Delftia and Staphylococcus, were very high at the G1 stages (well differentiated) compared with G2 (well to moderate/moderately differentiated) and G3/G4 (poorly differentiated) stages. However, the abundance of Actinobacter and Cloacibacterium was found to be very high in G2 and G3, respectively. Additionally, we evaluated the correlation of programmed death-ligand (PDL1) expression with the abundance of bacterial genera in tumor lesions. Our results indicated that three genera such as Streptomyces, Cutibacterium, and Delftia have a positive correlation with PD-L1 expression. Collectively, these findings demonstrate that PDAC lesions harbor relatively different microbiota compared with their normal tumor adjacent tissues, and this information may be helpful for the diagnosis and prognosis of PADC patients.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Saini Setua
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Blood Oxygen Transport and Hemostasis (CBOTH), Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Daleniece Higgins Jones
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
- Department of Public Health, University of Tennessee, Knoxville, TN, United States
| | - Bhavin V. Chauhan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
| | - Murali Mohan Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Stephen Behrman
- Department of Surgery, Baptist Memorial Hospital and Medical Education, Memphis, TN, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| |
Collapse
|
10
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
11
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Perazzoli G, García-Valdeavero OM, Peña M, Prados J, Melguizo C, Jiménez-Luna C. Evaluating Metabolite-Based Biomarkers for Early Diagnosis of Pancreatic Cancer: A Systematic Review. Metabolites 2023; 13:872. [PMID: 37512579 PMCID: PMC10384620 DOI: 10.3390/metabo13070872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates around 10%. The only curative option remains complete surgical resection, but due to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics has become a powerful technology for biomarker discovery, and several metabolomic-based panels have been proposed for PDAC diagnosis, but these advances have not yet been translated into the clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and WOS databases, using the terms "Biomarkers, Tumor", "Pancreatic Neoplasms", "Early Diagnosis", "Metabolomics" and "Lipidome" (January 2018-March 2023), and resulted in the selection of fourteen original studies that compared PDAC patients with subjects with other pancreatic diseases. These investigations showed amino acid and lipid metabolic pathways as the most commonly altered, reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques used and further studies will be needed to validate the clinical utility of these biomarkers.
Collapse
Affiliation(s)
- Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Olga M García-Valdeavero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
13
|
Papa V, Schepis T, Coppola G, Chiappetta MF, Del Vecchio LE, Rozera T, Quero G, Gasbarrini A, Alfieri S, Papa A. The Role of Microbiota in Pancreatic Cancer. Cancers (Basel) 2023; 15:3143. [PMID: 37370753 DOI: 10.3390/cancers15123143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer (PC) has an unfavorable prognosis with few effective therapeutic options. This has led researchers to investigate the possible links between microbiota and PC. A disrupted gut microbiome can lead to chronic inflammation, which is involved in the pathogenesis of PC. In addition, some bacterial strains can produce carcinogens that promote the growth of cancer cells. Research has also focused on pancreatic and oral microbiota. Changes in these microbiota can contribute to the development and progression of PC. Furthermore, patients with periodontal disease have an increased risk of developing PC. The potential use of microbiota as a prognostic marker or to predict patients' responses to chemotherapy or immunotherapy is also being explored. Overall, the role of microbiota-including the gut, pancreatic, and oral microbiota-in PC is an active research area. Understanding these associations could lead to new diagnostic and therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Valerio Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Schepis
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Gaetano Coppola
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Michele Francesco Chiappetta
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Rozera
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alfredo Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
14
|
McKinley KNL, Herremans KM, Riner AN, Vudatha V, Freudenberger DC, Hughes SJ, Triplett EW, Trevino JG. Translocation of Oral Microbiota into the Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. Microorganisms 2023; 11:1466. [PMID: 37374966 PMCID: PMC10305341 DOI: 10.3390/microorganisms11061466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Oral dysbiosis has long been associated with pancreatic ductal adenocarcinoma (PDAC). In this work, we explore the relationship between the oral and tumor microbiomes of patients diagnosed with PDAC. Salivary and tumor microbiomes were analyzed using a variety of sequencing methods, resulting in a high prevalence and relative abundance of oral bacteria, particularly Veillonella and Streptococcus, within tumor tissue. The most prevalent and abundant taxon found within both saliva and tumor tissue samples, Veillonella atypica, was cultured from patient saliva, sequenced and annotated, identifying genes that potentially contribute to tumorigenesis. High sequence similarity was observed between sequences recovered from patient matched saliva and tumor tissue, indicating that the taxa found in PDAC tumors may derive from the mouth. These findings may have clinical implications in the care and treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Kelley N. L. McKinley
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Andrea N. Riner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Vignesh Vudatha
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Devon C. Freudenberger
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
16
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
17
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Zhong L, Liu J, Liu S, Tan G. Correlation between pancreatic cancer and metabolic syndrome: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1116582. [PMID: 37113491 PMCID: PMC10126301 DOI: 10.3389/fendo.2023.1116582] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Pancreatic cancer is a globally frequent cause of death, which can be caused by many factors. This meta-analysis was performed to assess the correlation between pancreatic cancer and metabolic syndrome (MetS). Methods Publications were identified by searching PubMed, EMBASE, and the Cochrane Library for studies published until November 2022. Case-control and cohort studies published in English that provided information on the odds ratio (OR), relative risk (RR), or hazard ratio (HR) of metabolic syndrome and pancreatic cancer were included in the meta-analysis. Two researchers separately retrieved the core data from the included Random effects meta-analysis was conducted to summarize the findings. Results were presented as relative risk (RR) and 95% confidence interval (CI). Results MetS showed a strong association with an increased risk of developing pancreatic cancer (RR1.34, 95% CI1.23-1.46, P<0.001), and gender differences were also observed (men: RR 1.26, 95% CI 1.03-1.54, P=0.022; women: RR 1.64, 95% CI 1.41-1.90, P< 0.001). Moreover, an increased risk of developing pancreatic cancer was strongly linked to hypertension, poor high-density lipoprotein cholesterol, and hyperglycemia (hypertension: RR 1.10 CI 1.01-1.19, P=0.027; low high-density lipoprotein cholesterol: RR 1.24 CI 1.11-1.38, P<0.001; hyperglycemia: RR 1.55, CI 1.42-1.70, P< 0.001). However, pancreatic cancer was independent of obesity and hypertriglyceridemia (obesity: RR 1.13 CI 0.96-1.32, P=0.151, hypertriglyceridemia: RR 0.96, CI 0.87-1.07, P=0.486). Conclusions Although further prospective studies are required for confirmation, this meta-analysis indicated a strong relationship between MetS and pancreatic cancer. Regardless of gender, a greater risk of pancreatic cancer existed in people with MetS. Patients with MetS were more likely to develop pancreatic cancer, regardless of gender. Hypertension, hyperglycemia, and low HDL-c levels may largely account for this association. Further, the prevalence of pancreatic cancer was independent of obesity and hypertriglyceridemia. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022368980.
