1
|
Pradel B, Cantaloube G, Villares M, Deffieu MS, Robert-Hebmann V, Lucansky V, Faure M, Chazal N, Gaudin R, Espert L. LC3B conjugation machinery promotes autophagy-independent HIV-1 entry in CD4 + T lymphocytes. Autophagy 2024; 20:1825-1836. [PMID: 38566318 PMCID: PMC11262235 DOI: 10.1080/15548627.2024.2338573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.
Collapse
Affiliation(s)
- Baptiste Pradel
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Guilhem Cantaloube
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Maïka S. Deffieu
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Véronique Robert-Hebmann
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Vincent Lucansky
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Jessenius Faculty of Medicine in Martin (JFMED CU), Department of Pathophysiology, Comenius University in Bratislava, Martin, Slovakia
| | - Mathias Faure
- CIRI, University of Lyon, Inserm U1111, Claude Bernard University Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Nathalie Chazal
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Raphaël Gaudin
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| |
Collapse
|
2
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Klute S, Sparrer KMJ. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024; 16:500. [PMID: 38675843 PMCID: PMC11054699 DOI: 10.3390/v16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.
Collapse
|
4
|
Zaongo SD, Chen Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin Med J (Engl) 2023; 136:2147-2155. [PMID: 37247620 PMCID: PMC10508460 DOI: 10.1097/cm9.0000000000002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023] Open
Abstract
ABSTRACT Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Division of Infectious diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
5
|
Ghahari N, Telittchenko R, Loucif H, Isnard S, Routy JP, Olagnier D, van Grevenynghe J. Harnessing Autophagy to Overcome Antigen-Specific T-Cell Dysfunction: Implication for People Living with HIV-1. Int J Mol Sci 2023; 24:11018. [PMID: 37446195 DOI: 10.3390/ijms241311018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation. Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC), who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH. Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises and potential limitations of pharmacological and dietary interventions to activate autophagy in an attempt to rescue Ag-specific T-cell protection among PLWH.
Collapse
Affiliation(s)
- Nazanin Ghahari
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Roman Telittchenko
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Hamza Loucif
- EVAH Corp., 500 Boulevard Cartier Ouest, Laval, QC H7V 5B7, Canada
| | - Stephane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, 8000 Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| |
Collapse
|
6
|
Vo MT, Choi CY, Choi YB. The mitophagy receptor NIX induces vIRF-1 oligomerization and interaction with GABARAPL1 for the promotion of HHV-8 reactivation-induced mitophagy. PLoS Pathog 2023; 19:e1011548. [PMID: 37459327 PMCID: PMC10374065 DOI: 10.1371/journal.ppat.1011548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/27/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, viruses have been shown to regulate selective autophagy for productive infections. For instance, human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), activates selective autophagy of mitochondria, termed mitophagy, thereby inhibiting antiviral innate immune responses during lytic infection in host cells. We previously demonstrated that HHV-8 viral interferon regulatory factor 1 (vIRF-1) plays a crucial role in lytic replication-activated mitophagy by interacting with cellular mitophagic proteins, including NIX and TUFM. However, the precise molecular mechanisms by which these interactions lead to mitophagy activation remain to be determined. Here, we show that vIRF-1 binds directly to mammalian autophagy-related gene 8 (ATG8) proteins, preferentially GABARAPL1 in infected cells, in an LC3-interacting region (LIR)-independent manner. Accordingly, we identified key residues in vIRF-1 and GABARAPL1 required for mutual interaction and demonstrated that the interaction is essential for mitophagy activation and HHV-8 productive replication. Interestingly, the mitophagy receptor NIX promotes vIRF-1-GABARAPL1 interaction, and NIX/vIRF-1-induced mitophagy is significantly inhibited in GABARAPL1-deficient cells. Moreover, a vIRF-1 variant defective in GABARAPL1 binding substantially loses the ability to induce vIRF-1/NIX-induced mitophagy. These results suggest that NIX supports vIRF-1 activity as a mitophagy mediator. In addition, we found that NIX promotes vIRF-1 aggregation and stabilizes aggregated vIRF-1. Together, these findings indicate that vIRF-1 plays a role as a viral mitophagy mediator that can be activated by a cellular mitophagy receptor.
Collapse
Affiliation(s)
- Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chang-Yong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Papin L, Lehmann M, Lagisquet J, Maarifi G, Robert-Hebmann V, Mariller C, Guerardel Y, Espert L, Haucke V, Blanchet FP. The Autophagy Nucleation Factor ATG9 Forms Nanoclusters with the HIV-1 Receptor DC-SIGN and Regulates Early Antiviral Autophagy in Human Dendritic Cells. Int J Mol Sci 2023; 24:ijms24109008. [PMID: 37240354 DOI: 10.3390/ijms24109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.
