1
|
Deantoni CL, Midulla M, Mirabile A, Chiara A, Lucchini R, Giannini L, Torrisi M, Fodor A, Di Muzio NG, Dell'Oca I. Primary Ductal Her-2 Positive Adenocarcinoma of Salivary Gland: A Long Follow-Up Case Report and Review of the Literature. Case Rep Ophthalmol Med 2024; 2024:4410206. [PMID: 39301249 PMCID: PMC11412745 DOI: 10.1155/2024/4410206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Background: Epithelial tumors of lacrimal glands are rare and primary ductal adenocarcinoma of the lacrimal gland accounts for only 2% of all epithelial lacrimal gland tumors. Considering its rarity and lack of uniform diagnostic criteria, treatment protocols are not well defined. In this study, we describe a Her-2 positive case and review previously reported cases. Methods: In 2012, a 42-year-old woman affected by primary ductal adenocarcinoma of the lacrimal gland was treated with transpalpebral anterior orbitotomy and adjuvant radiotherapy. In July 2013, she presented local relapse and she underwent orbital exenteration. In November 2013, for neck nodal progression, seven cycles of chemotherapy (cisplatin and epirubicin) associated with a humanized monoclonal antibody-targeting HER 2 therapy (trastuzumab and pertuzumab) were performed, with a marked response rate. Then, she underwent total parotidectomy with right neck lymphadenectomy and adjuvant hadrontherapy. Results: Nine years later (113 months) after treatment completion, the patient was alive without disease and with acceptable toxicity. Conclusions: In primary ductal adenocarcinoma of the lacrimal gland, early diagnosis and multimodal treatments could be crucial, considering its often aggressive tendency. Considering the lack of treatment guidelines, case report recording can be useful in patient management.
Collapse
Affiliation(s)
- C L Deantoni
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Midulla
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Mirabile
- Department of Otorhinolaryngology IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Chiara
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - R Lucchini
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Giannini
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Torrisi
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Fodor
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - N G Di Muzio
- Vita-Salute San Raffaele University, Milan, Italy
| | - I Dell'Oca
- Radiation Oncology Department IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Seidensaal K, Froehlke A, Lentz-Hommertgen A, Lehner B, Geisbuesch A, Meis J, Liermann J, Kudak A, Stein K, Uhl M, Tessonnier T, Mairani A, Debus J, Herfarth K. Hypofractionated proton and carbon ion beam radiotherapy for sacrococcygeal chordoma (ISAC): An open label, randomized, stratified, phase II trial. Radiother Oncol 2024; 198:110418. [PMID: 38944346 DOI: 10.1016/j.radonc.2024.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Sacrococcygeal chordomas have high recurrence rates and are challenging to treat. METHODS In this phase II prospective, randomized, stratified trial, the safety and feasibility of hypofractionated ion radiation therapy were investigated. The primary focus was monitored through the incidence of Grade 3-5 NCI-CTC-AE toxicity. Secondary endpoints included local progression-free (LPFS) and overall survival (OS). RESULTS The study enrolled 82 patients with primary (87 %) and recurrent (13 %) inoperable or incompletely resected sacral chordomas from January 2013 to July 2022, divided equally into proton therapy (Arm A) and carbon ion beam therapy (Arm B) groups, each receiving a total dose of 64 Gy (RBE) in 16 fractions, 5-6 fractions per week. Overall 74 % of patients received no previous surgery and 66 % of tumors were confirmed by a brachyury staining. The mean and median Gross Tumor Volume at the time of treatment (GTV) was 407 ml and 185 ml, respectively. The median follow-up of the surviving patients was 44.7 months, and the 2-year and 4-year OS rates were 96 % and 81 %, respectively. Factors such as smaller GTV and younger age trended towards better OS. The LPFS after 2-year and 4-year was 84 % and 70 %, respectively. Male gender emerged as a significant predictor of LPFS. There was no significant difference between the treatment groups. We observed five grade 4 wound healing disorders (6 %). CONCLUSION The initial response rates were promising; however local control was not sustained. More comparative research on fractionation schemes is essential to refine treatment approaches for inoperable sacral chordoma.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Andreas Froehlke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Burkhard Lehner
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Geisbuesch
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Kudak
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Katharina Stein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Thomas Tessonnier
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Fira AMR, Keta OD, Petković VD, Đorđević M, Petringa G, Fattori S, Catalano R, Cirrone GP, Cuttone G, Sakata D, Tran NH, Chatzipapas K, Incerti S, Petrović IM. In vitro validation of helium ion irradiations as a function of linear energy transfer in radioresistant human malignant cells. Int J Radiat Biol 2024; 100:1426-1437. [PMID: 39058324 DOI: 10.1080/09553002.2024.2373752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Collapse
Affiliation(s)
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Miloš Đorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | | | | | | | | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Ivan M Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Xu J, Carney TE, Zhou R, Shepard C, Kanai Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J Am Chem Soc 2024; 146:5011-5029. [PMID: 38362887 DOI: 10.1021/jacs.3c08226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The explicit real-time propagation approach for time-dependent density functional theory (RT-TDDFT) has increasingly become a popular first-principles computational method for modeling various time-dependent electronic properties of complex chemical systems. In this Perspective, we provide a nontechnical discussion of how this first-principles simulation approach has been used to gain novel physical insights into nonequilibrium electron dynamics phenomena in recent years. Following a concise overview of the RT-TDDFT methodology from a practical standpoint, we discuss our recent studies on the electronic stopping of DNA in water and the Floquet topological phase as examples. Our discussion focuses on how RT-TDDFT simulations played a unique role in deriving new scientific understandings. We then discuss existing challenges and some new advances at the frontier of RT-TDDFT method development for studying increasingly complex dynamic phenomena and systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
6
|
Chinniah S, Deisher AJ, Herman MG, Johnson JE, Mahajan A, Foote RL. Rotating Gantries Provide Individualized Beam Arrangements for Charged Particle Therapy. Cancers (Basel) 2023; 15:cancers15072044. [PMID: 37046705 PMCID: PMC10093456 DOI: 10.3390/cancers15072044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study evaluates beam angles used to generate highly individualized proton therapy treatment plans for patients eligible for carbon ion radiotherapy (CIRT). METHODS AND MATERIALS We retrospectively evaluated patients treated with pencil beam scanning intensity modulated proton therapy from 2015 to 2020 who had indications for CIRT. Patients were treated with a 190° rotating gantry with a robotic patient positioning system. Treatment plans were individualized to provide maximal prescription dose delivery to the tumor target volume while sparing organs at risk. The utilized beam angles were grouped, and anatomic sites with at least 10 different beam angles were sorted into histograms. RESULTS A total of 467 patients with 484 plans and 1196 unique beam angles were evaluated and characterized by anatomic treatment site and the number of beam angles utilized. The most common beam angles used were 0° and 180°. A wide range of beam angles were used in treating almost all anatomic sites. Only esophageal cancers had a predominantly unimodal grouping of beam angles. Pancreas cancers showed a modest grouping of beam angles. CONCLUSIONS The wide distribution of beam angles used to treat CIRT-eligible patients suggests that a rotating gantry is optimal to provide highly individualized beam arrangements.
