1
|
Deflorin N, Ehlert U, Amiel Castro RT. Associations of Maternal Salivary Cortisol and Psychological Symptoms With Human Milk's Microbiome Composition. BIOPSYCHOSOCIAL SCIENCE AND MEDICINE 2025; 87:33-45. [PMID: 39701568 DOI: 10.1097/psy.0000000000001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Human milk (HM) is considered the best source of infant nutrition with many benefits for the infant. However, pregnancy changes can lead to increased stress in some women, which might affect HM composition. Although studies have demonstrated a link between maternal psychopathology and child development, it remains unclear how maternal psychobiological changes can be intergenerationally transmitted. We aimed to investigate the associations of maternal stress, depressive symptoms, and anxiety symptoms with the HM microbiome; to analyze these parameters in relation to HM glucocorticoid concentrations; and to explore the influence of HM glucocorticoids on HM bacterial composition. METHODS One hundred women completed psychological questionnaires (e.g., EPDS, STAI, GAS) at 34-36 weeks' gestation and in the early postpartum period and provided saliva at 34-36 and 38 weeks' gestation. HM samples were collected in the early postpartum. Microbiota were analyzed using 16S rRNA amplicon sequencing. RESULTS Birth anxiety was negatively correlated with Alphaproteobacteria (τ = -0.20, FDR = 0.01), whereas in the postpartum period, anxiety symptoms were negatively correlated with different taxa. The sum of postpartum-related symptoms was linked to lower Propionibacteriales. Salivary cortisol AUCg at 34-36 weeks was negatively correlated with Stenotrophomonas (τ = -0.24, FDR = 0.05), whereas HM cortisol was positively correlated with Streptococcus mitis (τ = 0.26, FDR = 0.03) and Gemella haemolysans (τ = 0.24, FDR = 0.02). No associations emerged between psychobiological parameters and HM glucocorticoids. CONCLUSIONS Higher perinatal psychological symptoms and prenatal salivary cortisol AUCg were associated with lower relative abundances of different bacteria, whereas higher HM cortisol was linked to higher Gemella and Streptococcus. These findings suggest a negative association between high maternal psychobiological symptoms and relative abundances of the milk microbiota.
Collapse
Affiliation(s)
- Nadia Deflorin
- From the Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
2
|
Palve S, Singh S, Palve S, Lanka K. Balancing your mind and gut: Exploring the influence of sleep and gut health on emotional well-being. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:390. [PMID: 39703630 PMCID: PMC11657905 DOI: 10.4103/jehp.jehp_1157_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The relationship between the mind, gut, and sleep is not static and requires proper harmony for optimal emotional health. Recent evidence suggests that gut health is a key player in regulating mental and physical health via bidirectional communication between the brain and gut. MATERIALS AND METHODS A cross-sectional comparative study was undertaken on 200 participants aged 25-40 years old for two months at a tertiary care hospital. A community-based method was used to select the participants from in and around Pune. The survey was conducted online with the help of a self-designed well-structured detailed questionnaire that included a demographic profile, medical history, history of sleep pattern, gut health status, emotional well-being status about gut and sleep physiology, and lifestyle-related issues and problems was administered to all the study participants. RESULTS A statistically significant correlation was observed between the duration of sleep; and gastrointestinal (GI) symptoms including heartburn (P=0.03) constipation (P=0.03), bloating (P=0.04), and indigestion (P=0.051). Specific GI symptoms as mentioned above were found to affect the study participants' emotional well-being significantly. Regular physical exercise demonstrated a significant correlation with an increased duration of sleep (P=0.003). Consumption of tobacco, alcohol; smoking, and consumption of stimulants like tea, coffee, and coke showed a significant effect on both the duration and quality of sleep (P=0.004). Gut and sleep disturbances were more common in north Indian subjects as compared to south Indian subjects (P=0.003). The upper socioeconomic population had more GI; sleep and emotional disturbances as compared to the lower socioeconomic study subjects (P=0.002). CONCLUSION The relationship between sleep patterns, emotional well-being gut health is bidirectional. Prioritizing good sleep hygiene, managing stress through mindfulness or relaxation techniques, and maintaining a balanced diet that supports gut health are crucial steps in promoting overall well-being.