Collapse
Affiliation(s)
- Laure Papin
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Justine Lagisquet
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Véronique Robert-Hebmann
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Christophe Mariller
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier-IRIM-CNRS UMR9004, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
8
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tóth D, Horváth GV, Juhász G. The interplay between pathogens and Atg8 family proteins: thousand-faced interactions. FEBS Open Bio 2021; 11:3237-3252. [PMID: 34670023 PMCID: PMC8634866 DOI: 10.1002/2211-5463.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular degradation and recycling process that can also remove pathogenic intracellular bacteria and viruses from within cells (referred to as xenophagy) and activate the adaptive immune responses. But autophagy-especially Atg proteins including Atg8 family members-can also have proviral and probacterial effects. In this review, we summarize known interactions of bacterial, parasitic, and viral proteins with Atg8 family proteins and the outcome of these interactions on pathogen replication, autophagy, or mitophagy. We discuss the value of prediction software and the research methodology in the study of pathogen protein-Atg8 family protein interactions, with selected examples of potential LC3-interacting region motif-containing SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Dávid Tóth
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gábor V Horváth
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Zaongo SD, Wang Y, Ma P, Song FZ, Chen YK. Selective elimination of host cells harboring replication-competent human immunodeficiency virus reservoirs: a promising therapeutic strategy for HIV cure. Chin Med J (Engl) 2021; 134:2776-2787. [PMID: 34620750 PMCID: PMC8667983 DOI: 10.1097/cm9.0000000000001797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
ABSTRACT Many seminal advances have been made in human immunodeficiency virus (HIV)/AIDS research over the past four decades. Treatment strategies, such as gene therapy and immunotherapy, are yielding promising results to effectively control HIV infection. Despite this, a cure for HIV/AIDS is not envisioned in the near future. A recently published academic study has raised awareness regarding a promising alternative therapeutic option for HIV/AIDS, referred to as "selective elimination of host cells capable of producing HIV" (SECH). Similar to the "shock and kill strategy," the SECH approach requires the simultaneous administration of drugs targeting key mechanisms in specific cells to efficiently eliminate HIV replication-competent cellular reservoirs. Herein, we comprehensively review the specific mechanisms targeted by the SECH strategy. Briefly, the suggested cocktail of drugs should contain (i) latency reversal agents to promote the latency reversal process in replication-competent reservoir cells, (ii) pro-apoptotic and anti-autophagy drugs to induce death of infected cells through various pathways, and finally (iii) drugs that eliminate new cycles of infection by prevention of HIV attachment to host cells, and by HIV integrase inhibitor drugs. Finally, we discuss three major challenges that are likely to restrict the application of the SECH strategy in HIV/AIDS patients.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Institute for Medical Device Standardization Administration; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People Hospital, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fang-Zhou Song
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao-Kai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
12
|
Castro-Gonzalez S, Simpson S, Shi Y, Chen Y, Benjamin J, Serra-Moreno R. HIV Nef-mediated Ubiquitination of BCL2: Implications in Autophagy and Apoptosis. Front Immunol 2021; 12:682624. [PMID: 34025682 PMCID: PMC8134690 DOI: 10.3389/fimmu.2021.682624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a process that acts upon every step of the HIV replication cycle. The activity, subcellular localization, and stability of HIV dependency factors as well as negative modulators can be affected by ubiquitination. These modifications consequently have an impact on the progression and outcome of infection. Additionally, recent findings suggest new roles for ubiquitination in the interplay between HIV and the cellular environment, specifically in the interactions between HIV, autophagy and apoptosis. On one hand, autophagy is a defense mechanism against HIV that promotes the degradation of the viral protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV replication. Hence, this post-translational modification in Gag represents a double-edged sword: necessary for virion biogenesis, but potentially detrimental under conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might promote apoptosis. Moreover, this effect of Nef might account for HIV-associated disorders. In this article, we outline our current knowledge and provide perspectives of how ubiquitination impacts the molecular interactions between HIV, autophagy and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
14
|