Collapse
Affiliation(s)
- Siven Chinniah
- Mayo Clinic Alix School of Medicine, Jacksonville, FL 32224, USA
| | - Amanda J Deisher
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Jedediah E Johnson
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
8
|
Particle Therapy in Adult Patients with Pelvic Ewing Sarcoma-Tumor and Treatment Characteristics and Early Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14246045. [PMID: 36551530 PMCID: PMC9775362 DOI: 10.3390/cancers14246045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To report dosimetric characteristics and early clinical outcomes in patients with pelvic Ewing sarcoma undergoing particle therapy. METHODS Patients ≥ 18 years old with pelvic Ewing sarcoma treated in adjuvant or definitive settings were considered for this retrospective analysis. Proton therapy was carried out with 45-60 Gy (RBE) (1.5-2 Gy (RBE) per fraction) and carbon ion therapy for recurrent disease with 51 Gy (RBE) (3 Gy (RBE) per fraction). Local control (LC), disease control (DC) and overall survival (OS) were calculated using the Kaplan-Meier method. RESULTS For our sample, 21 patients were available, 18 of whom were treated for primary, 3 for locally recurrent and 16 for inoperable disease. The median CTV and PTV were 1215 cm3 and 1630 cm3. Median Dmean values for the PTV, bladder and rectum and median V40 Gy for the bowel for patients undergoing proton therapy were 56 Gy (RBE), 0.6 Gy (RBE), 9 Gy (RBE) and 15 cm3, respectively. At the end of particle therapy, G 1-2 skin reactions (n = 16/21) and fatigue (n = 9/21) were the main reported symptoms. After a median follow-up of 21 months, the 2-year LC, DC and OS were 76%, 56% and 86%, respectively. CONCLUSIONS Particle therapy in adult pelvic Ewing sarcoma is feasible and provides excellent dosimetric results. First clinical outcomes are promising; however, further long-term follow-up is needed.
Collapse
|
9
|
Barcellini A, Dusi V, Mirandola A, Ronchi S, Riva G, Dal Mas F, Massaro M, Vitolo V, Ciocca M, Rordorf R, Orlandi E. The impact of particle radiotherapy on the functioning of cardiac implantable electronic devices: a systematic review of in vitro and in vivo studies according to PICO criteria. LA RADIOLOGIA MEDICA 2022; 127:1046-1058. [PMID: 35871428 PMCID: PMC9508006 DOI: 10.1007/s11547-022-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
The number of oncological patients who may benefit from proton beam radiotherapy (PBT) or carbon ion radiotherapy (CIRT), overall referred to as particle radiotherapy (RT), is expected to strongly increase in the next future, as well as the number of cardiological patients requiring cardiac implantable electronic devices (CIEDs). The management of patients with a CIED requiring particle RT deserves peculiar attention compared to those undergoing conventional photon beam RT, mostly due to the potential generation of secondary neutrons by particle beams interactions. Current consensus documents recommend managing these patients as being at intermediate/high risk of RT-induced device malfunctioning regardless of the dose on the CIED and the beam delivery method used, despite the last one significantly affects secondary neutrons generation (very limited neutrons production with active scanning as opposed to the passive scattering technique). The key issues for the current review were expressed in four questions according to the Population, Intervention, Control, Outcome criteria. Three in vitro and five in vivo studies were included. Based on the available data, PBT and CIRT with active scanning have a limited potential to interfere with CIED that has only emerged from in vitro study so far, while a significant potential for neutron-related, not severe, CIED malfunctions (resets) was consistently reported in both clinical and in vitro studies with passive scattering.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, AOU Città Della Salute e Della Scienza, University of Turin, Turin, Italy.
| | - Alfredo Mirandola
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Riva
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Dal Mas
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| | - Maurizio Massaro
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| | - Viviana Vitolo
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Mario Ciocca
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Roberto Rordorf
- Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
10
|
Measurements of linear energy transfer (LET) distributions by CR-39 for a therapeutic carbon ion beam with a new 2D ripple filter. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Brügemann D, Lehner B, Kieser M, Krisam J, Hommertgen A, Jaekel C, Harrabi SB, Herfarth K, Mechtesheimer G, Sedlaczek O, Egerer G, Geisbüsch A, Uhl M, Debus J, Seidensaal K. Neoadjuvant irradiation of extremity soft tissue sarcoma with ions (Extrem-ion): study protocol for a randomized phase II pilot trial. BMC Cancer 2022; 22:538. [PMID: 35550036 PMCID: PMC9097299 DOI: 10.1186/s12885-022-09560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The standard of care treatment for soft tissue sarcoma of the extremities is a wide resection in combination with pre- or postoperative radiotherapy with high local control rates, sparing patients the necessity of amputation without compromising on overall survival rates. The currently preferred timing of radiotherapy is under debate. Albeit having higher rates of acute wound complications, late side effects like fibrosis, joint stiffness or edema are less frequent in preoperative compared to postoperative radiotherapy. This can be explained in smaller treatment volumes and a lower dose in the preoperative setting. Particles allow better sparing of surrounding tissues at risk, and carbon ions additionally offer biologic advantages and are preferred in less radiosensitive tumors. Hypofractionation allows for a significantly shorter treatment duration. METHODS Extrem-ion is a prospective, randomized, monocentric phase II trial. Patients with resectable or marginally resectable, histologically confirmed soft tissue sarcoma of the extremities will be randomized between neoadjuvant proton or neoadjuvant carbon ion radiotherapy in active scanning beam application technique (39 Gy [relative biological effectiveness, RBE] in 13 fractions [5-6 fractions per week] in each arm). The primary objective is the proportion of therapies without wound healing disorder the first 120 days after surgery or discontinuation of treatment for any reason related to the treatment. The secondary endpoints of the study consist of local control, local progression-free survival, disease-free survival, overall survival, and quality of life. DISCUSSION The aim of this study is to confirm that hypofractionated, preoperative radiotherapy is safe and feasible. The potential for reduced toxicity by the utilization of particle therapy is the rational of this trial. A subsequent randomized phase III trial will compare the hypofractionated proton and carbon ion irradiation in regards to local control. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04946357 ; Retrospectively registered June 30, 2021.