Collapse
Affiliation(s)
- Suchitra Palve
- Department of Physiology, Coordinator Medical Education Unit, Graphic Era Institute of Medical Sciences (GEIMS), Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Shradha Singh
- Symbiosis Medical College for Women, Symbiosis International University, Pune, Maharashtra, India
| | - Sachin Palve
- Department of Community Medicine, Graphic Era Institute of Medical Sciences (GEIMS), Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Keerthi Lanka
- Department of Physiology, Symbiosis Medical College for Women, Symbiosis International University, Pune, Maharashtra, India
| |
Collapse
|
3
|
Deflorin N, Ehlert U, Amiel Castro RT. Associations of maternal prenatal psychological symptoms and saliva cortisol with neonatal meconium microbiota: A cross-sectional study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110895. [PMID: 37951341 DOI: 10.1016/j.pnpbp.2023.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Alterations in the diversity and relative abundances of the gut microbiome have been associated with a broad spectrum of medical conditions. Maternal psychological symptoms during pregnancy may impact on offspring development by altering the maternal and the foetal gut microbiome. We aimed to investigate whether self-reported maternal anxiety, depressive symptoms, and distress as well as saliva cortisol levels in late pregnancy alter the bacterial composition of the infant's meconium. METHODS A total of N = 100 mother-infant pairs were included. Maternal psychological symptoms were measured using psychological questionnaires (EPDS, PSS-10, STAI) at 34-36 weeks gestation and salivary cortisol was measured at 34-36 and 38 weeks gestation. Infant meconium samples were collected in the first five days postpartum and analysed using 16S rRNA amplicon sequencing. RESULTS Correlations showed that lower alpha diversity of the meconium microbiome was significantly associated with increased maternal prenatal depressive symptoms in late gestation (τ = -0.15, p = .04). Increased saliva cortisol AUCg at T2 was significantly related to higher beta diversity of the meconium samples (Pr(>F) = 0.003*). Pseudomonas was the most abundant phylum and was associated with maternal saliva cortisol total decline. No other associations were found. CONCLUSIONS Maternal prenatal depressive symptoms are associated with infant faecal microbiome alpha diversity, whereas maternal saliva cortisol AUCg is linked to increased beta diversity and total decline related to increased Psuedomonas. Future studies are warranted to understand how these microbiota community alterations are linked to child health outcomes.
Collapse
Affiliation(s)
- Nadia Deflorin
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Switzerland
| | - Ulrike Ehlert
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Switzerland
| | - Rita T Amiel Castro
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Switzerland.
| |
Collapse
|
4
|
Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Osadchiy V, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Guo Y, Labus JS, Naliboff B, Cole S, Zhang X, Mayer EA, Gupta A. How Discrimination Gets Under the Skin: Biological Determinants of Discrimination Associated With Dysregulation of the Brain-Gut Microbiome System and Psychological Symptoms. Biol Psychiatry 2023; 94:203-214. [PMID: 36754687 PMCID: PMC10684253 DOI: 10.1016/j.biopsych.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Discrimination is associated with negative health outcomes as mediated in part by chronic stress, but a full understanding of the biological pathways is lacking. Here we investigate the effects of discrimination involved in dysregulating the brain-gut microbiome (BGM) system. METHODS A total of 154 participants underwent brain magnetic resonance imaging to measure functional connectivity. Fecal samples were obtained for 16S ribosomal RNA profiling and fecal metabolites and serum for inflammatory markers, along with questionnaires. The Everyday Discrimination Scale was administered to measure chronic and routine experiences of unfair treatment. A sparse partial least squares-discriminant analysis was conducted to predict BGM alterations as a function of discrimination, controlling for sex, age, body mass index, and diet. Associations between discrimination-related BGM alterations and psychological variables were assessed using a tripartite analysis. RESULTS Discrimination was associated with anxiety, depression, and visceral sensitivity. Discrimination was associated with alterations of brain networks related to emotion, cognition and self-perception, and structural and functional changes in the gut microbiome. BGM discrimination-related associations varied by race/ethnicity. Among Black and Hispanic individuals, discrimination led to brain network changes consistent with psychological coping and increased systemic inflammation. For White individuals, discrimination was related to anxiety but not inflammation, while for Asian individuals, the patterns suggest possible somatization and behavioral (e.g., dietary) responses to discrimination. CONCLUSIONS Discrimination is attributed to changes in the BGM system more skewed toward inflammation, threat response, emotional arousal, and psychological symptoms. By integrating diverse lines of research, our results demonstrate evidence that may explain how discrimination contributes to health inequalities.
