1
|
Kortekaas Krohn I, Callewaert C, Belasri H, De Pessemier B, Diez Lopez C, Mortz CG, O'Mahony L, Pérez-Gordo M, Sokolowska M, Unger Z, Untersmayr E, Homey B, Gomez-Casado C. The influence of lifestyle and environmental factors on host resilience through a homeostatic skin microbiota: An EAACI Task Force Report. Allergy 2024. [PMID: 39485000 DOI: 10.1111/all.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Human skin is colonized with skin microbiota that includes commensal bacteria, fungi, arthropods, archaea and viruses. The composition of the microbiota varies at different anatomical locations according to changes in body temperature, pH, humidity/hydration or sebum content. A homeostatic skin microbiota is crucial to maintain epithelial barrier functions, to protect from invading pathogens and to interact with the immune system. Therefore, maintaining homeostasis holds promise to be an achievable goal for microbiome-directed treatment strategies as well as a prophylactic strategy to prevent the development of skin diseases, as dysbiosis or disruption of homeostatic skin microbiota is associated with skin inflammation. A healthy skin microbiome is likely modulated by genetic as well as environmental and lifestyle factors. In this review, we aim to provide a complete overview of the lifestyle and environmental factors that can contribute to maintaining the skin microbiome healthy. Awareness of these factors could be the basis for a prophylactic strategy to prevent the development of skin diseases or to be used as a therapeutic approach.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Chris Callewaert
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Hafsa Belasri
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Britta De Pessemier
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Celia Diez Lopez
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Charlotte G Mortz
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Liam O'Mahony
- APC Microbiome Ireland, School of Microbiology, and Department of medicine, University College Cork, Cork, Ireland
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Zsofia Unger
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
2
|
Sun C, Hu G, Yi L, Ge W, Yang Q, Yang X, He Y, Liu Z, Chen WH. Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects. MICROBIOME 2024; 12:163. [PMID: 39232827 PMCID: PMC11376020 DOI: 10.1186/s40168-024-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties. RESULTS We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect. CONCLUSIONS Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.
Collapse
Affiliation(s)
- Chuqing Sun
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Guoru Hu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Ge
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Qingyu Yang
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Xiangliang Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, 430074, China
| | - Yifan He
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510799, China.
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
4
|
Seo JY, You SW, Gu KN, Kim H, Shin JG, Leem S, Hwang BK, Kim Y, Kang NG. Longitudinal study of the interplay between the skin barrier and facial microbiome over 1 year. Front Microbiol 2023; 14:1298632. [PMID: 38033568 PMCID: PMC10687563 DOI: 10.3389/fmicb.2023.1298632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Skin is a diverse ecosystem that provides a habitat for microorganisms. The skin condition and the skin microbiome interact each other under diverse environmental conditions. This study was conducted on 10 study participants for a one-year, from September 2020 to August 2021, to investigate the variability of skin microbiome and skin biophysical parameters [TEWL, hydration, and elasticity (R5)] according to season, and to understand the interplay between skin microbiome and skin characteristics. We identified that Cutibacterium, Corynebacterium, Staphyloccocus, unclassified genus within Neisseriaceae, and Streptococcus were major skin microbial taxa at the genus level, and fluctuated with the seasons. Cutibacterium was more abundant in winter, while Corynebacterium, Staphylococcus, and Streptococcus were more abundant in summer. Notably, Cutibacterium and skin barrier parameter, TEWL, exhibited a co-decreasing pattern from winter to summer and showed a significant association between Cutibacterium and TEWL. Furthermore, functional profiling using KEGG provided clues on the impact of Cutibacterium on the host skin barrier. This study enhances our understanding of the skin microbiome and its interplay with skin characteristics and highlights the importance of seasonal dynamics in shaping skin microbial composition.