Cloherty APM, van Teijlingen NH, Eisden TJTHD, van Hamme JL, Rader AG, Geijtenbeek TBH, Schreurs RRCE, Ribeiro CMS. Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo. Sci Rep 2021; 11:4767. [PMID: 33637808 PMCID: PMC7910550 DOI: 10.1038/s41598-021-84081-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Current direct-acting antiviral therapies are highly effective in suppressing HIV-1 replication. However, mucosal inflammation undermines prophylactic treatment efficacy, and HIV-1 persists in long-lived tissue-derived dendritic cells (DCs) and CD4+ T cells of treated patients. Host-directed strategies are an emerging therapeutic approach to improve therapy outcomes in infectious diseases. Autophagy functions as an innate antiviral mechanism by degrading viruses in specialized vesicles. Here, we investigated the impact of pharmaceutically enhancing autophagy on HIV-1 acquisition and viral replication. To this end, we developed a human tissue infection model permitting concurrent analysis of HIV-1 cellular targets ex vivo. Prophylactic treatment with autophagy-enhancing drugs carbamazepine and everolimus promoted HIV-1 restriction in skin-derived CD11c+ DCs and CD4+ T cells. Everolimus also decreased HIV-1 susceptibility to lab-adapted and transmitted/founder HIV-1 strains, and in vaginal Langerhans cells. Notably, we observed cell-specific effects of therapeutic treatment. Therapeutic rapamycin treatment suppressed HIV-1 replication in tissue-derived CD11c+ DCs, while all selected drugs limited viral replication in CD4+ T cells. Strikingly, both prophylactic and therapeutic treatment with everolimus or rapamycin reduced intestinal HIV-1 productive infection. Our findings highlight host autophagy pathways as an emerging target for HIV-1 therapies, and underscore the relevancy of repurposing clinically-approved autophagy drugs to suppress mucosal HIV-1 replication.
Collapse
Affiliation(s)
- Alexandra P M Cloherty
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke H van Teijlingen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tracy-Jane T H D Eisden
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - John L van Hamme
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Renée R C E Schreurs
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
16
|
Castro-Gonzalez S, Shi Y, Colomer-Lluch M, Song Y, Mowery K, Almodovar S, Bansal A, Kirchhoff F, Sparrer K, Liang C, Serra-Moreno R. HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy 2021; 17:553-577. [PMID: 32097085 PMCID: PMC8007141 DOI: 10.1080/15548627.2020.1725401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an auto-digestive pro-survival pathway activated in response to stress to target cargo for lysosomal degradation. In recent years, autophagy has become prominent as an innate antiviral defense mechanism through multiple processes, such as targeting virions and viral components for elimination. These exciting findings have encouraged studies on the ability of autophagy to restrict HIV. However, the role of autophagy in HIV infection remains unclear. Whereas some reports indicate that autophagy is detrimental for HIV, others have claimed that HIV deliberately activates this pathway to increase its infectivity. Moreover, these contrasting findings seem to depend on the cell type investigated. Here, we show that autophagy poses a hurdle for HIV replication, significantly reducing virion production. However, HIV-1 uses its accessory protein Nef to counteract this restriction. Previous studies have indicated that Nef affects autophagy maturation by preventing the fusion between autophagosomes and lysosomes. Here, we uncover that Nef additionally blocks autophagy initiation by enhancing the association between BECN1 and its inhibitor BCL2, and this activity depends on the cellular E3 ligase PRKN. Remarkably, the ability of Nef to counteract the autophagy block is more frequently observed in pandemic HIV-1 and its simian precursor SIVcpz infecting chimpanzees than in HIV-2 and its precursor SIVsmm infecting sooty mangabeys. In summary, our findings demonstrate that HIV-1 is susceptible to autophagy restriction and define Nef as the primary autophagy antagonist of this antiviral process.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin, beta; ATG16L1: autophagy related 16 like 1; BCL2: bcl2 apoptosis regulator; BECN1: beclin 1; cDNA: complementary DNA; EGFP: enhanced green fluorescence protein; ER: endoplasmic reticulum; Gag/p55: group-specific antigen; GFP: green fluorescence protein; GST: glutathione S transferase; HA: hemagglutinin; HIV: human immunodeficiency virus; IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nef: negative factor; PRKN: parkin RBR E3 ubiquitin ligase; PtdIns3K: phosphatidylinositol 3 kinase; PtdIns3P: phosphatidylinositol 3 phosphate; PTM: post-translational modification; RT-qPCR: reverse transcription followed by quantitative PCR; RUBCN: rubicon autophagy regulator; SEM: standard error of the mean; SERINC3: serine incorporator 3; SERINC5: serine incorporator 5; SIV: simian immunodeficiency virus; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; UVRAG: UV radiation resistance associated gene; VSV: vesicular stomatitis virus; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yuhang Shi
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Ying Song
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaitlyn Mowery
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Anju Bansal
- Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, University of Ulm, Ulm, Germany
| | | | - Chengyu Liang
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Serra-Moreno
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
17
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
18
|
Moroso M, Verlhac P, Ferraris O, Rozières A, Carbonnelle C, Mély S, Endtz HP, Peyrefitte CN, Paranhos-Baccalà G, Viret C, Faure M. Crimean-Congo hemorrhagic fever virus replication imposes hyper-lipidation of MAP1LC3 in epithelial cells. Autophagy 2020; 16:1858-1870. [PMID: 31905032 PMCID: PMC8386629 DOI: 10.1080/15548627.2019.1709765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Marie Moroso
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Pauline Verlhac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | - Olivier Ferraris
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