Collapse
Affiliation(s)
- Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Gilbert C Gee
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - May Wang
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California
| | - Vadim Osadchiy
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Zixi Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Vishvak Subramanyam
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yurui Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yinming Guo
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Bruce Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Steve Cole
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiaobei Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
5
|
Kussmann M, Abe Cunha DH, Berciano S. Bioactive compounds for human and planetary health. Front Nutr 2023; 10:1193848. [PMID: 37545571 PMCID: PMC10400358 DOI: 10.3389/fnut.2023.1193848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Bioactive compounds found in edible plants and foods are vital for human and planetary health, yet their significance remains underappreciated. These natural bioactives, as part of whole diets, ingredients, or supplements, can modulate multiple aspects of human health and wellness. Recent advancements in omic sciences and computational biology, combined with the development of Precision Nutrition, have contributed to the convergence of nutrition and medicine, as well as more efficient and affordable healthcare solutions that harness the power of food for prevention and therapy. Innovation in this field is crucial to feed a growing global population sustainably and healthily. This requires significant changes in our food system, spanning agriculture, production, distribution and consumption. As we are facing pressing planetary health challenges, investing in bioactive-based solutions is an opportunity to protect biodiversity and the health of our soils, waters, and the atmosphere, while also creating value for consumers, patients, communities, and stakeholders. Such research and innovation targets include alternative proteins, such as cellular agriculture and plant-derived protein; natural extracts that improve shelf-life as natural preservatives; upcycling of agricultural by-products to reduce food waste; and the development of natural alternatives to synthetic fertilizers and pesticides. Translational research and innovation in the field of natural bioactives are currently being developed at two levels, using a systems-oriented approach. First, at the biological level, the interplay between these compounds and the human host and microbiome is being elucidated through omics research, big data and artificial intelligence, to accelerate both discovery and validation. Second, at the ecosystem level, efforts are focused on producing diverse nutrient-rich, flavorful, and resilient, yet high-yield agricultural crops, and educating consumers to make informed choices that benefit both their health and the planet. Adopting a system-oriented perspective helps: unravel the intricate and dynamic relationships between bioactives, nutrition, and sustainability outcomes, harnessing the power of nature to promote human health and wellbeing; foster sustainable agriculture and protect the ecosystem. Interdisciplinary collaboration in this field is needed for a new era of research and development of practical food-based solutions for some of the most pressing challenges humanity and our planet are facing today.
Collapse
Affiliation(s)
- Martin Kussmann
- Kompetenzzentrum für Ernährung (KErn), Freising, Germany
- Kussmann Biotech GmbH, Nordkirchen, Germany
| | - David Henrique Abe Cunha
- Ideatomik Creative Industries, Botucatu, Brazil
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Silvia Berciano
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
6
|
Koppenol E, Terveer EM, Vendrik KE, van Lingen E, Verspaget HW, Keller JJ, Kuijper EJ, Giltay EJ. Fecal microbiota transplantation is associated with improved aspects of mental health of patients with recurrent Clostridioides difficile infections. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
7
|
The Effect of Immunobiotic/Psychobiotic Lactobacillus acidophilus Strain INMIA 9602 Er 317/402 Narine on Gut Prevotella in Familial Mediterranean Fever: Gender-Associated Effects. Probiotics Antimicrob Proteins 2021; 13:1306-1315. [PMID: 34132998 DOI: 10.1007/s12602-021-09779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Possible mechanisms involved in sex-dependent differences in the gut microbiota have a growing interest worldwide, but the effects of probiotics dependence on the gender of the host have remained outside of researchers' attention until now. Previously, our research data described gender-specific differences in the gut microbiota of Armenian Familial Mediterranean fever (FMF) patients. Taking into account the possible association of Prevotella spp. with depressive disorders, the aim of the current investigations was an evaluation of changes in the abundance of gut Prevotella of FMF patients in association with the patient's depression and gender. The differences between healthy and FMF diseased gut microbiota in terms of Prevotella abundance were revealed. In addition, the gender-dependent effects of immunobiotic/psychobiotic Narine on the abundance of gut Prevotella of FMF patients and patients' depression scores were shown by us in this study.