Collapse
|
5
|
Celoria V, Rosset F, Pala V, Dapavo P, Ribero S, Quaglino P, Mastorino L. The Skin Microbiome and Its Role in Psoriasis: A Review. PSORIASIS (AUCKLAND, N.Z.) 2023; 13:71-78. [PMID: 37908308 PMCID: PMC10614657 DOI: 10.2147/ptt.s328439] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The skin microbiome is made of various microorganisms, most of which have the function of protecting individuals from harmful pathogens, and they are involved in innate and adaptive immune responses. The skin acts as a physical and immunological barrier against external stimuli, including pathogens and physical damage. Changes in the composition of the skin microbiome can trigger inflammatory processes leading to inflammatory skin diseases in susceptible individuals. Psoriasis (PsO) is a chronic inflammatory disease with a multifactorial etiology, where breakdown of immune tolerance to cutaneous microorganisms is implicated in its pathogenesis. Dysregulation of the microbiome due to genetic and environmental factors plays a significant role in the development of psoriatic disease. Dermatologic conditions such as atopic dermatitis, acne, psoriasis, and rosacea have been associated with intestinal dysbiosis. The skin microbiota composition is crucial for the development of appropriate immune responses, and alterations in the skin microbiome can contribute to changes in physiology and susceptibility to skin diseases or inflammatory conditions. Understanding the microbial settlement of the skin and the network of interactions that occur throughout life is essential for comprehending the pathogenesis of skin diseases and developing innovative treatments. With this article we tried to explore the relationship between the human microbiome and psoriatic disease, shedding light on the functions of the microbiome and the inflammatory disease processes to identify additional therapeutic targets. This review aims to highlight the relationship between skin and gut microbiome functions and inflammatory processes in skin psoriasis and psoriatic arthritis (PsA). The goal is to facilitate future studies on the skin microbiome to identify potential novel therapies for patients with psoriatic disease.
Collapse
Affiliation(s)
- Valentina Celoria
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francois Rosset
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Pala
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Dapavo
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Mastorino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Robert C, Cascella F, Mellai M, Barizzone N, Mignone F, Massa N, Nobile V, Bona E. Influence of Sex on the Microbiota of the Human Face. Microorganisms 2022; 10:microorganisms10122470. [PMID: 36557723 PMCID: PMC9786802 DOI: 10.3390/microorganisms10122470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The role of the microbiota in health and disease has long been recognized and, so far, the cutaneous microbiota in humans has been widely investigated. The research regarded mainly the microbiota variations between body districts and disease skin states (i.e., atopic dermatitis, psoriasis, acne). In fact, relatively little information is available about the composition of the healthy skin microbiota. The cosmetic industry is especially interested in developing products that maintain and/or improve a healthy skin microbiota. Therefore, in the present work, the authors chose to investigate in detail the structure and composition of the basal bacterial community of the face. Ninety-six cheek samples (48 women and 48 men) were collected in the same season and the same location in central northern Italy. Bacterial DNA was extracted, the 16S rDNA gene was amplified by PCR, the obtained amplicons were subjected to next generation sequencing. The principal members of the community were identified at the genus level, and statistical analyses showed significant variations between the two sexes. This study identified abundant members of the facial skin microbiota that were rarely reported before in the literature and demonstrated the differences between male and female microbiota in terms of both community structure and composition.
Collapse
Affiliation(s)
- Clémence Robert
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Correspondence: (C.R.); (E.B.)
| | - Federica Cascella
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
| | - Marta Mellai
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Nadia Barizzone
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Flavio Mignone
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
- SmartSeq s.r.l., 28100 Novara, Italy
| | - Nadia Massa
- Department of Science and Technologic Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia c/a Centre for Autoimmune and Allergic Diseases (CAAD), 22100 Novara, Italy
| | - Elisa Bona
- Centre for Autoimmune and Allergic Diseases (CAAD), University of Eastern Piedmont, 28100 Novara, Italy
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, 13100 Vercelli, Italy
- Correspondence: (C.R.); (E.B.)