Collapse
Affiliation(s)
- D Brügemann
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - B Lehner
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - M Kieser
- Institute for Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - J Krisam
- Institute for Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - A Hommertgen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - C Jaekel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - S B Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - G Mechtesheimer
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - O Sedlaczek
- Department of Radiology, University of Heidelberg, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - G Egerer
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - A Geisbüsch
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - M Uhl
- Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - J Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - K Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
Ding L, Sishc BJ, Polsdofer E, Yordy JS, Facoetti A, Ciocca M, Saha D, Pompos A, Davis AJ, Story MD. Evaluation of the Response of HNSCC Cell Lines to γ-Rays and 12C Ions: Can Radioresistant Tumors Be Identified and Selected for 12C Ion Radiotherapy? Front Oncol 2022; 12:812961. [PMID: 35280731 PMCID: PMC8914432 DOI: 10.3389/fonc.2022.812961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/μm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.
Collapse
Affiliation(s)
- Lianghao Ding
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brock J Sishc
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Elizabeth Polsdofer
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - John S Yordy
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Angelica Facoetti
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Debabrata Saha
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Arnold Pompos
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Anthony J Davis
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael D Story
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
13
|
Kim MM, Darafsheh A, Schuemann J, Dokic I, Lundh O, Zhao T, Ramos-Méndez J, Dong L, Petersson K. Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:252-262. [PMID: 36092270 PMCID: PMC9457346 DOI: 10.1109/trpms.2021.3091406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, Heidelberg, Germany
| | - Olle Lundh
- Department of Physics, Lund University, Lund, Sweden
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Jäkel O, Kraft G, Karger CP. The history of ion beam therapy in Germany. Z Med Phys 2022; 32:6-22. [PMID: 35101337 PMCID: PMC9948864 DOI: 10.1016/j.zemedi.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
The advantageous depth dose profile of ion beams together with state of the art beam delivery and treatment planning systems allow for highly conformal tumor treatments in patients. First treatments date back to 1954 at the Lawrence Berkeley Laboratory (LBL) and in Europe, ion beam therapy started in the mid-1990s at the Paul-Scherrer Institute (PSI) with protons and at the Helmholtz Center for Heavy Ion Research (GSI) with carbon ions, followed by the Heidelberg Ion Therapy Center (HIT) in Heidelberg. This review describes the historical development of ion beam therapy in Germany based on the pioneering work at LBL and in the context of simultaneous developments in other countries as well as recent developments.
Collapse
Affiliation(s)
- Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT) at the University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Gerhard Kraft
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Christian P. Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
16
|
Behrends C, Bäumer C, Verbeek N, Ehlert J, Prasad R, Wulff J, Lühr A, Timmermann B. Technical note: Providing proton fields down to the few-MeV level at clinical pencil beam scanning facilities for radiobiological experiments. Med Phys 2021; 49:666-674. [PMID: 34855985 DOI: 10.1002/mp.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The adequate performance of radiobiological experiments using clinical proton beams typically requires substantial preparations to provide the appropriate setup for specific experiments. Providing radiobiologically interesting low-energy protons is a particular challenge, due to various physical effects that become more pronounced with larger absorber thickness and smaller proton energy. This work demonstrates the generation of decelerated low-energy protons from a clinical proton beam. METHODS Monte Carlo simulations of proton energy spectra were performed for energy absorbers with varying thicknesses to reduce the energy of the clinical proton beam down to the few-MeV level corresponding to μ m-ranges. In this way, a setup with an optimum thickness of the absorber with a maximum efficiency of the proton fluence for the provisioning of low-energy protons is supposed to be found. For the specific applications of 2.5-3.3 MeV protons and α -particle range equivalent protons, the relative depth dose was measured and simulated together with the dose-averaged linear energy transfer (LETd) distribution. RESULTS The resulting energy spectra from Monte Carlo simulations indicate an optimal absorber thickness for providing low-energy protons with maximum efficiency of proton fluence at an user-requested energy range for experiments. For instance, providing energies lower than 5 MeV, an energy spectrum with a relative total efficiency of 38.6 % to the initial spectrum was obtained with the optimal setup. The measurements of the depth dose, compared to the Monte Carlo simulations, showed that the dosimetry of low-energy protons works and protons with high LETd down to the range of α -particles can be produced. CONCLUSIONS This work provides a method for generating all clinically and radiobiologically relevant energies - especially down to the few-MeV level - at one clinical facility with pencil beam scanning. Thereby, it enables radiobiological experiments under environmentally uniform conditions.
Collapse
Affiliation(s)
- Carina Behrends
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany.,Department of Physics, TU Dortmund University, 44227 Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany.,Department of Physics, TU Dortmund University, 44227 Dortmund, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jens Ehlert
- Institute for Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Medical Faculty, 40225 Düsseldorf, Germany
| | - Rajendra Prasad
- Institute for Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany.,West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.,Department of Particle Therapy, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
17
|
Lis M, Newhauser W, Donetti M, Wolf M, Steinsberger T, Paz A, Graeff C. Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams. Phys Med Biol 2021; 66. [PMID: 34740202 DOI: 10.1088/1361-6560/ac36e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Objective. The purpose of this study was to perform preliminary pre-clinical tests to compare the dosimetric quality of two approaches to treating moving tumors with ion beams: synchronously delivering the beam with the motion of a moving planning target volume (PTV) using the recently developed multi-phase 4D dose delivery (MP4D) approach, and asynchronously delivering the ion beam to a motion-encompassing internal tumor volume (ITV) combined with rescanning.Approach. We created 4D optimized treatment plans with proton and carbon ion beams for two patients who had previously received treatment for non-small cell lung cancer. For each patient, we created several treatment plans, using approaches with and without motion mitigation: MP4D, ITV with rescanning, static deliveries to a stationary PTV, and deliveries to a moving tumor without motion compensation. Two sets of plans were optimized with margins or robust uncertainty scenarios. Each treatment plan was delivered using a recently-developed motion-synchronized dose delivery system (M-DDS); dose distributions in water were compared to measurements using gamma index analysis to confirm the accuracy of the calculations. Reconstructed dose distributions on the patient CT were analyzed to assess the dosimetric quality of the deliveries (conformity, uniformity, tumor coverage, and extent of hotspots).Main results. Gamma index analysis pass rates confirmed the accuracy of dose calculations. Dose coverage was >95% for all static and MP4D treatments. The best conformity and the lowest lung doses were achieved with MP4D deliveries. Robust optimization led to higher lung doses compared to conventional optimization for ITV deliveries, but not for MP4D deliveries.Significance. We compared dosimetric quality for two approaches to treating moving tumors with ion beams. Our findings suggest that the MP4D approach, using an M-DDS, provides conformal motion mitigation, with full target coverage and lower OAR doses.