Collapse
Affiliation(s)
- Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuo Liu
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guang Tan,
| |
Collapse
|
19
|
Pandya G, Kirtonia A, Singh A, Goel A, Mohan CD, Rangappa KS, Pandey AK, Kapoor S, Tandon S, Sethi G, Garg M. A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma. Semin Cancer Biol 2022; 86:682-692. [PMID: 34051351 DOI: 10.1016/j.semcancer.2021.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/04/2021] [Accepted: 05/23/2021] [Indexed: 01/27/2023]
Abstract
Pancreatic carcinoma is associated with one of the worst clinical outcomes throughout the globe because of its aggressive, metastatic, and drug-resistant nature. During the past decade, several studies have shown that oral, gut, and tumor microbiota play a critical role in the modulation of metabolism and immune responses. Growing pieces of evidence have proved beyond a doubt that the microbiota has a unique ability to influence the tumor microenvironment as well as the metabolism of chemotherapeutic agents or drugs. Given this, microbiota, known as the ecological community of microorganisms, stands to be an avenue of quality research. In this review, we provide detailed and critical information on the role of oral, gut, and pancreatic microbiota disruptions in the development of pancreatic carcinoma. Moreover, we comprehensively discuss the different types of microbiota, their potential role, and mechanism associated with pancreatic carcinoma. The microbiome provides the unique opportunity to enhance the effectiveness of chemotherapeutic agents and immunotherapies for pancreatic cancer by maintaining the right type of microbiota and holds a promising future to enhance the clinical outcomes of patients with pancreatic carcinoma.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, CA 91011, USA
| | | | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana 122413, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
20
|
Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med 2022; 3:100744. [PMID: 36099917 PMCID: PMC9512696 DOI: 10.1016/j.xcrm.2022.100744] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Plasma cell responses are associated with anti-tumor immunity and favorable response to immunotherapy. B cells can amplify anti-tumor immune responses through antibody production; yet B cells in patients and tumor-bearing mice often fail to support this effector function. We identify dysregulated transcriptional program in B cells that disrupts differentiation of naive B cells into anti-tumor plasma cells. The signaling network contributing to this dysfunction is driven by interleukin (IL) 35 stimulation of a STAT3-PAX5 complex that upregulates the transcriptional regulator BCL6 in naive B cells. Transient inhibition of BCL6 in tumor-educated naive B cells is sufficient to reverse the dysfunction in B cell differentiation, stimulating the intra-tumoral accumulation of plasma cells and effector T cells and rendering pancreatic tumors sensitive to anti-programmed cell death protein 1 (PD-1) blockade. Our findings argue that B cell effector dysfunction in cancer can be due to an active systemic suppression program that can be targeted to synergize with T cell-directed immunotherapy. Balance between regulatory B cells and plasma cells shapes pancreatic tumor growth Cancer primes naive B cells toward regulatory B cell differentiation IL-35 drives B cell reprogramming via formation of a pSTAT3-Pax5 complex IL-35/BCL6 blockade in naive B cells enhances αPD1 efficacy
Collapse
|
21
|
Wada H, Hamaguchi R, Narui R, Morikawa H. Meaning and Significance of “Alkalization Therapy for Cancer”. Front Oncol 2022; 12:920843. [PMID: 35965526 PMCID: PMC9364696 DOI: 10.3389/fonc.2022.920843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives of the Study Our research aims to answer the following questions. Can cancer progression be stopped by changing the body condition of person with cancer? Can cancer be cured?If cancer progression can be stopped, what is the underlying mechanism? Theoretical Rationale for Alkalization Therapy Almost 70 years ago, Goldblatt H. & Cameron G. reported on the idea of alkalization therapy. Before that, Otto Warburg had been studying the metabolism of cancer and had discovered the essential nature of cancer. He published a review in Science in 1956 under the title “On the origin of cancer cells”. From his phenomena described above, we established the theoretical rationale for alkalization therapy, based on the question of “How does cancer form and what is its nature”? Limitations of Deductive Methods and Inductive Approaches In this paper, we describe a method to reconstruct the limitations and weaknesses of modern cancer medicine as Science-based Medicine using an inductive method, and to present a new vision of cancer therapy. How should we treat cancer? (Case presentation): Using a specific clinical case, we present patients in whom were successfully treated with no or few anticancer drugs. Summary The biggest weakness of current cancer treatments is that they only treat the cancer and not the actual patient. The “alkalization therapy” that we advocate does not compete with any of the current standard treatments, but improves the effectiveness of standard treatments, reduces side effects, and lowers medical costs.
Collapse
|
22
|
Suryadevara V, Roy A, Sahoo J, Kamalanathan S, Naik D, Mohan P, Kalayarasan R. Incretin based therapy and pancreatic cancer: Realising the reality. World J Gastroenterol 2022; 28:2881-2889. [PMID: 35978867 PMCID: PMC9280733 DOI: 10.3748/wjg.v28.i25.2881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Incretin-based therapies like glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors help maintain the glycaemic control in patients with type 2 diabetes mellitus with additional systemic benefits and little risk of hypoglycaemia. These medications are associated with low-grade chronic pancreatitis in animal models inconsistently. The incidence of acute pancreatitis was also reported in some human studies. This inflammation provides fertile ground for developing pancreatic carcinoma (PC). Although the data from clinical trials and population-based studies have established safety regarding PC, the pathophysiological possibility that low-grade chronic pancreatitis leads to PC remains. We review the existing literature and describe the relationship between incretin-based therapies and PC.