Collapse
|
8
|
Xu X, Wang K, Cao X, Li Z, Zhou Y, Ren J, Liu F. Gut Microbial Metabolite Short-Chain Fatt Acids Partially Reverse Surgery and Anesthesia-Induced Behavior Deficits in C57BL/6J Mice. Front Neurosci 2021; 15:664641. [PMID: 34168535 PMCID: PMC8217457 DOI: 10.3389/fnins.2021.664641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has demonstrated that damages of gut microbiota are strongly associated with central nervous system (CNS) diseases, such as perioperative neurocognitive disorders (PND). The present study investigated the role of gut microbial metabolite short-chain fatty acids (SCFAs) in surgery-induced cognitive deficits and neuroinflammation in the hippocampus. Adult male C57BL/6J mice received either SCFA mixture or saline orally for 4 weeks, and then partial hepatectomy was performed. The fecal supernatant of surgical mice was transplanted to normal mice for 3 weeks. The Morris water maze (MWM) and open-field tests were used to evaluate behavioral performance on postoperative or post-transplantation days 3 and 7. In the MWM test, pretreatment with exogenous SCFAs partially reversed surgery-induced impairments in crossing times and the time spent in the target quadrant on postoperative day 3 (p < 0.05, p < 0.05, respectively). In the open-field test, compared with the surgical mice, exogenous SCFA administration prior to surgery partially improved the locomotor activity (p < 0.05) and anxiety-like behavior (p < 0.05) on postoperative day 3. Surgical trauma and anesthesia enhanced ionized calcium-binding adapter molecule 1 (Iba-1) expression (p < 0.001), increased the levels of interleukin (IL)-1β (p < 0.001) and IL-6 (p < 0.001), and inhibited SCFA production (p < 0.001) on postoperative day 3. The expression of the brain-derived neurotrophic factor (BDNF) was also decreased (p < 0.001). Overall, surgical trauma and anesthesia exacerbated cognitive impairment, enhanced neuroinflammatory responses, and inhibited SCFA production. Pretreatment with SCFAs attenuated these effects partially by reversing microglial overactivation, inhibiting neuroinflammatory responses, and enhancing BDNF expression.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kexin Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Li
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiancong Ren
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Livovsky DM, Azpiroz F. Gastrointestinal Contributions to the Postprandial Experience. Nutrients 2021; 13:nu13030893. [PMID: 33801924 PMCID: PMC7998507 DOI: 10.3390/nu13030893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Food ingestion induces homeostatic sensations (satiety, fullness) with a hedonic dimension (satisfaction, changes in mood) that characterize the postprandial experience. Both types of sensation are secondary to intraluminal stimuli produced by the food itself, as well as to the activity of the digestive tract. Postprandial sensations also depend on the nutrient composition of the meal and on colonic fermentation of non-absorbed residues. Gastrointestinal function and the sensitivity of the digestive tract, i.e., perception of gut stimuli, are determined by inherent individual factors, e.g., sex, and can be modulated by different conditioning mechanisms. This narrative review examines the factors that determine perception of digestive stimuli and the postprandial experience.
Collapse
Affiliation(s)
- Dan M. Livovsky
- Digestive System Research Unit, University Hospital Vall d’Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel
- ShaareZedek Medical Center, Digestive Diseases Institute, Jerusalem 9103102, Israel
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain;
- Correspondence: ; Tel.: +34-93-2746259
| |
Collapse
|
10
|
Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa ARA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect 2021; 41:100845. [PMID: 34035924 PMCID: PMC8138677 DOI: 10.1016/j.nmni.2021.100845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome of humans comprises a diverse group of trillions of microorganisms including symbiotic organisms, opportunistic pathogens and commensal organisms. This microbiota plays a major role in digesting food; it also helps with absorbing and synthesizing some nutrients and releases their metabolites, which may deliver a variety of growth-promoting and growth-inhibiting factors that influence human health either directly or indirectly. The balance between microbial species, especially those responsible for the fermentation of different substrates within the microbial community, which are in the majority, depends on daily diet. Therefore, an unbalanced diet may lead to the progression and development of human diseases. These include metabolic and inflammatory disorders, cancer and depression, as well as infant health and longevity. We provide an overview of the effect of diet on the human microbiome and assess the related risk of disease development.