Collapse
Affiliation(s)
- Michelle Lis
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, German
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Department of Radiation Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, United States of America
| | - Marco Donetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Moritz Wolf
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Timo Steinsberger
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Germany
| | - Athena Paz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
18
|
Tang J, Malachowska B, Wu X, Guha C. Repurposing Radiation Therapy for Immuno-oncology. Clin Oncol (R Coll Radiol) 2021; 33:683-693. [PMID: 34535358 DOI: 10.1016/j.clon.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/12/2023]
Abstract
Radiation therapy is traditionally used for the local control of tumour growth, but recent studies suggest that radiation therapy can have immunomodulatory properties that can be applied in combination therapy with immunotherapeutic agents. The paradigm of using radiation therapy for immunomodulation in cancer treatment is a rapidly progressing field, with multiple ongoing clinical trials exploring its use in combination with immune checkpoint blockades to induce an abscopal effect. Permutations of radiation therapy regimens, including variations in radiation dosing, radiation planning parameters and radiation modality, are being tested with varying degrees of success. The relative biological effectiveness was a concept introduced in the early days of radiation biology that allows the comparison of local tumour control across various radiation modalities and energies. Similarly, there remains a need for a new concept of comparing the immunological effectiveness of various radiation modalities. In this review, we will provide an overview of immunobiological models for preclinical and clinical monitoring of radiation therapy regimens and introduce the concept of relative immunological effectiveness to compare and screen for immune-activating functions of these regimens.
Collapse
Affiliation(s)
- J Tang
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York, USA
| | - B Malachowska
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - X Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - C Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York, USA.
| |
Collapse
|
19
|
Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021; 97:1229-1240. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Pablo Cirrone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Institute of Physics (IoP) of the Czech Academy of Science (CAS), ELI-Beamlines, Prague, Czech Republic
| | - Giacomo Cuttone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, NIRS, Chiba, QST, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
20
|
Félix-Bautista R, Ghesquière-Diérickx L, Marek L, Granja C, Soukup P, Turecek D, Kelleter L, Brons S, Ellerbrock M, Jäkel O, Gehrke T, Martišíková M. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon-ion radiotherapy using tracking of secondary ions. Med Phys 2021; 48:4411-4424. [PMID: 34061994 DOI: 10.1002/mp.15018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Ion beam radiotherapy offers enhances dose conformity to the tumor volume while better sparing healthy tissue compared to conventional photon radiotherapy. However, the increased dose gradient also makes it more sensitive to uncertainties. While the most important uncertainty source is the patient itself, the beam delivery is also subject to uncertainties. Most of the proton therapy centers used cyclotrons, which deliver typically a stable beam over time, allowing a continuous extraction of the beam. Carbon-ion beam radiotherapy (CIRT) in contrast uses synchrotrons and requires a larger and energy-dependent extrapolation of the nozzle-measured positions to obtain the lateral beam positions in the isocenter, since the nozzle-to-isocenter distance is larger than for cyclotrons. Hence, the control of lateral pencil beam positions at isocenter in CIRT is more sensitive to uncertainties than in proton radiotherapy. Therefore, an independent monitoring of the actual lateral positions close to the isocenter would be very valuable and provide additional information. However, techniques capable to do so are scarce, and they are limited in precision, accuracy and effectivity. METHODS The detection of secondary ions (charged nuclear fragments) has previously been exploited for the Bragg peak position of C-ion beams. In our previous work, we investigated for the first time the feasibility of lateral position monitoring of pencil beams in CIRT. However, the reported precision and accuracy were not sufficient for a potential implementation into clinical practice. In this work, it is shown how the performance of the method is improved to the point of clinical relevance. To minimize the observed uncertainties, a mini-tracker based on hybrid silicon pixel detectors was repositioned downstream of an anthropomorphic head phantom. However, the secondary-ion fluence rate in the mini-tracker rises up to 1.5 × 105 ions/s/cm2 , causing strong pile-up of secondary-ion signals. To solve this problem, we performed hardware changes, optimized the detector settings, adjusted the setup geometry and developed new algorithms to resolve ambiguities in the track reconstruction. The performance of the method was studied on two treatment plans delivered with a realistic dose of 3 Gy (RBE) and averaged dose rate of 0.27 Gy/s at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. The measured lateral positions were compared to reference beam positions obtained either from the beam nozzle or from a multi-wire proportional chamber positioned at the room isocenter. RESULTS The presented method is capable to simultaneously monitor both lateral pencil beam coordinates over the entire tumor volume during the treatment delivery, using only a 2-cm2 mini-tracker. The effectivity (defined as the fraction of analyzed pencil beams) was 100%. The reached precision of (0.6 to 1.5) mm and accuracy of (0.5 to 1.2) mm are in line with the clinically accepted uncertainty for QA measurements of the lateral pencil beam positions. CONCLUSIONS It was demonstrated that the performance of the method for a non-invasive lateral position monitoring of pencil beams is sufficient for a potential clinical implementation. The next step is to evaluate the method clinically in a group of patients in a future observational clinical study.
Collapse
Affiliation(s)
- Renato Félix-Bautista
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany
| | - Laura Ghesquière-Diérickx
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany.,Medical Faculty, Heidelberg University, Heidelberg, 69120, Germany
| | - Lukáš Marek
- Department of Research and Development, ADVACAM s.r.o., Prague, 17000, Czech Republic
| | - Carlos Granja
- Department of Research and Development, ADVACAM s.r.o., Prague, 17000, Czech Republic
| | - Pavel Soukup
- Department of Research and Development, ADVACAM s.r.o., Prague, 17000, Czech Republic
| | - Daniel Turecek
- Department of Research and Development, ADVACAM s.r.o., Prague, 17000, Czech Republic
| | - Laurent Kelleter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Malte Ellerbrock
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Tim Gehrke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Mária Martišíková
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, 69120, Germany
| |
Collapse
|
21
|
Horst F, Schardt D, Iwase H, Schuy C, Durante M, Weber U. Physical characterization of 3He ion beams for radiotherapy and comparison with 4He. Phys Med Biol 2021; 66. [PMID: 33730702 DOI: 10.1088/1361-6560/abef88] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
There is increasing interest in using helium ions for radiotherapy, complementary to protons and carbon ions. A large number of patients were treated with4He ions in the US heavy ion therapy project and novel4He ion treatment programs are under preparation, for instance in Germany and Japan.3He ions have been proposed as an alternative to4He ions because the acceleration of3He is technically less difficult than4He. In particular, beam contaminations have been pointed out as a potential safety issue for4He ion beams. This motivated a series of experiments with3He ion beams at Gesellschaft für Schwerionenforschung (GSI), Darmstadt. Measured3He Bragg curves and fragmentation data in water are presented in this work. Those experimental data are compared with FLUKA Monte Carlo simulations. The physical characteristics of3He ion beams are compared to those of4He, for which a large set of data became available in recent years from the preparation work at the Heidelberger Ionenstrahl-Therapiezentrum (HIT). The dose distributions (spread out Bragg peaks, lateral profiles) that can be achieved with3He ions are found to be competitive to4He dose distributions. The effect of beam contaminations on4He depth dose distribution is also addressed. It is concluded that3He ions can be a viable alternative to4He, especially for future compact therapy accelerator designs and upgrades of existing ion therapy facilities.