- Département Microbiologie et Maladies Infectieuses, Biomedical Research Institute of the French Army (IRBA), Brétigny-sur-Orge, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | | | - Stéphane Mély
- Laboratoire P4 Inserm-Jean Mérieux, US003 Inserm, Lyon, France
| | - Hubert P. Endtz
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Christophe N. Peyrefitte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
- Département Microbiologie et Maladies Infectieuses, Biomedical Research Institute of the French Army (IRBA), Brétigny-sur-Orge, France
| | - Glaucia Paranhos-Baccalà
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| |
Collapse
|
19
|
Hayes AML. Future approaches to clearing the latent human immunodeficiency virus reservoir: Beyond latency reversal. South Afr J HIV Med 2020; 21:1089. [PMID: 32934831 PMCID: PMC7479387 DOI: 10.4102/sajhivmed.v21i1.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/12/2020] [Indexed: 11/01/2022] Open
Abstract
Background While combined antiretroviral therapy (cART) allows near-normal life expectancy for people living with human immunodeficiency virus (HIV), it is unable to cure the infection and so life long treatment is required. Objectives The main barrier to curing HIV is the latent reservoir of cells, which is stable and resistant to cART. Method Current approaches under investigation for clearing this reservoir propose a 'Shock and Kill' mechanism, in which active replication is induced in latent cells by latency reversal agents, theoretically allowing killing of the newly active cells. Results However, previous studies have failed to achieve depletion of the T central memory cell reservoir, are unable to target other latent reservoirs and may be causing neurological damage to participants. Conclusion Future approaches to clearing the latent reservoir may bypass latency reversal through the use of drugs that selectively induce apoptosis in infected cells. Several classes of these pro-apoptotic drugs have shown promise in in vitro and ex vivo studies, and may represent the basis of a future functional cure for HIV.
Collapse
Affiliation(s)
- Alexander M L Hayes
- Medical Sciences Division, Faculty of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
CD4 + T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio 2020; 11:mBio.00903-20. [PMID: 32934078 PMCID: PMC7492730 DOI: 10.1128/mbio.00903-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC80) of 819 μg ml−1 (range, 72 to 8,570 μg ml−1). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4+ T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir.
Collapse
|
21
|
Rawat P, Hon S, Teodorof-Diedrich C, Spector SA. Trehalose Inhibits Human Immunodeficiency Virus Type 1 Infection in Primary Human Macrophages and CD4 + T Lymphocytes through Two Distinct Mechanisms. J Virol 2020; 94:e00237-20. [PMID: 32554696 PMCID: PMC7431788 DOI: 10.1128/jvi.00237-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a highly conserved recycling pathway that promotes cell survival during periods of stress. We previously reported that induction of autophagy through the inhibition of the mechanistic target of rapamycin (MTOR) inhibits HIV replication in human macrophages and CD4+ T lymphocytes (T cells). However, the inhibition of MTOR has modulatory effects beyond autophagy that might affect viral replication. Here, we examined the effect on HIV replication of trehalose, a nontoxic, nonreducing disaccharide that induces autophagy through an MTOR-independent mechanism. Treatment of HIV-infected macrophages and T cells with trehalose inhibited infection in a dose-dependent manner. Uninfected and HIV-infected macrophages and T cells treated with trehalose exhibited increased markers of autophagy, including LC3B lipidation with further accumulation following bafilomycin A1 treatment, and increased levels of LAMP1, LAMP2, and RAB7 proteins required for lysosomal biogenesis and fusion. Moreover, the inhibition of HIV by trehalose was significantly reduced by knockdown of ATG5 Additionally, trehalose downregulated the expression of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages, which reduced HIV entry in these cells. Our data demonstrate that the naturally occurring sugar trehalose at doses safely achieved in humans inhibits HIV through two mechanisms: (i) decreased entry through the downregulation of CCR5 in T cells and decreased CD4 expression in both T cells and macrophages and (ii) degradation of intracellular HIV through the induction of MTOR-independent autophagy. These findings demonstrate that cellular mechanisms can be modulated to inhibit HIV entry and intracellular replication using a naturally occurring, nontoxic sugar.IMPORTANCE Induction of autophagy through inhibition of MTOR has been shown to inhibit HIV replication. However, inhibition of the mechanistic target of rapamycin (MTOR) has cellular effects that may alter HIV infection through other mechanisms. Here, we examined the HIV-inhibitory effects of the MTOR-independent inducer of autophagy, trehalose. Of note, we identified that in addition to the inhibition of the intracellular replication of HIV by autophagy, trehalose decreased viral entry in human primary macrophages and CD4+ T cells through the downregulation of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages. Thus, we showed that trehalose uniquely inhibits HIV replication through inhibition of viral entry and intracellular degradation in the two most important target cells for HIV infection.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Simson Hon
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
22
|
Modulation of mTORC1 Signaling Pathway by HIV-1. Cells 2020; 9:cells9051090. [PMID: 32354054 PMCID: PMC7291251 DOI: 10.3390/cells9051090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.