Collapse
Affiliation(s)
- Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Ayan Roy
- Department of Endocrinology, All India Institute of Medical Sciences, Kalyani 741245, West Bengal, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Pazhanivel Mohan
- Department of Medical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Raja Kalayarasan
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
23
|
Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy. Cancers (Basel) 2022; 14:cancers14133250. [PMID: 35805022 PMCID: PMC9264968 DOI: 10.3390/cancers14133250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with advanced pancreatic ductal adenocarcinoma (PDAC) have a dismal prognosis. We aimed to find a prognostic protein signature for overall survival (OS) in patients with advanced PDAC, and to explore whether early changes in circulating-protein levels could predict survival. We investigated 92 proteins using the Olink Immuno-Oncology panel in serum samples from 363 patients with advanced PDAC. Protein panels for several survival cut-offs were developed independently by two bioinformaticians using LASSO and Ridge regression models. Two panels of proteins discriminated patients with OS < 90 days from those with OS > 2 years. Index I (CSF-1, IL-6, PDCD1, TNFRSF12A, TRAIL, TWEAK, and CA19-9) had AUCs of 0.99 (95% CI: 0.98−1) (discovery cohort) and 0.89 (0.74−1) (replication cohort). For Index II (CXCL13, IL-6, PDCD1, and TNFRSF12A), the corresponding AUCs were 0.97 (0.93−1) and 0.82 (0.68−0.96). Four proteins (ANGPT2, IL-6, IL-10, and TNFRSF12A) were associated with survival across all treatment groups. Longitudinal samples revealed several changes, including four proteins that were also part of the prognostic signatures (CSF-1, CXCL13, IL-6, TNFRSF12A). This study identified two circulating-protein indices with the potential to identify patients with advanced PDAC with very short OS and with long OS.
Collapse
|
24
|
Kartsonaki C, Pang Y, Millwood I, Yang L, Guo Y, Walters R, Lv J, Hill M, Yu C, Chen Y, Chen X, O’Neill E, Chen J, Travis RC, Clarke R, Li L, Chen Z, Holmes MV. Circulating proteins and risk of pancreatic cancer: a case-subcohort study among Chinese adults. Int J Epidemiol 2022; 51:817-829. [PMID: 35064782 PMCID: PMC9189974 DOI: 10.1093/ije/dyab274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a very poor prognosis. Biomarkers that may help predict or diagnose pancreatic cancer may lead to earlier diagnosis and improved survival. METHODS The prospective China Kadoorie Biobank (CKB) recruited 512 891 adults aged 30-79 years during 2004-08, recording 702 incident cases of pancreatic cancer during 9 years of follow-up. We conducted a case-subcohort study measuring 92 proteins in 610 cases and a subcohort of 623 individuals, using the OLINK immuno-oncology panel in stored baseline plasma samples. Cox regression with the Prentice pseudo-partial likelihood was used to estimate adjusted hazard ratios (HRs) for risk of pancreatic cancer by protein levels. RESULTS Among 1233 individuals (including 610 cases), several chemokines, interleukins, growth factors and membrane proteins were associated with risk of pancreatic cancer, with adjusted HRs per 1 standard deviation (SD) of 0.86 to 1.86, including monocyte chemotactic protein 3 (MCP3/CCL7) {1.29 [95% CI (confidence interval) (1.10, 1.51)]}, angiopoietin-2 (ANGPT2) [1.27 (1.10, 1.48)], interleukin-18 (IL18) [1.24 (1.07, 1.43)] and interleukin-6 (IL6) [1.21 (1.06, 1.38)]. Associations between some proteins [e.g. matrix metalloproteinase-7 (MMP7), hepatocyte growth factor (HGF) and tumour necrosis factor receptor superfamily member 9 [TNFRSF9)] and risk of pancreatic cancer were time-varying, with higher levels associated with higher short-term risk. Within the first year, the discriminatory ability of a model with known risk factors (age, age squared, sex, region, smoking, alcohol, education, diabetes and family history of cancer) was increased when several proteins were incorporated (weighted C-statistic changed from 0.85 to 0.99; P for difference = 4.5 × 10-5), although only a small increase in discrimination (0.77 to 0.79, P = 0.04) was achieved for long-term risk. CONCLUSIONS Several plasma proteins were associated with subsequent diagnosis of pancreatic cancer. The potential clinical utility of these biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Iona Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- CKB Project Department, Chinese Academy of Medical Sciences, Beijing, China
| | - Robin Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaofang Chen
- NCDs Prevention and Control Department, Pengzhou CDC, Pengzhou City, Sichuan Province, China
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Junshi Chen
- NHD Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ruth C Travis
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robert Clarke
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe University Hospital, Oxford, UK
| |
Collapse
|
25
|
Sexton RE, Uddin MH, Bannoura S, Khan HY, Mzannar Y, Li Y, Aboukameel A, Al-Hallak MN, Al-Share B, Mohamed A, Nagasaka M, El-Rayes B, Azmi AS. Connecting the Human Microbiome and Pancreatic Cancer. Cancer Metastasis Rev 2022; 41:317-331. [PMID: 35366155 PMCID: PMC8976105 DOI: 10.1007/s10555-022-10022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sahar Bannoura
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yousef Mzannar
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yiwei Li
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammad Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Bayan Al-Share
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amr Mohamed
- UH Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Misako Nagasaka
- University of California, Irvine, UCI Health Chao Family Comprehensive Cancer Center, CA, Irvine, USA
| | - Bassel El-Rayes
- O'Neal Comprehensive Cancer Center, University of Alabama, AL, Tuscaloosa, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
26
|
Zhao L, Zhou Y, Bai Z, Zhang F, Yang X. The underlying molecular mechanism of intratumoral radiofrequency hyperthermia-enhanced chemotherapy of pancreatic cancer. J Interv Med 2022; 5:57-63. [PMID: 35936663 PMCID: PMC9349012 DOI: 10.1016/j.jimed.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background To investigate the underlying molecular mechanisms of radiofrequency hyperthermia (RFH)-enhanced direct chemotherapy of pancreatic cancers. Method Rat ductal PaCa cell line DSL-6A/C1 and orthotopic pancreatic cancers of Lewis rats were divided into four study groups with various treatments: i) phosphate-buffered saline (PBS) as a control; ii) RFH alone; iii) intratumoral chemotherapy alone (gemcitabine); and (iv) combination therapy of gemcitabine plus intratumoral RFH at 42 °C for 30 min. In the in-vitro confirmation experiments, the viability and apoptosis of DSL-6A/C1 cells in each treatment group were evaluated using cell live/dead staining, flow cytometry, and Western blot. In the in vivo validation experiments, related proteins were evaluated by immunohistochemistry (IHC) staining of tumors. Results Of the in-vitro experiments, the lowest cell viability and more apoptotic cells were shown in the group with combination therapy compared to other treatments. Western blot data showed elevated Bax/Bcl-2, Caspase-3, and HSP70 expressions in DSL cells with combination therapy, compared to other treatments. Of the in vivo experiments, IHC staining detected the significantly increased expressions of HSP70, IL-1β, TNF-ɑ, Bax, and Caspase-3 in pancreatic cancer tissues of the animal group treated by combination therapy of gemcitabine with RFH. Conclusion Molecular imaging-guided interventional RFH can significantly enhance the chemotherapeutic effect on pancreatic cancers via potential molecular mechanisms of up-regulating Bax/caspase-3-dependent apoptosis pathways.