Collapse
Affiliation(s)
- Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Dieter Schardt
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Hiroshi Iwase
- KEK, Radiation Science, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Festkörperphysik, D-64289 Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| |
Collapse
|
22
|
Seidensaal K, Kieser M, Hommertgen A, Jaekel C, Harrabi SB, Herfarth K, Mechtesheimer G, Lehner B, Schneider M, Nienhueser H, Fröhling S, Egerer G, Debus J, Uhl M. Neoadjuvant irradiation of retroperitoneal soft tissue sarcoma with ions (Retro-Ion): study protocol for a randomized phase II pilot trial. Trials 2021; 22:134. [PMID: 33579340 PMCID: PMC7881463 DOI: 10.1186/s13063-021-05069-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background Following surgery for soft tissue sarcoma of the retroperitoneum, the predominant pattern of failure is local recurrence, which remains the main cause of death. Radiotherapy is utilized to reduce recurrence rates but the efficacy of this strategy has not been definitely established. As treatment tolerability is more favorable with preoperative radiotherapy, normofractionated neoadjuvant treatment is the current approach. The final results of the prospective, randomized STRASS (EORTC 62092) trial, which compared the efficacy of this combined treatment to that of surgery alone, are still awaited; preliminary results presented at the 2019 ASCO Annual Meeting indicated that combined treatment is associated with better local control in patients with liposarcoma (74.5% of the cohort, 11% benefit in abdominal progression free survival after 3 years, p = 0.049). Particles allow better sparing of surrounding tissues at risk, e.g., bowel epithelium, and carbon ions additionally offer biologic advantages and are preferred in slow growing tumors. Furthermore, hypofractionation allows for a significantly shorter treatment interval with a lower risk of progression during radiotherapy. Methods and design We present a prospective, randomized, monocentric phase II trial. Patients with resectable or marginally resectable, histologically confirmed soft tissue sarcoma of the retroperitoneum will be randomized between neoadjuvant proton or neoadjuvant carbon ion radiotherapy in active scanning beam application technique (39 Gy [relative biological effectiveness, RBE] in 13 fractions [5–6 fractions per week] in each arm). The primary objective is the safety and feasibility based on the proportion of grade 3–5 toxicity (CTCAE, version 5.0) in the first 12 months after surgery or discontinuation of treatment for any reason related to the treatment. Local control, local progression-free survival, disease-free survival, overall survival, and quality of life are the secondary endpoints of the study. Discussion The aim of this study is to confirm that hypofractionated, accelerated preoperative radiotherapy is safe and feasible. The rationale for the use of particle therapy is the potential for reduced toxicity. The data will lay the groundwork for a randomized phase III trial comparing hypofractionated proton and carbon ion irradiation with regard to local control. Trial registration ClinicalTrials.gov NCT04219202. Retrospectively registered on January 6, 2020
Collapse
Affiliation(s)
- K Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany. .,National Center for Tumor diseases (NCT), Heidelberg, Germany.
| | - M Kieser
- Institute for Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - A Hommertgen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - C Jaekel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - S B Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - K Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - G Mechtesheimer
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - B Lehner
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - M Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - H Nienhueser
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - S Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - G Egerer
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - M Uhl
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
23
|
Seidensaal K, Mattke M, Haufe S, Rathke H, Haberkorn U, Bougatf N, Kudak A, Blattmann C, Oertel S, Kirchner M, Buesch C, Kieser M, Herfarth K, Kulozik A, Debus J, Uhl M, Harrabi SB. The role of combined ion-beam radiotherapy (CIBRT) with protons and carbon ions in a multimodal treatment strategy of inoperable osteosarcoma. Radiother Oncol 2021; 159:8-16. [PMID: 33549644 DOI: 10.1016/j.radonc.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND To investigate the role of combined ion-beam radiotherapy (CIBRT) with protons and carbon ions in a multimodal treatment strategy of inoperable osteosarcoma; final analysis of a one-armed, single center phase I/II trial. METHODS Between August 2011 until September 2018, 20 patients with primary (N = 18), metastatic (N = 3), or recurrent (N = 2) inoperable pelvic (70%) or craniofacial (30%) osteosarcoma were treated with protons up to 54 Gy (RBE) and a carbon ion boost of 18 Gy (RBE) and followed until May 2019. A Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed before CIBRT in search for a prognostic factor. The primary endpoint was toxicity. Secondary endpoints included treatment response, global, local and distant progression free survival (PFS, LPFS and DPFS) and overall (OS), among others. RESULTS The median age was 20; all patients finished treatment per protocol. LPFS, DPFS, PFS and OS were 73%, 74%, 60% and 75% after one year and 55%, 65% 65.3%, 45% and 68% after two years, respectively. The median clinical target volume (CTV) was 1042 cc and 415 cc for the primary and boost plan, respectively. Craniofacial localization, lower uptake of FDG in PET/CT and boost plan CTV ≤ median were associated with improved overall survival (p = 0.039, p = 0.016 and p = 0.0043, respectively). No acute toxicities > grade III were observed. We observed one case of secondary acute myeloid leukemia (AML) seven months after CIBRT for recurrent disease and one case of hearing loss. CONCLUSION CIBRT shows a favorable toxicity profile and promising results particularly for patients with inoperable craniofacial osteosarcoma.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Mattke
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabine Haufe
- Department of Nuclear Medicine, Heidelberg University Hospital, Germany
| | - Hendrik Rathke
- Department of Nuclear Medicine, Heidelberg University Hospital, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Germany; Clinical Cooperation Unit Nuclear Medicine, DKFZ, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Germany
| | - Nina Bougatf
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Andreas Kudak
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Blattmann
- Department of Pediatric Hematology and Oncology, Olgahospital, Stuttgart, Germany; Department of Pediatric Hematology and Oncology, Hopp Children's Cancer Center, Heidelberg University Hospital, Germany
| | | | | | | | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Andreas Kulozik
- Department of Pediatric Hematology and Oncology, Hopp Children's Cancer Center, Heidelberg University Hospital, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Semi B Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany.