Collapse
|
23
|
Abstract
Autophagy plays an important role in the fight against viral infection, which can directly remove the virus, interact with the viral protein, and at the same time regulate the innate and adaptive immunity and promote virus clearance. The virus has also evolved autophagy, which evades, antagonizes and utilizes autophagy, and regulates autophagy pathways, affects autophagy maturation, changes autophagy small body environment or changes the body's immune response type to promote or inhibit autophagy. This chapter introduces the possible mechanisms of autophagy during pathogen infection such as human immunodeficiency virus and hepatitis virus, in order to provide new methods for the prevention and treatment of viral infection.
Collapse
Affiliation(s)
- Yichuan Xiao
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Cai
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Shao Z, Borde C, Quignon F, Escargueil A, Maréchal V. Epstein-Barr Virus BALF0 and BALF1 Modulate Autophagy. Viruses 2019; 11:v11121099. [PMID: 31783609 PMCID: PMC6950364 DOI: 10.3390/v11121099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an essential catabolic process that degrades cytoplasmic components within the lysosome, therefore ensuring cell survival and homeostasis. A growing number of viruses, including members of the Herpesviridae family, have been shown to manipulate autophagy to facilitate their persistence or optimize their replication. Previous works showed that the Epstein–Barr virus (EBV), a human transforming gammaherpesvirus, hijacked autophagy during the lytic phase of its cycle, possibly to favor the formation of viral particles. However, the viral proteins that are responsible for an EBV-mediated subversion of the autophagy pathways remain to be characterized. Here we provide the first evidence that the BALF0/1 open reading frame encodes for two conserved proteins of the Bcl-2 family, BALF0 and BALF1, that are expressed during the early phase of the lytic cycle and can modulate autophagy. A putative LC3-interacting region (LIR) has been identified that is required both for BALF1 colocalization with autophagosomes and for its ability to stimulate autophagy.
Collapse
|
25
|
Alfaisal J, Machado A, Galais M, Robert-Hebmann V, Arnauné-Pelloquin L, Espert L, Biard-Piechaczyk M. HIV-1 Vpr inhibits autophagy during the early steps of infection of CD4 T cells. Biol Cell 2019; 111:308-318. [PMID: 31628772 DOI: 10.1111/boc.201900071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND INFORMATION Autophagy is induced during HIV-1 entry into CD4 T cells by the fusion of the membranes triggered by the gp41 envelope glycoprotein. This anti-HIV-1 mechanism is inhibited by the viral infectivity factor (Vif) neosynthesized after HIV-1 integration to allow viral replication. However, autophagy is very rapidly controlled after HIV-1 entry by a still unknown mechanism. As HIV-1 viral protein R (Vpr) is the only auxiliary protein found within the virion in substantial amount, we studied its capability to control the early steps of HIV-1 envelope-mediated autophagy. RESULTS We demonstrated that ectopic Vpr inhibits autophagy in both the Jurkat CD4 T cell line and HEK.293T cells. Interestingly, Vpr coming from the virus also blocks autophagy in CD4 T cells, the main cell target of HIV-1. Furthermore, Vpr decreases the expression level of two essential autophagy proteins (ATG), LC3B and Beclin-1, and an important autophagy-related protein, BNIP3 as well as the level of their mRNA. We also demonstrated in HEK.293T cells that Vpr degrades the FOXO3a transcription factor through the ubiquitin proteasome system. CONCLUSION Vpr, the only well-expressed HIV-1 auxiliary protein incorporated into viruses, is able to negatively control autophagy induced during HIV-1 entry into CD4 T cells. SIGNIFICANCE We provide insights of how HIV-1 controls autophagy very early after its entry into CD4 T cells and discovered a new function of Vpr. These results open the route to a better understanding of the roles of Vpr during HIV-1 infection through FOXO3a degradation and could be important to consider additional therapies that counteract the role of Vpr on autophagy.