Collapse
Affiliation(s)
- S R Mansour
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - M A A Moustafa
- Faculty of Medicine, 6 October University, 6 October, Egypt
| | - B M Saad
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - R Hamed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - A-R A Moustafa
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106260. [PMID: 33221593 PMCID: PMC7775895 DOI: 10.1016/j.envint.2020.106260] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Abstract
Bisphenol A (BPA) is an industrial plasticizer widely found in consumer products, and exposure to BPA during early development has been associated with the prevalence of various cardiometabolic diseases including obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. To elucidate the molecular perturbations underlying the connection of low-dose prenatal BPA exposure to cardiometabolic diseases, we conducted a multi-dimensional systems biology study assessing the liver transcriptome, gut microbial community, and diverse metabolic phenotypes in both male and female mouse offspring exposed to 5 μg/kg/day BPA during gestation. Prenatal exposure to low-dose BPA not only significantly affected liver genes involved in oxidative phosphorylation, PPAR signaling and fatty acid metabolism, but also affected the gut microbial composition in an age- and sex-dependent manner. Bacteria such as those belonging to the S24-7 and Lachnospiraceae families were correlated with offspring phenotypes, differentially expressed liver metabolic genes such as Acadl and Dgat1, and key drivers identified in our gene network modeling such as Malat1 and Apoa2. This multiomics study provides insight into the relationship between gut bacteria and host liver genes that could contribute to cardiometabolic disease risks upon low-dose BPA exposure.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zacary Zamora
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA
| | - Abigail Bline
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maya Singh
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Livovsky DM, Pribic T, Azpiroz F. Food, Eating, and the Gastrointestinal Tract. Nutrients 2020; 12:nu12040986. [PMID: 32252402 PMCID: PMC7231022 DOI: 10.3390/nu12040986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Food ingestion induces a metered response of the digestive system. Initially, the upper digestive system reacts to process and extract meal substrates. Later, meal residues not absorbed in the small bowel, pass into the colon and activate the metabolism of resident microbiota. Food consumption also induces sensations that arise before ingestion (e.g., anticipatory reward), during ingestion (e.g., gustation), and most importantly, after the meal (i.e., the postprandial experience). The postprandial experience involves homeostatic sensations (satiety, fullness) with a hedonic dimension (digestive well-being, mood). The factors that determine the postprandial experience are poorly understood, despite their potential role in personalized diets and healthy eating habits. Current data suggest that the characteristics of the meal (amount, palatability, composition), the activity of the digestive system (suited processing), and the receptivity of the eater (influenced by multiple conditioning factors) may be important in this context.
Collapse
Affiliation(s)
- Dan M Livovsky
- Digestive Diseases Institute, Shaare Zedek Medical Center, Hebrew University of Jerusalem, 9103102 Jerusalem, Israel;
| | - Teorora Pribic
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-274-6222; Fax: +34-93-489-4456
| |
Collapse
|
13
|
Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Raimondi I, Izzo L, Tunesi M, Comar M, Albani D, Giordano C. Organ-On-A-Chip in vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Front Bioeng Biotechnol 2020; 7:435. [PMID: 31998702 PMCID: PMC6965718 DOI: 10.3389/fbioe.2019.00435] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
We are accumulating evidence that intestinal microflora, collectively named gut microbiota, can alter brain pathophysiology, but researchers have just begun to discover the mechanisms of this bidirectional connection (often referred to as microbiota-gut-brain axis, MGBA). The most noticeable hypothesis for a pathological action of gut microbiota on the brain is based on microbial release of soluble neurotransmitters, hormones, immune molecules and neuroactive metabolites, but this complex scenario requires reliable and controllable tools for its causal demonstration. Thanks to three-dimensional (3D) cultures and microfluidics, engineered in vitro models could improve the scientific knowledge in this field, also from a therapeutic perspective. This review briefly retraces the main discoveries linking the activity of gut microbiota to prevalent brain neurodegenerative disorders, and then provides a deep insight into the state-of-the-art for in vitro modeling of the brain and the blood-brain barrier (BBB), two key players of the MGBA. Several brain and BBB microfluidic devices have already been developed to implement organ-on-a-chip solutions, but some limitations still exist. Future developments of organ-on-a-chip tools to model the MGBA will require an interdisciplinary approach and the synergy with cutting-edge technologies (for instance, bioprinting) to achieve multi-organ platforms and support basic research, also for the development of new therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Manola Comar
- SSD of Advanced Translational Microbiology, IRCCS “Burlo Garofolo”, Department of Medical Sciences (DMS), University of Trieste, Trieste, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
15
|
Abstract
Background:Gut microbes influence the development several chronic conditions marking them as targets for holistic care, prevention strategies, and potential treatments. Microbiome studies are relatively new to health research and present unfamiliar terms to clinicians and researchers. "Dysbiosis" often refers to an alteration in the gut microbiome, but conceptual clarification is rarely provided. Purpose: The purpose of this study is to refine a conceptual definition of dysbiosis based on a review of nursing literature. Method: A Rodgerian approach to concept analysis was used. CINAHL, PubMed, and Web of Science were queried using "dysbiosis" through December 2018. Each article was analyzed with regard to the antecedents, attributes, and consequences of dysbiosis. Essential elements were tabulated and compared across studies to determine recurring themes and notable outliers. Findings: Analysis revealed several important antecedences, attributes, and consequences of dysbiosis. The findings also elucidated notable gaps and highlighted the co-evolving nature of the proposed definition with advances in microbiome research. Conclusion: This article adds a proposed definition of dysbiosis, offering a contribution of conceptual clarity upon which to enhance dialogue and build research. The definition emphasizes risk factors and consequences of dysbiosis as implications for holistic nursing practice.