| |
Collapse
|
24
|
Lehrer EJ, Prabhu AV, Sindhu KK, Lazarev S, Ruiz-Garcia H, Peterson JL, Beltran C, Furutani K, Schlesinger D, Sheehan JP, Trifiletti DM. Proton and Heavy Particle Intracranial Radiosurgery. Biomedicines 2021; 9:31. [PMID: 33401613 PMCID: PMC7823941 DOI: 10.3390/biomedicines9010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) involves the delivery of a highly conformal ablative dose of radiation to both benign and malignant targets. This has traditionally been accomplished in a single fraction; however, fractionated approaches involving five or fewer treatments have been delivered for larger lesions, as well as lesions in close proximity to radiosensitive structures. The clinical utilization of SRS has overwhelmingly involved photon-based sources via dedicated radiosurgery platforms (e.g., Gamma Knife® and Cyberknife®) or specialized linear accelerators. While photon-based methods have been shown to be highly effective, advancements are sought for improved dose precision, treatment duration, and radiobiologic effect, among others, particularly in the setting of repeat irradiation. Particle-based techniques (e.g., protons and carbon ions) may improve many of these shortcomings. Specifically, the presence of a Bragg Peak with particle therapy at target depth allows for marked minimization of distal dose delivery, thus mitigating the risk of toxicity to organs at risk. Carbon ions also exhibit a higher linear energy transfer than photons and protons, allowing for greater relative biological effectiveness. While the data are limited, utilization of proton radiosurgery in the setting of brain metastases has been shown to demonstrate 1-year local control rates >90%, which are comparable to that of photon-based radiosurgery. Prospective studies are needed to further validate the safety and efficacy of this treatment modality. We aim to provide a comprehensive overview of clinical evidence in the use of particle therapy-based radiosurgery.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Arpan V. Prabhu
- Department of Radiation Oncology, UAMS Winthrop P. Rockefeller Cancer Institute University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Jennifer L. Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Keith Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - David Schlesinger
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| |
Collapse
|
25
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Venkatesulu BP, Giridhar P, Malouf TD, Trifletti DM, Krishnan S. A systematic review of the role of carbon ion radiation therapy in recurrent rectal cancer. Acta Oncol 2020; 59:1218-1223. [PMID: 32476538 DOI: 10.1080/0284186x.2020.1769184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Colorectal cancer is the fourth leading cause of cancer-associated death in the world. The 5-year local recurrence rates in patients undergoing multimodality therapy are approximately 5-10%. The standard approach to treat locally recurrent rectal is re-irradiation followed by surgical resection. Recent reports have suggested that the treatment outcomes with carbon ion radiation therapy (CIRT) in recurrent rectal cancer are promising and have superior results compared to photon therapy. Hence, we performed a systematic review to evaluate the patterns of care and treatment outcomes of recurrent rectal cancer patients treated with CIRT. METHODOLOGY We performed a systematic search to identify the articles that reported on CIRT use in recurrent rectal cancer. RESULTS Systematic search of PubMed and Cochrane Central resulted in 98 abstracts. Eight studies fulfilled the predefined inclusion criteria. Among eight studies, one study is a prospective phase I/II study done in Japan; three prospective studies are ongoing (PANDORA-01 trial, HIMAT1351trial, and a phase II study of reirradiation for prior CIRT), and five studies are institutional reports on role of CIRT. These studies were predominantly reported from Japan and Germany. All reports except one were performed in patients who have not received prior radiation. The most commonly utilized treatment prescription was 73.4 Gy (RBE) in 16 fractions over 4 weeks in patients without any prior history of radiation and 36 Gy in 12 fractions over 3 weeks at 3 Gy per fraction in patients with prior photon radiation to the pelvis. There is one ongoing trial assessing the role of carbon ion re-irradiation in patients who had prior CIRT for rectal cancer. CONCLUSION CIRT holds immense promise in improving outcomes in locally recurrent rectal cancer. There is a need for more multi-institutional prospective clinical trials to assess the role of CIRT.
Collapse
Affiliation(s)
| | - Prashanth Giridhar
- Department of Radiation Oncology, All India Institute of medical sciences, New Delhi, India
| | - Timothy D. Malouf
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Daniel M. Trifletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
27
|
Petrović IM, Ristić Fira AM, Keta OD, Petković VD, Petringa G, Cirrone P, Cuttone G. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines. Int J Radiat Biol 2020; 96:1400-1412. [DOI: 10.1080/09553002.2020.1820609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | |
Collapse
|
28
|
Aricò G, Battistoni G, Cerutti F, Horst F, Mairani A, Schuy C, Weber U, Ferrari A. Benchmarking of FLUKA production cross sections of positron emission tomography isotopes for in-vivo range verification in hadron therapy. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023924001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protons and carbon ions have been extensively used for radiotherapy treatments, and in comparison to conventional radiotherapy, they allow a more conformal dose to the target tumor, especially in case of deep-seated tumors. However, the accuracy of hadron therapy treatments is affected by uncertainties in the particle range calculations. Several techniques are under development for in-vivo range verification, one of which consists on measuring the activity distributions of positron emitters, such as 10C, 11C and 15O, which are produced in the patient body during proton and carbon ion treatments. A comparison between measured and expected positron emitter activity distributions can provide information on the quality of the delivered treatment and accuracy of the particle range calculations. In this work the FLUKA production cross sections for 10C, 11C and 15O originated from proton and carbon ion beams in carbon and oxygen targets were compared with experimental data, at low and therapeutic energies.