Collapse
Affiliation(s)
- Jamal Alfaisal
- IRIM, University of Montpellier, CNRS, 34293, Montpellier, France
| | - Alice Machado
- IRIM, University of Montpellier, CNRS, 34293, Montpellier, France
| | - Mathilde Galais
- IRIM, University of Montpellier, CNRS, 34293, Montpellier, France
| | | | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucile Espert
- IRIM, University of Montpellier, CNRS, 34293, Montpellier, France
| | | |
Collapse
|
26
|
HIV-1 Antisense Protein of Different Clades Induces Autophagy and Associates with the Autophagy Factor p62. J Virol 2019; 93:JVI.01757-18. [PMID: 30404795 DOI: 10.1128/jvi.01757-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
The existence of the antisense transcript-encoded HIV-1 antisense protein (ASP) was recently reinforced by in silico analyses providing evidence for recent appearance of this gene in the viral genome. Our previous studies led to the detection of ASP in various cell lines by Western blotting, flow cytometry, and confocal microscopy analyses and reported that it induced autophagy, potentially through multimer formation. Here, our goals were to assess autophagy induction by ASP from different clades and to identify the implicated autophagy factors. We first demonstrated that ASP formed multimers, partly through its amino-terminal region and cysteine residues. Removal of this region was further associated with lower induction of autophagy, as assessed by autophagosome formation. ASPs from different clades (A, B, C, D, and G) were tested next and were detected in monomeric and multimeric forms at various levels, and all induced autophagy (clade A ASP was less efficient), as determined by LC3-II and p62 (SQSTM1) levels. Furthermore, CRISPR-based knockout of ATG5, ATG7, and p62 genes led to increased ASP levels. Confocal microscopy analyses showed that ASP colocalized with p62 and LC3-II in autophagosome-like structures. Coimmunoprecipitation experiments further demonstrated that p62 associated with ASP through its PB1 domain. Interestingly, immunoprecipitation experiments supported the idea that ASP is ubiquitinated and that ubiquitination was modulating its stability. We are thus suggesting that ASP induces autophagy through p62 interaction and that its abundance is controlled by autophagy, in which ubiquitin plays an important role. Understanding the mechanisms underlying ASP degradation is essential to better assess its function.IMPORTANCE In the present study, we provide the first evidence that a new HIV-1 protein termed ASP derived from different clades acts similarly in inducing autophagy, an important cellular process implicated in the degradation of excess or defective cellular material. We have gained further knowledge on the mechanism mediating the activation of autophagy. Our studies have important ramifications in the understanding of viral replication and the pathogenesis associated with HIV-1 in infected individuals. Indeed, autophagy is implicated in antigen presentation during immune response and could thus be rendered inefficient in infected cells, such as dendritic cells. Furthermore, a possible link with HIV-1-associated neurological disorder (HAND) might also be a possible association with the capacity of ASP to induce autophagy. Our studies hence demonstrate the importance in conducting further studies on this protein as it could represent a new interesting target for antiretroviral therapies and vaccine design.
Collapse
|
27
|
Campbell GR, Bruckman RS, Chu YL, Trout RN, Spector SA. SMAC Mimetics Induce Autophagy-Dependent Apoptosis of HIV-1-Infected Resting Memory CD4+ T Cells. Cell Host Microbe 2018; 24:689-702.e7. [PMID: 30344003 PMCID: PMC6250054 DOI: 10.1016/j.chom.2018.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/15/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Long-lived resting memory CD4+ T cells (TCM) are a major reservoir of latent HIV infection. We hypothesized that latent HIV-TCM cells are maintained by aberrant expression of cell survival factors, including XIAP, BIRC2/cIAP1, and beclin-1. DIABLO/SMAC mimetics are therapeutic agents that compromise cell survival by hijacking host apoptotic machinery. We found that DIABLO/SMAC mimetics (birinapant, GDC-0152, and embelin) selectively kill HIV-TCM without increasing virus production or targeting uninfected TCM. Treatment of HIV-TCM with DIABLO/SMAC mimetics promoted XIAP and BIRC2 degradation, which triggered autophagy and the formation of a cell death complex consisting of pro-apoptotic (FADD, RIPK1, RIPK3, and caspase 8) and autophagy (ATG5, ATG7, and SQSTM1) proteins. Genetic or pharmacological inhibition of autophagy induction, but not autophagy-mediated degradation, abrogated this interaction and subsequent cell death. Our findings identify a mechanism whereby DIABLO/SMAC mimetics exploit autophagy and apoptotic machinery to selectively induce killing of HIV-TCM without viral reactivation while sparing uninfected cells.