| |
Collapse
|
7
|
Ruuskanen MO, Vats D, Potbhare R, RaviKumar A, Munukka E, Ashma R, Lahti L. Towards standardized and reproducible research in skin microbiomes. Environ Microbiol 2022; 24:3840-3860. [PMID: 35229437 PMCID: PMC9790573 DOI: 10.1111/1462-2920.15945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Skin is a complex organ serving a critical role as a barrier and mediator of interactions between the human body and its environment. Recent studies have uncovered how resident microbial communities play a significant role in maintaining the normal healthy function of the skin and the immune system. In turn, numerous host-associated and environmental factors influence these communities' composition and diversity across the cutaneous surface. In addition, specific compositional changes in skin microbiota have also been connected to the development of several chronic diseases. The current era of microbiome research is characterized by its reliance on large data sets of nucleotide sequences produced with high-throughput sequencing of sample-extracted DNA. These approaches have yielded new insights into many previously uncharacterized microbial communities. Application of standardized practices in the study of skin microbial communities could help us understand their complex structures, functional capacities, and health associations and increase the reproducibility of the research. Here, we overview the current research in human skin microbiomes and outline challenges specific to their study. Furthermore, we provide perspectives on recent advances in methods, analytical tools and applications of skin microbiomes in medicine and forensics.
Collapse
Affiliation(s)
- Matti O. Ruuskanen
- Department of Computing, Faculty of TechnologyUniversity of TurkuTurkuFinland
| | - Deepti Vats
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Renuka Potbhare
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Ameeta RaviKumar
- Institute of Bioinformatics and BiotechnologySavitribai Phule Pune UniversityPuneIndia
| | - Eveliina Munukka
- Microbiome Biobank, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Richa Ashma
- Department of Zoology, Centre of Advanced StudySavitribai Phule Pune UniversityPuneIndia
| | - Leo Lahti
- Department of Computing, Faculty of TechnologyUniversity of TurkuTurkuFinland
| |
Collapse
|
8
|
Gruber JV, Riemer J. Examining Skin Recovery After a 3% Aqueous Hydrogen Peroxide (H 2O 2) Treatment Using ATP Biofluorescence. Clin Cosmet Investig Dermatol 2022; 15:929-937. [PMID: 35637748 PMCID: PMC9148219 DOI: 10.2147/ccid.s363723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
Introduction Since its complete mapping, the human skin microbiome has become an important area of research related to skin health. The human skin is populated by an environment of microorganisms, fungi, insects, and viruses that is collectively known as the microbiota, and the complete genomic contribution to the skin is called the microbiome. The terms are different but frequently used interchangeably. Measuring the skin’s microbial diversity can be done, but it is a sophisticated technique that is performed using expensive instruments that can sequence the 16S ribosomal RNA of the microorganisms. Finding more rapid and less costly methods to analyze the changes in the skin’s microbial biome is desirable. Methods A study was conducted on thirty (30) inner volar forearms to see if ATP biofluorescence could be employed to examine skin microbial dysbiosis caused by the application of 3% hydrogen peroxide. Fifteen individuals were examined on both arms for a total of thirty inner volar forearms using a Charm Science® NovaLum® ATP analyzer to examine in a broad sense the skin’s total microbial population and how it is affected after surface treatment with 3% hydrogen peroxide over a 24-hour period. Results It was found that surface treatment of the skin with three cotton swab applications of 3% hydrogen peroxide five minutes apart was able to statistically significantly suppress the expression of ATP biofluorescence compared against un-swabbed sites and the effects remained significant for six hours following the H2O2 treatment. After 8 hours, and into the 24th hour, the ATP biofluorescence difference returns to non-statistical significance indicating potential return of the stable microbiota. Discussion Using ATP biofluorescence to detect possible sanitizer-induced microbial dysbiosis may be a rapid way to examine how skin treatments may impact the return of microbially disrupted skin to its normal state and how surface treatments may impact the rate of return to normal after a disruptive event.