Collapse
|
27
|
Yang Q, Zhang J, Zhu Y. Potential Roles of the Gut Microbiota in Pancreatic Carcinogenesis and Therapeutics. Front Cell Infect Microbiol 2022; 12:872019. [PMID: 35463649 PMCID: PMC9019584 DOI: 10.3389/fcimb.2022.872019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
The intestinal microenvironment is composed of normal gut microbiota and the environment in which it lives. The largest microecosystem in the human body is the gut microbiota, which is closely related to various diseases of the human body. Pancreatic cancer (PC) is a common malignancy of the digestive system worldwide, and it has a 5-year survival rate of only 5%. Early diagnosis of pancreatic cancer is difficult, so most patients have missed their best opportunity for surgery at the time of diagnosis. However, the etiology is not entirely clear, but there are certain associations between PC and diet, lifestyle, obesity, diabetes and chronic pancreatitis. Many studies have shown that the translocation of the gut microbiota, microbiota dysbiosis, imbalance of the oral microbiota, the interference of normal metabolism function and toxic metabolite products are closely associated with the incidence of PC and influence its prognosis. Therefore, understanding the correlation between the gut microbiota and PC could aid the diagnosis and treatment of PC. Here, we review the correlation between the gut microbiota and PC and the research progresses for the gut microbiota in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Queen Mary College, Nanchang University, Nanchang, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Park JH, Han K, Hong JY, Park YS, Hur KY, Kang G, Park JO. Changes in Metabolic Syndrome Status are Associated With Altered Risk of Pancreatic Cancer: A Nationwide Cohort Study. Gastroenterology 2022; 162:509-520.e7. [PMID: 34653420 DOI: 10.1053/j.gastro.2021.09.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on pancreatic cancer risk is unknown. We aimed to investigate the effects of changes and persistence in MetS status on pancreatic cancer risk. METHODS This nationwide cohort study included 8,203,492 adults without cancer who underwent 2 consecutive biennial health screenings provided by the Korean National Health Insurance System between 2009 and 2012 and were followed up until 2017. MetS was defined as the presence of 3 of its 5 components, which were evaluated at 2 consecutive biennial health screenings. Participants were categorized into the MetS-free, MetS-recovered, MetS-developed, or MetS-persistent group. Multivariable Cox proportional hazards regression models were used. RESULTS During the 40,464,586 person-years of follow-up (median, 5.1 years), 8010 individuals developed pancreatic cancer. Compared with the MetS-free group, the MetS-persistent group had the highest risk of pancreatic cancer (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.23-1.37), followed by the MetS-developed group (HR, 1.17; 95% CI, 1.09-1.25) and the MetS-recovered group (HR, 1.12; 95% CI, 1.04-1.21) after adjusting for potential confounders (P for trend <.001). The MetS-recovered group was associated with a lower risk of pancreatic cancer than that in the MetS-persistent group (P < .001). The association between changes in MetS status and pancreatic cancer risk did not differ according to sex or obesity (all P for interactions >.05). CONCLUSIONS In this study, recovering from MetS was associated with a reduced risk of pancreatic cancer compared with persistent MetS, suggesting that pancreatic cancer risk can be altered by changes in MetS.
Collapse
Affiliation(s)
- Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gunseog Kang
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Pancreatic and hepatobiliary manifestations of nonalcoholic fatty pancreatic disease: a referral multi-center experience. Eur J Gastroenterol Hepatol 2021; 33:e297-e301. [PMID: 33600093 DOI: 10.1097/meg.0000000000002041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonalcoholic fatty pancreatic disease (NAFPD) is an increasingly recognized disease with accumulating evidence of associated co-morbidities. However, data linked with other pancreatic and hepatobiliary disorders are still being studied. AIMS To investigate the association of pancreato-hepato-biliary disorders with NAFPD. METHODS At two Israeli medical centers, a total of 569 patients were analyzed who underwent endoscopic ultrasound for hepatobiliary indications. They were divided into groups depending on the presence or absence of NAFPD. RESULTS Seventy-eight patients (13.7%) had NAFPD (NAFPD group) vs. 491 patients (86.3%) without (non-NAFPD group). NAFPD was significantly associated with obesity [odds ratio (OR) 4.98, 95% confidence interval (CI) 3.02-8.24, P < 0.0001], hypertension (OR 2.55, 95% CI 1.57-4.15, P = 0.0002), active smoking (OR 2.02, 95% CI 1.04-3.93, P = 0.03), and hyperlipidemia (OR 2.86, 95% CI 1.58-5.18, P = 0.0005). On multivariate regression analysis: fatty liver (OR 5.49, 95% CI 2.88-10.49, P < 0.0001), main duct intraductal papillary mucinous neoplasm (M-IPMN) (OR 2.69, 95% CI 1.05-6.9, P = 0.04), and gallstones (OR 1.93, 95% CI 1.1-3.38, P = 0.02) were the most endoscopically and ultrasonographically detected diseases that significantly correlated with NAFPD. CONCLUSION NAFPD was associated with several diseases, most importantly the premalignant M-IPMN. Further investigation for these coexisting diseases should be considered.