Collapse
Affiliation(s)
- Grant R Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel S Bruckman
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yen-Lin Chu
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rodney N Trout
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
28
|
Jin S, Liao Q, Chen J, Zhang L, He Q, Zhu H, Zhang X, Xu J. TSC1 and DEPDC5 regulate HIV-1 latency through the mTOR signaling pathway. Emerg Microbes Infect 2018; 7:138. [PMID: 30087333 PMCID: PMC6081400 DOI: 10.1038/s41426-018-0139-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023]
Abstract
The latent reservoir of HIV-1 presents a major barrier to viral eradication. The mechanism of the establishment and maintenance of the latent viral reservoir is not yet fully understood, which hinders the development of effective curative strategies. In this study, we identified two inhibitory genes, TSC1 and DEPDC5, that maintained HIV-1 latency by suppressing the mTORC1 pathway. We first adapted a genome-wide CRISPR screening approach to identify host factors required for HIV latency in a T-cell-based latency model and discovered two inhibitory genes, TSC1 and DEPDC5, which are potentially involved in HIV-1 latency. Knockout of either TSC1 or DEPDC5 led to enhanced HIV-1 reactivation in both a T-cell line (C11) and a monocyte cell line (U1), and this enhancement could be antagonized by the mTORC1 inhibitor rapamycin. Further evaluation of the mechanism revealed that TSC1 suppresses AKT-mTORC1-S6 via downregulation of Rheb, whereas DEPDC5 inhibits AKT-mTORC1-S6 through RagA. Overall, both TSC1 and DEPDC5 negatively regulate the AKT-mTORC1 pathway, and thus their agonists could be used in the development of new therapeutic approaches for activating HIV-1 latency.
Collapse
Affiliation(s)
- Shan Jin
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
29
|
Dysregulation of apoptosis and autophagy gene expression in peripheral blood mononuclear cells of efficiently treated HIV-infected patients. AIDS 2018; 32:1579-1587. [PMID: 29734217 DOI: 10.1097/qad.0000000000001851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We measure the transcript levels of the proapoptotic GALIG, antiapoptotic MCL1 genes and those of the autophagy genes BECN1, MAP1LC3B, ATG9a, P62/SQSTM1, GABARAP, GABARAPL1 and GABARAPL2 to define if mRNA alteration can characterize HIV-infected patients effectively treated with combined antiretroviral therapy (cART). DESIGN Monocentric pilot study conducted on peripheral blood mononuclear cell (PBMC) of 40 uninfected donors and 27 HIV-positive patients effectively treated by cART for at least 8.4 years. METHODS Transcripts of the various genes were quantified by reverse transcription (RT)-quantitative PCR (qPCR) and RT-droplet digital PCR and compared using the standard statistical Mann-Whitney U test and machine learning algorithms. RESULTS A concomitant overexpression of GALIG and MCL1 is detected in PBMC of effectively cART-treated patients. Overexpression of MAP1LC3B and GABARAPL1 is also measured, whereas BECN1 is underexpressed. Finally, accurate classification (94.5%) of our PBMC samples as HIV-negative donors or HIV-positive cART-treated is obtained in three separate machine-learning algorithms with GABARAPL1 and ATG9a as input variables. CONCLUSION cART-treated HIV patients display altered transcript levels for three genes of basal autophagy. Some of these alterations may appear contradictory: BECN1 and ATG9a, both key actors in the formation of mammalian autophagosome, exhibit decreased amount of transcripts, whereas mRNA from the ATG8 family increase. Given the known role of impaired basal autophagy in immune senescence and chronic inflammation, the functional significance of our findings should be explored in larger studies.