Collapse
Affiliation(s)
| | - Jed Riemer
- Research, Jeen International, Fairfield, NJ, USA
| |
Collapse
|
9
|
Sfriso R, Claypool J, Roche M, Imfeld D. 5-α reductase inhibition by Epilobioum fleischeri extract modulates facial microbiota structure. Int J Cosmet Sci 2022; 44:440-452. [PMID: 35499362 PMCID: PMC9543575 DOI: 10.1111/ics.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Background Facial skin is a particularly complex environment made of different skin types such as sebaceous (forehead) and dry (cheeks). The skin microbiota composition on different facial sites has not yet been addressed. Methods We conducted a 4‐week‐long, single‐centre, randomized and placebo‐controlled clinical study involving 23 Caucasian females. We assessed both bacterial composition on five different facial areas and the microbiome modulatory effects resulting from the topical application of a plant extract (Epilobium fleischeri). Skin microbiome samples were collected before and after 4 weeks of product application. Microbiota profiling was performed via 16S rRNA gene sequencing, and relative abundance data were used to calculate differentials via a multinomial regression model. Results Via ‘reference frames’, we observed shifts in microbial composition after 4 weeks of twice‐daily product application and identify certain microbiota species, which were positively associated with the application of the product containing the Epilobium fleischeri extract. Staphylococcus hominis, Staphylococcus epidermidis, and Micrococcus yunnanensis appeared to be significantly enriched in the final microbiota composition of the active treatment group. Conclusion Facial skin was found to be colonized by an heterogenous microbiota, and the Epilobium fleischeri extract had a modulatory effect on commensal bacteria on the different facial sites.
Collapse
Affiliation(s)
- Riccardo Sfriso
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - Joshua Claypool
- Nutrition Innovation Center, DSM Nutritional Products, Lexington, (MA)
| | | | - Dominik Imfeld
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| |
Collapse
|
10
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
11
|
Schmid B, Künstner A, Fähnrich A, Busch H, Glatz M, Bosshard PP. Longitudinal Characterization of the Fungal Skin Microbiota in Healthy Subjects Over the Period of One Year. J Invest Dermatol 2022; 142:2766-2772.e8. [DOI: 10.1016/j.jid.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
12
|
Peimbert M, Alcaraz LD. Where environmental microbiome meets its host: subway and passenger microbiome relationships. Mol Ecol 2022; 32:2602-2618. [PMID: 35318755 DOI: 10.1111/mec.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Subways are urban transport systems with high capacity. Every day around the world, there are more than 150 million subway passengers. Since 2013, thousands of microbiome samples from various subways worldwide have been sequenced. Skin bacteria and environmental organisms dominate the subway microbiomes. The literature has revealed common bacterial groups in subway systems; even so, it is possible to identify cities by their microbiome. Low-frequency bacteria are responsible for specific bacterial fingerprints of each subway system. Furthermore, daily subway commuters leave their microbial clouds and interact with other passengers. Microbial exchange is quite fast; the hand microbiome changes within minutes, and after cleaning the handrails, the bacteria are re-established within minutes. To investigate new taxa and metabolic pathways of subway microbial communities, several high-quality metagenomic-assembled genomes (MAG) have been described. Subways are harsh environments unfavorable for microorganism growth. However, recent studies have observed a wide diversity of viable and metabolically active bacteria. Understanding which bacteria are living, dormant, or dead allows us to propose realistic ecological interactions. Questions regarding the relationship between humans and the subway microbiome, particularly the microbiome effects on personal and public health, remain unanswered. This review summarizes our knowledge of subway microbiomes and their relationship with passenger microbiomes.
Collapse
Affiliation(s)
- Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana. Ciudad de México, México
| | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
13
|
Chen YJ, Weng YC. Skin microbiome in acne vulgaris, skin aging, and rosacea: An evidence-based review. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Jin H, Hu G, Sun C, Duan Y, Zhang Z, Liu Z, Zhao XM, Chen WH. mBodyMap: a curated database for microbes across human body and their associations with health and diseases. Nucleic Acids Res 2021; 50:D808-D816. [PMID: 34718713 PMCID: PMC8728210 DOI: 10.1093/nar/gkab973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
mBodyMap is a curated database for microbes across the human body and their associations with health and diseases. Its primary aim is to promote the reusability of human-associated metagenomic data and assist with the identification of disease-associated microbes by consistently annotating the microbial contents of collected samples using state-of-the-art toolsets and manually curating the meta-data of corresponding human hosts. mBodyMap organizes collected samples based on their association with human diseases and body sites to enable cross-dataset integration and comparison. To help users find microbes of interest and visualize and compare their distributions and abundances/prevalence within different body sites and various diseases, the mBodyMap database is equipped with an intuitive interface and extensive graphical representations of the collected data. So far, it contains a total of 63 148 runs, including 14 401 metagenomes and 48 747 amplicons related to health and 56 human diseases, from within 22 human body sites across 136 projects. Also available in the database are pre-computed abundances and prevalence of 6247 species (belonging to 1645 genera) stratified by body sites and diseases. mBodyMap can be accessed at: https://mbodymap.microbiome.cloud.