Collapse
|
30
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
31
|
Topkan E, Selek U, Pehlivan B, Kucuk A, Haksoyler V, Kilic Durankus N, Sezen D, Bolukbasi Y. The Prognostic Significance of Novel Pancreas Cancer Prognostic Index in Unresectable Locally Advanced Pancreas Cancers Treated with Definitive Concurrent Chemoradiotherapy. J Inflamm Res 2021; 14:4433-4444. [PMID: 34511977 PMCID: PMC8427684 DOI: 10.2147/jir.s329611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose We evaluated the prognostic quality of the novel pancreas cancer prognostic index (PCPI), a combination of CA 19-9 and systemic inflammation response index (SIRI), on the outcomes of locally advanced pancreas adenocarcinoma (LAPAC) patients who received concurrent chemoradiotherapy (C-CRT). Methods This retrospective analysis covered 152 unresectable LAPAC patients treated from 2007 to 2019. Receiver operating characteristic (ROC) curve analysis was used to define ideal cutoff thresholds for the pretreatment CA 19-9 and SIRI measurements, individually. The associations between the PCPI groups and progression-free- (PFS) and overall survival (OS) comprised the respective primary and secondary endpoints. Results The ROC curve analysis distinguished the respective rounded optimal cutoffs at 91 U/m/L (< versus ≥90) and 1.8 (< versus ≥1.8) for CA 19-9 and SIRI, arranging the study cohort into two significantly different survival groups for each, with resultant four likely groups: Group-1: CA 19-9<90 U/m/L and SIRI<1.8, Group-2: CA 19-9<90 U/m/L but SIRI≥1.8, Group-3: CA 19-9≥90 U/m/L but SIRI<1.8, and Group-4: CA 19-9≥90 U/m/L and SIRI≥1.8. Since the PFS (P=0.79) and OS (P=0.86) estimates of the groups 2 and 3 were statistically indistinct, we merged them as one group and created the novel three-tiered PCPI: PCPI-1: CA 19-9<90 U/m/L and SIRI<1.8, PCPI-2: CA 19-9<90 U/m/L but SIRI≥1.8 or CA 19-9≥90 U/m/L but SIRI<1.8, and PCPI-3: CA 19-9≥90 U/m/L and SIRI≥1.8, respectively. Comparative analyses unveiled that the PCPI-1 and PCPI-3 groups had the respective best and worst PFS (17.0 versus 7.5 versus 4.4 months; P<0.001) and OS (26.1 versus 15.1 versus 7.4 months; P<0.001) outcomes, while the PCPI-2 group posed in between. The multivariate analysis outcomes confirmed the novel three tired PCPI’s independent prognostic significance on either of the PFS [HR: 5.38 (95% confidence interval (CI): 4.96-5.80); P<0.001)] and OS [HR: 5.67 (95% CI: 5.19-6.15); P<0.001] endpoints, separately. Conclusion The new PCPI introduced here can be used as an independent and reliable prognostic indicator to divide LAPAC patients into three subgroups with discrete survival results.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University Faculty of Medicine, Istanbul, Turkey.,Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| | - Ahmet Kucuk
- Radiation Oncology Clinics, Mersin City Hospital, Mersin, Turkey
| | | | | | - Duygu Sezen
- Department of Radiation Oncology, Koc University Faculty of Medicine, Istanbul, Turkey
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koc University Faculty of Medicine, Istanbul, Turkey.,Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu Y, Lang J, Hu L, Jin G, Kong X. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol 2021; 4:1019. [PMID: 34465850 PMCID: PMC8408135 DOI: 10.1038/s42003-021-02557-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the uniform mortality in pancreatic adenocarcinoma (PDAC), clinical disease heterogeneity exists with limited genomic differences. A highly aggressive tumor subtype termed 'basal-like' was identified to show worse outcomes and higher inflammatory responses. Here, we focus on the microbial effect in PDAC progression and present a comprehensive analysis of the tumor microbiome in different PDAC subtypes with resectable tumors using metagenomic sequencing. We found distinctive microbial communities in basal-like tumors and identified an increasing abundance of Acinetobacter, Pseudomonas and Sphingopyxis to be highly associated with carcinogenesis. Functional characterization of microbial genes suggested the potential to induce pathogen-related inflammation. Host-microbiota interplay analysis provided new insights into the tumorigenic role of specific microbiome compositions and demonstrated the influence of host genetics in shaping the tumor microbiome. Taken together, these findings indicated that the tumor microbiome is closely related to PDAC oncogenesis and the induction of inflammation. Additionally, our data revealed the microbial basis of PDAC heterogeneity and proved the predictive value of the microbiome, which will contribute to the intervention and treatment of disease.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Fudan University, Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zi Mei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Huiping Liao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hang Dong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haocheng Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yufei Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jingyu Lang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Xiangyin Kong
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Tikhonov A, Smoldovskaya O, Feyzkhanova G, Kushlinskii N, Rubina A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2021; 58:1611-1622. [PMID: 32324152 DOI: 10.1515/cclm-2019-1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.