Collapse
|
29
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, Mairani A. Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients. Int J Radiat Oncol Biol Phys 2020; 108:779-791. [PMID: 32504659 DOI: 10.1016/j.ijrobp.2020.05.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Present-day treatment planning in carbon ion therapy is conducted with assumptions for a limited number of tissue types and models for effective dose. Here, we comprehensively assess relative biological effectiveness (RBE) in carbon ion therapy and associated models toward the modernization of current clinical practice in effective dose calculation. METHODS Using 2 human (A549, H460) and 2 mouse (B16, Renca) tumor cell lines, clonogenic cell survival assay was performed for examination of changes in RBE along the full range of clinical-like spread-out Bragg peak (SOBP) fields. Prediction power of the local effect model (LEM1 and LEM4) and the modified microdosimetric kinetic model (mMKM) was assessed. Experimentation and analysis were carried out in the frame of a multidimensional end point study for clinically relevant ranges of physical dose (D), dose-averaged linear energy transfer (LETd), and base-line photon radio-sensitivity (α/β)x. Additionally, predictions were compared against previously reported RBE measurements in vivo and surveyed in patient cases. RESULTS RBE model prediction performance varied among the investigated perspectives, with mMKM prediction exhibiting superior agreement with measurements both in vitro and in vivo across the 3 investigated end points. LEM1 and LEM4 performed their best in the highest LET conditions but yielded overestimations and underestimations in low/midrange LET conditions, respectively, as demonstrated by comparison with measurements. Additionally, the analysis of patient treatment plans revealed substantial variability across the investigated models (±20%-30% uncertainty), largely dependent on the selected model and absolute values for input tissue parameters αx and βx. CONCLUSION RBE dependencies in vitro, in vivo, and in silico were investigated with respect to various clinically relevant end points in the context of tumor-specific tissue radio-sensitivity assignment and accurate RBE modeling. Discovered model trends and performances advocate upgrading current treatment planning schemes in carbon ion therapy and call for verification via clinical outcome analysis with large patient cohorts.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Carmen Klein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Giuseppe Magro
- National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy
| | - Semi Harrabi
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Karger
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
31
|
Adeberg S, Akbaba S, Lang K, Held T, Verma V, Nikoghosyan A, Bernhardt D, Münter M, Freier K, Plinkert P, Hauswald H, Herfarth K, Rieken S, Debus J, Jensen AD. The Phase 1/2 ACCEPT Trial: Concurrent Cetuximab and Intensity Modulated Radiation Therapy with Carbon Ion Boost for Adenoid Cystic Carcinoma of the Head and Neck. Int J Radiat Oncol Biol Phys 2020; 106:167-173. [DOI: 10.1016/j.ijrobp.2019.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/13/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023]
|
32
|
Seidensaal K, Harrabi SB, Debus J. Molecular Imaging for Particle Therapy: Current Approach and Future Directions. Recent Results Cancer Res 2020; 216:865-879. [PMID: 32594410 DOI: 10.1007/978-3-030-42618-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decades, radiation oncology has been subject to a number of technological innovations. Particle therapy has evolved in parallel to the modern high-precision photon radiotherapy techniques and offers a superior dose distribution with decreased integral dose to healthy tissues. With advancing precision of treatment, the necessity for accurate and confident target volume delineation is rising. When morphological imaging reaches its limitations, molecular imaging can provide valuable information.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
33
|
Development and Validation of Single Field Multi-Ion Particle Therapy Treatments. Int J Radiat Oncol Biol Phys 2020; 106:194-205. [DOI: 10.1016/j.ijrobp.2019.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
|
34
|
Adeberg S, Windisch P, Ehret F, Baur M, Akbaba S, Held T, Bernhardt D, Haefner MF, Krauss J, Kargus S, Freudlsperger C, Plinkert P, Flechtenmacher C, Herfarth K, Debus J, Rieken S. Intensity Modulated Radiotherapy (IMRT) With Carbon Ion Boost in the Multimodal Treatment of Salivary Duct Carcinoma. Front Oncol 2019; 9:1420. [PMID: 31921675 PMCID: PMC6932999 DOI: 10.3389/fonc.2019.01420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background: To assess outcomes and treatment related toxicity following intensity-modulated radiotherapy (IMRT) and a Carbon Ion Radiotherapy (CIRT) boost for salivary duct carcinoma (SDC). Methods: Twenty-eight consecutive patients with SDC who underwent a postoperative (82%) or definitive (18%) radiation therapy between 2010 and 2017 were assessed in this retrospective single-center analysis. CIRT boost was delivered with median 18 Gy(RBE) in 6 daily fractions, followed by an TomoTherapy®-based IMRT (median 54 Gy in 27 daily fractions). Treatment-related acute toxicity was assessed according to CTCAE Version 4. Results: Tumors were most commonly located in the major salivary glands (n = 25; 89%); 23 patients (82%) received previous surgery (R0: 30%; R1: 57%; R2: 4%; RX: 19%). Median follow-up was 30 months. Four patients (14%) experienced a local relapse and 3 (11%) developed locoregional recurrence. The two-year local control (LC) and locoregional control (LRC) was 96 and 93%, respectively. Median disease-free survival (DFS) was 27 months, metastasis-free survival (MFS) was 69 months, and overall survival (OS) was 93 months. Acute grade 3 toxicity occurred in 11 patients (mucositis, dermatitis, xerostomia; n = 2 each (7%) were the most common) and 2 osteonecroses of the mandibular (grade 3) occurred. No patients experienced grade ≥4 toxicities. Conclusions: Multimodal therapy approaches with surgery followed by IMRT and CIRT boost for SDC leads to good local and locoregional disease control. However, the frequent occurrence of distant metastases limits the prognosis and requires optimization of adjuvant systemic therapies.
Collapse
Affiliation(s)
- Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Paul Windisch
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Ehret
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Melissa Baur
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sati Akbaba
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - Matthias F Haefner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | | | - Steffen Kargus
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Freudlsperger
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Plinkert
- Department of Otorhinolaryngology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany.,National Center for Tumor Diseases, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| |
Collapse
|
35
|
Seidensaal K, Harrabi SB, Uhl M, Debus J. Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol 2019; 93:20190516. [PMID: 31647306 DOI: 10.1259/bjr.20190516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Re-irradiation can offer a potentially curative solution in case of progression after initial therapy; however, a second course of radiotherapy can be associated with an increased risk of severe side-effects. Particle therapy with protons and especially carbon ions spares surrounding tissue better than most photon techniques, thus it is of high potential for re-irradiation. Irradiation of tumors of the brain, head and neck and skull base involves several delicate risk organs, e.g. optic system, brainstem, salivary gland or swallowing muscles. Adequate local control rates with tolerable side-effects have been described for several tumors of these locations as meningioma, adenoid cystic carcinoma, chordoma or chondrosarcoma and head and neck tumors. High life time doses nonetheless lead to a different scope of side-effects, e.g. an enhanced rate of carotid blow outs has been reported. This review summarizes the current data on particle irradiation of the aforementioned locations and malignancies.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site, Heidelberg, Germany
| |
Collapse
|
36
|