Collapse
|
16
|
Bassett SA, Young W, Fraser K, Dalziel JE, Webster J, Ryan L, Fitzgerald P, Stanton C, Dinan TG, Cryan JF, Clarke G, Hyland N, Roy NC. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci Rep 2019; 9:14026. [PMID: 31575902 PMCID: PMC6773725 DOI: 10.1038/s41598-019-50593-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Stress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that the greatest difference between the SD and WKY microbiomes were the predicted relative abundance of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for developing novel biomarkers of stress vulnerability, some of which appear genotype specific.
Collapse
Affiliation(s)
- Shalome A Bassett
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Julie E Dalziel
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Jim Webster
- Farm Systems North, AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Leigh Ryan
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Patrick Fitzgerald
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Nicole C Roy
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
17
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
18
|
Terpou BA, Harricharan S, McKinnon MC, Frewen P, Jetly R, Lanius RA. The effects of trauma on brain and body: A unifying role for the midbrain periaqueductal gray. J Neurosci Res 2019; 97:1110-1140. [PMID: 31254294 DOI: 10.1002/jnr.24447] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD), a diagnosis that may follow the experience of trauma, has multiple symptomatic phenotypes. Generally, individuals with PTSD display symptoms of hyperarousal and of hyperemotionality in the presence of fearful stimuli. A subset of individuals with PTSD; however, elicit dissociative symptomatology (i.e., depersonalization, derealization) in the wake of a perceived threat. This pattern of response characterizes the dissociative subtype of the disorder, which is often associated with emotional numbing and hypoarousal. Both symptomatic phenotypes exhibit attentional threat biases, where threat stimuli are processed preferentially leading to a hypervigilant state that is thought to promote defensive behaviors during threat processing. Accordingly, PTSD and its dissociative subtype are thought to differ in their proclivity to elicit active (i.e., fight, flight) versus passive (i.e., tonic immobility, emotional shutdown) defensive responses, which are characterized by the increased and the decreased expression of the sympathetic nervous system, respectively. Moreover, active and passive defenses are accompanied by primarily endocannabinoid- and opioid-mediated analgesics, respectively. Through critical review of the literature, we apply the defense cascade model to better understand the pathological presentation of defensive responses in PTSD with a focus on the functioning of lower-level midbrain and extended brainstem systems.
Collapse
Affiliation(s)
- Braeden A Terpou
- Department of Neuroscience, Western University, London, Ontario, Canada
| | | | - Margaret C McKinnon
- Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Homewood Research Institute, Guelph, Ontario, Canada
| | - Paul Frewen
- Department of Psychology, Western University, London, Ontario, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, Ontario, Canada.,Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Zhu J, Frech T. Gut disease in systemic sclerosis - new approaches to common problems. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019; 5:11-19. [PMID: 31750073 DOI: 10.1007/s40674-019-00117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose of review The goal of this manuscript is to discuss the new diagnostic and potential treatment options for gut disease in systemic sclerosis (SSc). The concepts of quantification of gut perfusion and motility is reviewed. The risks of empiric therapeutics and challenges of studying the microbiome in SSc is discussed. Recent findings There are diagnostics that can provide information on gut perfusion and function that are of value in SSc. Easily implemented diagnostic tests are critical to avoid complications of empiric therapy. The role of the microbiome and drugs that target dysmotility are areas of active research. Summary SSc-related gastrointestinal tract involvement can be heterogeneous in clinical presentation and disease course. Noninvasive gastrointestinal measurement techniques that quantify neural communications with microvasculature in SSc can potentially guide the proper addition and discontinuation of therapeutics. The role of the microbiome and the role of nitric oxide on gut function are important areas of research for understanding gut dysfunction in SSc.