Collapse
Affiliation(s)
- Aleksei Tikhonov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Kushlinskii
- Laboratory of Clinical Biochemistry, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» оf the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res 2021; 69:398-414. [PMID: 34302619 DOI: 10.1007/s12026-021-09211-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Th17 and Treg cells play an important role in regulating tissue inflammation and maintaining the stability of the immune system. They regulate inflammatory responses, participate in the occurrence and development of autoimmune diseases and tumors, and determine the disease progress. Malignant tumor is one of the diseases with the highest mortality rate in the world. However, the efficacy of traditional treatment is limited, so it is necessary to find safe and efficient treatment methods. Studies have shown that the balance of Th17/Treg cells plays a critical role in tumor progression. In this paper, we review the antitumor and tumor-suppressing effects of Th17/Treg cells, and new strategies for tumor therapy, combined with new research hotspots such as immune checkpoint therapy, miRNA-related gene therapy, and metabolic pathway regulation of Th17/Treg cell differentiation and tumor generation. The synergistic therapy is expected to be widely used in the future clinical practice, providing a new choice for the prevention and treatment of malignant tumors.
Collapse
|
35
|
Bellotti R, Speth C, Adolph TE, Lass-Flörl C, Effenberger M, Öfner D, Maglione M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers (Basel) 2021; 13:cancers13143431. [PMID: 34298645 PMCID: PMC8303110 DOI: 10.3390/cancers13143431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysbiosis of the intestinal flora has emerged as an oncogenic contributor in different malignancies. Recent findings suggest a crucial tumor-promoting role of micro- and mycobiome alterations also in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS To summarize the current knowledge about this topic, a systematic literature search of articles published until October 2020 was performed in MEDLINE (PubMed). RESULTS An increasing number of publications describe associations between bacterial and fungal species and PDAC development. Despite the high inter-individual variability of the commensal flora, some studies identify specific microbial signatures in PDAC patients, including oral commensals like Porphyromonas gingivalis and Fusobacterium nucleatum or Gram-negative bacteria like Proteobacteria. The role of Helicobacter spp. remains unclear. Recent isolation of Malassezia globosa from PDAC tissue suggest also the mycobiota as a crucial player of tumorigenesis. Based on described molecular mechanisms and interactions between the pancreatic tissue and the immune system this review proposes a model of how the micro- and the mycobial dysbiosis could contribute to tumorigenesis in PDAC. CONCLUSIONS The presence of micro- and mycobial dysbiosis in pancreatic tumor tissue opens a fascinating perspective on PDAC oncogenesis. Further studies will pave the way for novel tumor markers and treatment strategies.
Collapse
Affiliation(s)
- Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
- Correspondence: ; Tel.: +43-504-51280 (ext. 809)
| |
Collapse
|
36
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
37
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
38
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
39
|
Wu Y, Zeng H, Yu Q, Huang H, Fervers B, Chen ZS, Lu L. A Circulating Exosome RNA Signature Is a Potential Diagnostic Marker for Pancreatic Cancer, a Systematic Study. Cancers (Basel) 2021; 13:cancers13112565. [PMID: 34073722 PMCID: PMC8197236 DOI: 10.3390/cancers13112565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Most patients with pancreatic cancer are diagnosed at an advanced stage due to the lack of tools with high sensitivity and specificity for early detection. Aberrant gene expression occurs in pancreatic cancer, which can be packaged into nanoparticles (also known as exosomes or nano-sized extracellular vesicles) and then released into blood. In this study, we aimed to evaluate the diagnostic value of a circulating exosome RNA signature in pancreatic cancer. Our findings indicate that the circulating exosome RNA signature is a potential marker for the early detection or diagnosis of pancreatic cancer. Abstract Several exosome proteins, miRNAs and KRAS mutations have been investigated in the hope of carrying out the early detection of pancreatic cancer with high sensitivity and specificity, but they have proven to be insufficient. Exosome RNAs, however, have not been extensively evaluated in the diagnosis of pancreatic cancer. The purpose of this study was to investigate the potential of circulating exosome RNAs in pancreatic cancer detection. By retrieving RNA-seq data from publicly accessed databases, differential expression and random-effects meta-analyses were performed. The results showed that pancreatic cancer had a distinct circulating exosome RNA signature in healthy individuals, and that the top 10 candidate exosome RNAs could distinguish patients from healthy individuals with an area under the curve (AUC) of 1.0. Three (HIST2H2AA3, LUZP6 and HLA-DRA) of the 10 genes in exosomes had similar differential patterns to those in tumor tissues based on RNA-seq data. In the validation dataset, the levels of these three genes in exosomes displayed good performance in distinguishing cancer from both chronic pancreatitis (AUC = 0.815) and healthy controls (AUC = 0.8558), whereas a slight difference existed between chronic pancreatitis and healthy controls (AUC = 0.586). Of the three genes, the level of HIST2H2AA3 was positively associated with KRAS status. However, there was no significant difference in the levels of the three genes across the disease stages (stages I–IV). These findings indicate that circulating exosome RNAs have a potential early detection value in pancreatic cancer, and that a distinct exosome RNA signature exists in distinguishing pancreatic cancer from healthy individuals.
Collapse
Affiliation(s)
- Yixing Wu
- Department of Endocrinology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China;
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Qing Yu
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010, USA;
| | - Huatian Huang
- Department of Imaging, Guizhou Qianxinan People’s Hospital, Xingyi 652400, China;
| | - Beatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard—Université Lyon 1, 69008 Lyon, France;
- UMR Inserm 1296 “Radiations: Défense, Santé, Environnement”, Centre Léon Bérard, 69008 Lyon, France
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439, USA;
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, New Haven, CT 06520, USA
- Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
40
|
Yoon JH, Jung YJ, Moon SH. Immunotherapy for pancreatic cancer. World J Clin Cases 2021; 9:2969-2982. [PMID: 33969083 PMCID: PMC8080736 DOI: 10.12998/wjcc.v9.i13.2969] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, a highly lethal cancer, has the lowest 5-year survival rate for several reasons, including its tendency for the late diagnosis, a lack of serologic markers for screening, aggressive local invasion, its early metastatic dissemination, and its resistance to chemotherapy/radiotherapy. Pancreatic cancer evades immunologic elimination by a variety of mechanisms, including induction of an immunosuppressive microenvironment. Cancer-associated fibroblasts interact with inhibitory immune cells, such as tumor-associated macrophages and regulatory T cells, to form an inflammatory shell-like desmoplastic stroma around tumor cells. Immunotherapy has the potential to mobilize the immune system to eliminate cancer cells. Nevertheless, although immunotherapy has shown brilliant results across a wide range of malignancies, only anti-programmed cell death 1 antibodies have been approved for use in patients with pancreatic cancer who test positive for microsatellite instability or mismatch repair deficiency. Some patients treated with immunotherapy who show progression based on conventional response criteria may prove to have a durable response later. Continuation of immune-based treatment beyond disease progression can be chosen if the patient is clinically stable. Immunotherapeutic approaches for pancreatic cancer treatment deserve further exploration, given the plethora of combination trials with other immunotherapeutic agents, targeted therapy, stroma-modulating agents, chemotherapy, and multi-way combination therapies.