Seidensaal K, Harrabi SB, Scholz E, Ellerbrock M, Haberer T, Weykamp F, Mattke M, Welte SE, Herfarth K, Debus J, Uhl M. Active-Scanned Protons and Carbon Ions in Cancer Treatment of Patients With Cardiac Implantable Electronic Devices: Experience of a Single Institution. Front Oncol 2019; 9:798. [PMID: 31508363 PMCID: PMC6714545 DOI: 10.3389/fonc.2019.00798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Ionizing radiation was shown to be able to influence the function of cardiac implantable electronic devices (CIED's) leading to malfunctions with potentially severe consequences. Those effects presumably correlate with beam energy and neutron production. Thus, particle facilities are commonly cautious to treat patients with CIED's with particles, but substantial evidence is lacking. Methods and Materials: In total 31 patients were investigated, who have been treated at the Heidelberg Ion-Beam Therapy Center (HIT) from September 2012 to February 2019 with protons and carbon ions in active-scanning technique. All CIED's were checked after every single irradiation by the department of cardiology. The minimum distance between the CIED and the planning target volume (PTV), the 10% isodose and the single beam in Beam's Eye View (BEV) was analyzed for 12 patients. Results: In total, 31 patients received 32 courses of radiotherapy (RT). Twenty-two received treatment with carbon ion beam and ten with proton beam. The cumulative number of fractions was 582, the cumulative number of documented controls after RT was 504 (87%). Three patients had an implantable cardioverter-defibrillator (ICD) and 28 patients had a pacemaker at the time of treatment. Seven patients had a heart rate of ≤30/min. The majority of patients (69%) were treated for tumors of the head and neck. The median minimum distance between CIED and PTV, 10% isodose and the single beam on BEV was 13.4, 11.6, and 8.3 cm, respectively. There were no registered events associated with the treatment in this evaluation. Conclusion: Treatment of CIED-patients with protons and carbon ions applied with active raster scanning technique was safe without any incidents in our single center experience. Monitoring after almost every fraction provided systematic and extensive data. Further investigations are necessary in order to form reliable guidelines, which should consider different modes of beam application, as active scanning supposedly provides a greater level of safety from malfunctions for patients with CIED undergoing particle irradiation.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eberhard Scholz
- Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg, Germany.,Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Malte Ellerbrock
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Haberer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Mattke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan E Welte
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
37
|
Targeted and non-targeted effects of ionizing radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Biophysical and radiobiological aspects of heavy charged particles. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Semin Radiat Oncol 2018. [DOI: 10.1016/j.semradonc.2017.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Purgason A, Zhang Y, Hamilton SR, Gridley DS, Sodipe A, Jejelowo O, Ramesh GT, Moreno-Villanueva M, Wu H. Apoptosis and expression of apoptosis-related genes in mouse intestinal tissue after whole-body proton exposure. Mol Cell Biochem 2017; 442:155-168. [DOI: 10.1007/s11010-017-3200-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
|
41
|
Xing Y, Wu X, Li Y, Zhao J. Homogeneity study of proton and carbon ion scanning beams using combinations of different spot sizes and grid sizes. Med Phys 2017; 44:6047-6052. [PMID: 28886211 DOI: 10.1002/mp.12569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Different scanning ion beam delivery systems have different delivery accuracies, and the resulting delivery errors will affect field homogeneity. This study was performed to determine an appropriate combination of spot size (FWHM) and spot grid size (GS), which can provide homogenous dose distributions for both proton and carbon ion scanning beam radiotherapy. The combination of the two parameters is represented by a combination factor named n, which is the quotient of FWHM divided by GS. METHODS Delivery uncertainties of our beam delivery system were analyzed using log files from the treatment of 28 patients. Square fields for different n values were simulated with and without considering the delivery uncertainties, and the homogeneity of these square fields was analyzed. All spots were located on a rectilinear grid with equal spacing in the x and y directions. In addition to the simulations, we performed experimental measurements using both protons and carbon ions. We selected six energy levels for both proton and carbon ions. For each energy level, we created six square field plans with different n values (1, 1.5, 2, 2.5, 3, 3.5). These plans were delivered and the field homogeneity was determined using a film measurement. RESULTS The simulations demonstrated that under ideal condition (i.e., the delivery system has no delivery errors), the homogeneity is within 3% when n ≥ 1.1. When delivery uncertainties were included in the simulation, the homogeneity is within 3% when n ≥ 2.3. For film measurements, homogeneity under 3% was achieved when n ≥ 2.5. CONCLUSION A practical method to determine the appropriate combination of spot size and grid size is here presented. Considering the uncertainties of the beam delivery system, an n value of 2.5 is good enough to meet the lateral homogeneity requests in our center. The methods used here can be easily repeated in other particle therapy centers.
Collapse
Affiliation(s)
- Ying Xing
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianwei Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yongqiang Li
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jun Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Hospital, Shanghai, China
| |
Collapse
|
42
|
Bodine EN, Monia KL. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:881-899. [PMID: 28608702 DOI: 10.3934/mbe.2017047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proton therapy is a type of radiation therapy used to treat cancer. It provides more localized particle exposure than other types of radiotherapy (e.g., x-ray and electron) thus reducing damage to tissue surrounding a tumor and reducing unwanted side effects. We have developed a novel discrete difference equation model of the spatial and temporal dynamics of cancer and healthy cells before, during, and after the application of a proton therapy treatment course. Specifically, the model simulates the growth and diffusion of the cancer and healthy cells in and surrounding a tumor over one spatial dimension (tissue depth) and the treatment of the tumor with discrete bursts of proton radiation. We demonstrate how to use data from in vitro and clinical studies to parameterize the model. Specifically, we use data from studies of Hepatocellular carcinoma, a common form of liver cancer. Using the parameterized model we compare the ability of different clinically used treatment courses to control the tumor. Our results show that treatment courses which use conformal proton therapy (targeting the tumor from multiple angles) provides better control of the tumor while using lower treatment doses than a non-conformal treatment course, and thus should be recommend for use when feasible.
Collapse
Affiliation(s)
- Erin N Bodine
- Rhodes College, Department of Mathematics AND Computer Science, 2000 N. Parkway, Memphis, TN 38112, United States.
| | | |
Collapse
|
43
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
44
|
Rovituso M, Schuy C, Weber U, Brons S, Cortés-Giraldo MA, La Tessa C, Piasetzky E, Izraeli D, Schardt D, Toppi M, Scifoni E, Krämer M, Durante M. Fragmentation of 120 and 200 MeV u−14He ions in water and PMMA targets. Phys Med Biol 2017; 62:1310-1326. [DOI: 10.1088/1361-6560/aa5302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
46
|
Eekers DB, Roelofs E, Jelen U, Kirk M, Granzier M, Ammazzalorso F, Ahn PH, Janssens GO, Hoebers FJ, Friedmann T, Solberg T, Walsh S, Troost EG, Kaanders JH, Lambin P. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial. Radiother Oncol 2016; 121:387-394. [DOI: 10.1016/j.radonc.2016.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 01/21/2023]
|
47
|
Eley JG, Friedrich T, Homann KL, Howell RM, Scholz M, Durante M, Newhauser WD. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy. Int J Radiat Oncol Biol Phys 2016; 95:279-286. [PMID: 27084647 DOI: 10.1016/j.ijrobp.2016.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. METHODS AND MATERIALS We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. RESULTS For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, <Rc/Rp>, to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). CONCLUSIONS Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.
Collapse
Affiliation(s)
- John G Eley
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Kenneth L Homann
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Rebecca M Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana; Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| |
Collapse
|
48
|
Taleei R, Guan F, Peeler C, Bronk L, Patel D, Mirkovic D, Grosshans DR, Mohan R, Titt U. Monte Carlo simulations of3He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys 2016; 43:761-76. [DOI: 10.1118/1.4939440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Nickoloff JA. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice. ANNALS OF TRANSLATIONAL MEDICINE 2016; 3:336. [PMID: 26734646 DOI: 10.3978/j.issn.2305-5839.2015.12.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
50
|
Witt M, Weber U, Kellner D, Engenhart-Cabillic R, Zink K. Optimization of the stopping-power-ratio to Hounsfield-value calibration curve in proton and heavy ion therapy. Z Med Phys 2015; 25:251-63. [DOI: 10.1016/j.zemedi.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|