Collapse
Affiliation(s)
- Hanbo Jin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoru Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Zhenmo Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, China.,Research Institute of Intelligent Complex System, Fudan University, Shanghai 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
15
|
Hwang BK, Lee S, Myoung J, Hwang SJ, Lim JM, Jeong ET, Park SG, Youn SH. Effect of the skincare product on facial skin microbial structure and biophysical parameters: A pilot study. Microbiologyopen 2021; 10:e1236. [PMID: 34713611 PMCID: PMC8494714 DOI: 10.1002/mbo3.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Daily use of cosmetics is known to affect the skin microbiome. This study aimed to determine the bacterial community structure and skin biophysical parameters following the daily application of a skincare product on the face. Twenty-five Korean women, who used the same skincare product for four weeks participated in the study. During this period, skin hydration, texture, sebum content, and pH were measured, and skin swab samples were collected on the cheeks. The microbiota was analyzed using the MiSeq system. Through these experiments, bacterial diversity in facial skin increased and the microbial community changed after four weeks of skincare product application. The relative abundance of Cutibacterium and Staphylococcus increased, significant changes in specific bacterial modules of the skin microbial network were observed, and skin hydration and texture improved. It was suggested that daily use of skincare products could affect the microbial structure of facial skin as well as the biophysical properties of the facial skin. These findings expand our understanding of the role of skincare products on the skin environment.
Collapse
Affiliation(s)
| | - Sado Lee
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| | - Joonoh Myoung
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| | | | - Jun Man Lim
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| | - Eui Taek Jeong
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| | - Sun Gyoo Park
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| | - Sung Hun Youn
- R&D CenterLG Household and Health Care LtdSeoulSouth Korea
| |
Collapse
|
16
|
Murphy B, Hoptroff M, Arnold D, Eccles R, Campbell-Lee S. In-vivo impact of common cosmetic preservative systems in full formulation on the skin microbiome. PLoS One 2021; 16:e0254172. [PMID: 34234383 PMCID: PMC8263265 DOI: 10.1371/journal.pone.0254172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Preservatives play an essentially role in ensuring that cosmetic formulations remain safe for use via control of microbial contamination. Commonly used preservatives include organic acids, alcohols and phenols and these play an essential role in controlling the growth of bacteria, fungi and moulds in substrates that can potentially act as a rich food source for microbial contaminants. Whilst the activity of these compounds is clear, both in vitro and in formulation, little information exists on the potential impact that common preservative systems, in full formulation, have on the skin's resident microbiome. Dysbiosis of the skin's microbiome has been associated with a number of cosmetic conditions but there currently are no in vivo studies investigating the potential for preservative ingredients, when included in personal care formulations under normal use conditions, to impact the cutaneous microbiome. Here we present an analysis of four in vivo studies that examine the impact of different preservation systems in full formulation, in different products formats, with varying durations of application. This work demonstrates that despite the antimicrobial efficacy of the preservatives in vitro, the skin microbiome is not impacted by preservative containing products in vivo.
Collapse
Affiliation(s)
- Barry Murphy
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, England, United Kingdom
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, England, United Kingdom
| | - David Arnold
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, England, United Kingdom
| | - Richard Eccles
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, England, United Kingdom
| | - Stuart Campbell-Lee
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, England, United Kingdom
| |
Collapse
|