Collapse
Affiliation(s)
- Jai Hoon Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Ye-Ji Jung
- Department of Internal Medicine, Hallym University, Anyang 14068, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, South Korea
| |
Collapse
|
41
|
Lindgaard SC, Sztupinszki Z, Maag E, Chen IM, Johansen AZ, Jensen BV, Bojesen SE, Nielsen DL, Hansen CP, Hasselby JP, Nielsen KR, Szallasi Z, Johansen JS. Circulating Protein Biomarkers for Use in Pancreatic Ductal Adenocarcinoma Identification. Clin Cancer Res 2021; 27:2592-2603. [PMID: 33737308 DOI: 10.1158/1078-0432.ccr-20-4215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. Most patients are diagnosed at an advanced stage where curative surgery is not an option. The aim of this study was to identify a panel of circulating proteins that could distinguish patients with PDAC from non-PDAC individuals. EXPERIMENTAL DESIGN We investigated 92 proteins known to be involved in inflammation, development, and progression of PDAC using the Olink immuno-oncology panel in serum samples from 701 patients with PDAC (stage I-IV), 102 patients with nonmalignant pancreatic diseases, and 180 healthy blood donors. Patients were included prospectively between 2008 and 2018. Plasma carbohydrate antigen 19-9 (CA19-9) was measured in all samples. The protein panels with the best diagnostic performances were developed by two bioinformaticians working independently, using LASSO and Ridge regression models. RESULTS Two panels of proteins (index I, containing 9 proteins + CA19-9, and index II, containing 23 proteins + CA19-9) were identified. Index I was able to discriminate patients with PDAC from all patients with non-PDAC, with a ROC AUC value of 0.92 [95% confidence interval (CI), 0.89-0.96] in the discovery cohort and 0.92 (95% CI, 0.87-0.97) in the replication cohort. For index II, the AUC value was 0.96 (95% CI, 0.95-0.98) in the discovery cohort and 0.93 (95% CI, 0.90-0.96) in the replication cohort. All nine serum proteins of index I were found in index II. CONCLUSIONS This study identified two circulating protein indices with the potential to discriminate between individuals with and without PDAC.
Collapse
Affiliation(s)
- Sidsel C Lindgaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.
| | | | | | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Benny V Jensen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte L Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten P Hansen
- Department of Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
42
|
Abstract
Keloid is a skin disease characterized by exaggerated scar formation, excessive fibroblast proliferation, and excessive collagen deposition. Cancers commonly arise from a fibrotic microenvironment; e.g., hepatoma arises from liver cirrhosis, and oral cancers arise from submucosal fibrosis. As keloids are a prototypic fibroproliferative disease, this study investigated whether patients with keloids have an increased cancer risk. In a matched, population-based study, first 17,401 patients treated for keloids during 1998–2010 with 69,604 controls without keloids at a ratio of 1:4 were evaluated. The association between keloids and risk of cancer was estimated by logistic regression or Cox proportional hazard regression models after adjustment of covariates. In total, 893 first-time cases of cancer were identified in the 17,401 patients with keloids. The overall cancer risk was 1.49-fold higher in the keloids group compared to controls. Regarding specific cancers, the keloids group, had a significantly higher risk of skin cancer compared to controls (Relative risk = 1.73). The relative risk for skin cancer was even higher for males with keloids (Relative risk = 2.16). Further stratified analyses also revealed a significantly higher risk of developing pancreatic cancer in female patients with keloids compared to controls (Relative risk = 2.19) after adjustment for known pancreatic cancer risk factors. This study indicates that patients with keloids have a higher than normal risk for several cancer types, especially skin cancers (both genders) and pancreatic cancer (females). Therefore, patients with keloids should undergo regular skin examinations, and females with keloids should regularly undergo abdominal ultrasonography.
Collapse
|
43
|
Monroy-Iglesias MJ, Dolly S, Sarker D, Thillai K, Van Hemelrijck M, Santaolalla A. Pancreatic Cancer Exposome Profile to Aid Early Detection and Inform Prevention Strategies. J Clin Med 2021; 10:1665. [PMID: 33924591 PMCID: PMC8069449 DOI: 10.3390/jcm10081665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PCa) is associated with a poor prognosis and high mortality rate. The causes of PCa are not fully elucidated yet, although certain exposome factors have been identified. The exposome is defined as the sum of all environmental factors influencing the occurrence of a disease during a life span. The development of an exposome approach for PCa has the potential to discover new disease-associated factors to better understand the carcinogenesis of PCa and help with early detection strategies. Our systematic review of the literature identified several exposome factors that have been associated with PCa alone and in combination with other exposures. A potential inflammatory signature has been observed among the interaction of several exposures (i.e., smoking, alcohol consumption, diabetes mellitus, obesity, and inflammatory markers) that further increases the incidence and progression of PCa. A large number of exposures have been identified such as genetic, hormonal, microorganism infections and immune responses that warrant further investigation. Future early detection strategies should utilize this information to assess individuals' risk for PCa.