Collapse
Affiliation(s)
- Jessica Zhu
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tracy Frech
- Department of Internal Medicine, Division of Rheumatology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Dong TS, Gupta A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clin Gastroenterol Hepatol 2019; 17:231-242. [PMID: 30196160 PMCID: PMC6422042 DOI: 10.1016/j.cgh.2018.08.067] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Advances in sequencing technology and bioinformatics have greatly enhanced our ability to understand the human microbiome. Over the last decade, a growing body of literature has linked nutrition and the environment to the microbiome and is now thought to be an important contributor to overall health. This paper reviews the literature from the past 10 years to highlight the influence of environmental factors such as diet, early life adversity and stress in shaping and modifying our microbiome towards health and disease. The review shows that many factors such as the mode of delivery, breast milk, stress, diet and medications can greatly influence the development of our gut microbiome and potentially make us more prone to certain diseases. By incorporating environmental factors into models that study the microbiome in the setting of health and disease, may provide a better understanding of disease and potentially new areas of treatment. To highlight this, we will additionally explore the role of the environment and the microbiome in the development of obesity and functional bowel disorders.
Collapse
Affiliation(s)
- Tien S Dong
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
21
|
[Psychosomatic research in 2018: Lost illusions, renewed hopes]. Rev Med Interne 2018; 39:955-962. [PMID: 30193782 DOI: 10.1016/j.revmed.2018.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 01/18/2023]
Abstract
A critical analysis of the basic hypotheses of psychosomatic research and the sometimes hasty assertions drawn from the previous works makes it possible to better discern the data confirmed by the most recent works or the most rigorous meta-analyses and to highlight the emerging tracks. If the hypothesis of behavioral patterns specifically related to the risk of certain pathologies seems abandoned, the predictive value of depression in the cardiovascular field, more than in that of oncology, becomes clearer. Negative affect and impaired emotional awareness emerge as two complementary factors of somatic vulnerability. Several vulnerability factors seem all the more effective as they affect individuals of lower socio-economic status. Social exclusion feeling and its links with the inflammatory response appear to be a possible common denominator, both for depression and for many somatic conditions. A series of studies on the cerebral regulation of emotions and stress, as well as on bidirectional brain-bowel relations and on the mediating role of the gut microbiota, complements the available epidemiological data. The same is true for certain advances in behavioral neuro-economics, which inform the decision-making processes of patients facing preventive health choices. Lastly, it appears that a significant part of the excess mortality associated with the existence of severe mental disorders is not due to factors inherent to the patients themselves, but to disparities in the quality of the care provided to them.
Collapse
|
22
|
Pribic T, Azpiroz F. Biogastronomy: Factors that determine the biological response to meal ingestion. Neurogastroenterol Motil 2018; 30:e13309. [PMID: 29392797 DOI: 10.1111/nmo.13309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The biological response to a meal includes physiological changes, primarily related to the digestive process, and a sensory experience, involving sensations related to the homeostatic control of food consumption, eg, satiety and fullness, with a hedonic dimension, ie associated with changes in digestive well-being and mood. The responses to a meal include a series of events before, during and after ingestion. While much attention has been paid to the events before and during ingestion, relatively little is known about the postprandial sensations, which are key to the gastronomical experience. PURPOSE The aim of this narrative review is to provide a comprehensive overview and to define the framework to investigate the factors that determine the postprandial experience. Based on a series of proof-of-concept studies and related information, we propose that the biological responses to a meal depend on the characteristics of the meal, primarily its palatability and composition, and the responsiveness of the guest, which may be influenced by multiple previous and concurrent conditioning factors. This information provides the scientific backbone to the development of personalized gastronomy.
Collapse
Affiliation(s)
- T Pribic
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Azpiroz
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|