Collapse
Affiliation(s)
- Maria J. Monroy-Iglesias
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| | - Saoirse Dolly
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
| | - Debashis Sarker
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
| | - Kiruthikah Thillai
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
| | - Mieke Van Hemelrijck
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| | - Aida Santaolalla
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| |
Collapse
|
44
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
45
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
46
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
47
|
The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8120565. [PMID: 33287196 PMCID: PMC7761686 DOI: 10.3390/biomedicines8120565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors due to the absence of biomarkers for early-stage detection and poor response to therapy. Since mounting evidence supports the role of microbiota composition in tumorigenesis and cancer treatment, the link between microbiome and PDAC has been described. In this review, we summarize the current knowledge regarding the impact of the gut and oral microbiome on the risk of PDAC development. Microenvironment-driven therapy and immune system interactions are also discussed. More importantly, we provide an overview of the clinical trials evaluating the microbiota role in the risk, prognosis, and treatment of patients suffering from PDAC and solid tumors. According to the research findings, immune tolerance might result from the microbiota-derived remodeling of pancreatic tumor microenvironment. Thus, microbiome profiling and targeting represent the potential trend to enhance antitumor immunity and improve the efficacy of PDAC treatment.
Collapse
|
48
|
Lactobacillus Attenuate the Progression of Pancreatic Cancer Promoted by Porphyromonas Gingivalis in K-rasG12D Transgenic Mice. Cancers (Basel) 2020; 12:cancers12123522. [PMID: 33255941 PMCID: PMC7760978 DOI: 10.3390/cancers12123522] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Pancreatic cancer is aggressive and lethal with a five year survival rate of only 5–9%. While the exact pathogenesis of pancreatic cancer is not fully understood, oral pathogens associated with periodontitis, such as Porphyromonas gingivalis (P. gingivalis), are linked to the disease. The aim of our study was to investigate the causal association between exposure to P. gingivalis and subsequent carcinogenesis, and the potential modulatory effects of probiotics. We demonstrated that oral exposure to P. gingivalis can accelerate the development of pancreatic ductal adenocarcinoma in mouse models. In addition, the transforming growth factor-β (TGF-β) signaling pathway may be involved in the cancer-promoting effect of P. gingivalis and the suppressive effects of probiotics. Further understanding of the mechanisms of tumor-promoting or tumor-suppressing effects of TGF-β signaling may have potential as a treatment for pancreatic cancer. Abstract Accumulating evidence suggests that there is a link between the host microbiome and pancreatic carcinogenesis, and that Porphyromonas gingivalis (P. gingivalis) increases the risk of developing pancreatic cancer. The aim of the current study was to clarify the role of P. gingivalis in the pathogenesis of pancreatic cancer and the potential immune modulatory effects of probiotics. The six-week-old LSL-K-rasG12D; Pdx-1-cre (KC) mice smeared P. gingivalis on the gums, causing pancreatic intraepithelial neoplasia (PanIN) after four weeks to be similar to the extent of lesions in untreated KC mice at 24 weeks. The oral inoculation of P. gingivalis of six-week-old LSL-K-rasG12D; Pdx-1-cre (KC) mice caused significantly pancreatic intraepithelial neoplasia (PanIN) after treatment four weeks is similar to the extent of lesions in untreated KC mice at 24 weeks. The pancreas weights of P. gingivalis plus probiotic-treated mice were significantly lower than the mice treated with P. gingivalis alone (P = 0.0028). The histological expressions of Snail-1, ZEB-1, collagen fibers, Galectin-3, and PD-L1 staining in the pancreas were also notably lower. In addition, probiotic administration reduced the histological expression of Smad3 and phosphorylated Smad3 in P. gingivalis treated KC mice. We demonstrated that oral exposure to P. gingivalis can accelerate the development of PanIN lesions. Probiotics are likely to have a beneficial effect by reducing cancer cell proliferation and viability, inhibiting PanIN progression, and cancer cell metastasis (Epithelial–mesenchymal transition, EMT). The transforming growth factor-β signaling pathway may be involved in the tumor suppressive effects of probiotics.
Collapse
|
49
|
Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
|
50
|
Huang JY, Luu HN, Butler LM, Midttun Ø, Ulvik A, Wang R, Jin A, Gao YT, Tan Y, Ueland PM, Koh WP, Yuan JM. A prospective evaluation of serum methionine-related metabolites in relation to pancreatic cancer risk in two prospective cohort studies. Int J Cancer 2020; 147:1917-1927. [PMID: 32222976 DOI: 10.1002/ijc.32994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Deficiencies in methyl donor status may render DNA methylation changes and DNA damage, leading to carcinogenesis. Epidemiological studies reported that higher dietary intake of choline is associated with lower risk of pancreatic cancer, but no study has examined the association of serum choline and its metabolites with risk of pancreatic cancer. Two parallel case-control studies, one nested within the Shanghai Cohort Study (129 cases and 258 controls) and the other within the Singapore Chinese Health Study (58 cases and 104 controls), were conducted to evaluate the associations of baseline serum concentrations of choline, betaine, methionine, total methyl donors (i.e., sum of choline, betaine and methionine), dimethylglycine and trimethylamine N-oxide (TMAO) with pancreatic cancer risk. In the Shanghai cohort, odds ratios and 95% confidence intervals of pancreatic cancer for the highest quartile of choline, betaine, methionine, total methyl donors and TMAO were 0.27 (0.11-0.69), 0.57 (0.31-1.05), 0.50 (0.26-0.96), 0.37 (0.19-0.73) and 2.81 (1.37-5.76), respectively, compared to the lowest quartile. The corresponding figures in the Singapore cohort were 0.85 (0.23-3.17), 0.50 (0.17-1.45), 0.17 (0.04-0.68), 0.33 (0.10-1.16) and 1.42 (0.50-4.04). The inverse associations of methionine and total methyl donors including choline, betaine and methionine with pancreatic cancer risk in both cohorts support that DNA repair and methylation play an important role against the development of pancreatic cancer. In the Shanghai cohort, TMAO, a gut microbiota-derived metabolite of dietary phosphatidylcholine, may contribute to higher risk of pancreatic cancer, suggesting a modifying role of gut microbiota in the dietary choline-pancreatic cancer risk association.
Collapse
Affiliation(s)
- Joyce Y Huang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hung N Luu
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lesley M Butler
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Arve Ulvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Renwei Wang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aizhen Jin
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Yuting Tan
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Per M Ueland
- Bevital A/S, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|