Collapse
|
30
|
Zhang G, Luk BT, Hamidy M, Zhang L, Spector SA. Induction of a Na +/K +-ATPase-dependent form of autophagy triggers preferential cell death of human immunodeficiency virus type-1-infected macrophages. Autophagy 2018; 14:1359-1375. [PMID: 29962265 DOI: 10.1080/15548627.2018.1476014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy is highly effective in suppressing human immunodeficiency virus type-1 (HIV) replication, treatment has failed to eliminate viral reservoirs and discontinuation of treatment results in viral reactivation. Here, we demonstrate that peptides Tat-vFLIP-α2 and Tat-Beclin 1/BECN1 which have been shown to induce a Na+/K+-ATPase- and a macroautophagy/autophagy-dependent form of cell death, autosis, can preferentially kill HIV-infected macrophages while preventing virological rebound. To improve bioavailability and drug delivery, Tat-vFLIP-α2 was encapsulated into biodegradable PLGA (poly lactic-co-glycolic acid)-lipid-PEG (polyethylene glycol) nanoparticles for long-lasting intracellular delivery. After a single dose of NP-vFLIP-α2, HIV-infected macrophages were preferentially killed in a dose-dependent manner compared to uninfected or untreated HIV-infected cells with complete inhibition of HIV infection at 10 μM of peptide. HIV-infected macrophages treated with NP-vFLIP-α2 exhibited increased markers of autophagy including LC3B lipidation, SQSTM1/p62 degradation and Na+/K+-ATPase expression compared to untreated uninfected or infected cells. Moreover, the increased cell death observed in HIV-infected cells was not altered by treatment with bafilomycin A1 (BAF) or the caspase inhibitor Z-VAD-FMK, but could be reversed following treatment with the Na+/K+-ATPase inhibitor, digoxin, or knockdown of ATG5 or ATG7. NP-vFLIP-α2 induced preferential killing was also detected in HIV-infected macrophages under antiretroviral suppression without inducing viral reactivation. Additionally, we found that Na+/K+-ATPase was upregulated in HIV-infected cells, which enhanced NP-vFLIP-α2 induced cell death. These findings provide a novel strategy to eradicate HIV-infected macrophages by selectively killing infected cells through the induction of Na+/K+-ATPase dependent autophagy, while preventing reactivation of virus and new infection of uninfected bystander cells.
Collapse
Affiliation(s)
- Gang Zhang
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Brian T Luk
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Morcel Hamidy
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Stephen A Spector
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA.,c Division of Infectious Diseases , Rady Children's Hospital , San Diego , CA , USA
| |
Collapse
|
31
|
Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: The multi-purpose bridge in viral infections and host cells. Rev Med Virol 2018; 28:e1973. [PMID: 29709097 PMCID: PMC7169200 DOI: 10.1002/rmv.1973] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete "overview of all viruses". In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Mehrdad Alirezaei
- Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Dept.Pasteur Institute of IranTehranIran
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPIInstitute of Parasitology and Tropical Pathology StrasbourgFrance
| |
Collapse
|
32
|
Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem 2018; 293:5808-5820. [PMID: 29475942 DOI: 10.1074/jbc.ra118.002353] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy. Macrophages treated with dactolisib, JQ1, or SF2523 displayed an increase in LC3B lipidation combined with SQSTM1 degradation without inducing increased cell death. LC3B-II levels were further increased in the presence of pepstatin A suggesting that these inhibitors induce autophagic flux. RNA interference for ATG5 and ATG7 and pharmacological inhibitors of autophagosome-lysosome fusion and of lysosomal hydrolases all blocked the inhibition of HIV. Thus, we demonstrate that the mechanism of PI3K/MTOR and PI3K/MTOR/BRD4 inhibitor suppression of HIV requires the formation of autophagosomes, as well as their subsequent maturation into autolysosomes. These data provide further evidence in support of a role for autophagy in the control of HIV infection and open new avenues for the use of this class of drugs in HIV therapy.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Rachel S Bruckman
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shayna D Herns
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shweta Joshi
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and
| | - Donald L Durden
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and.,SignalRx Pharmaceuticals, Inc., San Diego, California 92130
| | - Stephen A Spector
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672, .,the Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
33
|
Autophagy-associated immune responses and cancer immunotherapy. Oncotarget 2018; 7:21235-46. [PMID: 26788909 PMCID: PMC5008281 DOI: 10.18632/oncotarget.6908] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.
Collapse
|
34
|
Implication of Different HIV-1 Genes in the Modulation of Autophagy. Viruses 2017; 9:v9120389. [PMID: 29258265 PMCID: PMC5744163 DOI: 10.3390/v9120389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a complex cellular degradation pathway, which plays important roles in the regulation of several developmental processes, cellular stress responses, and immune responses induced by pathogens. A number of studies have previously demonstrated that HIV-1 was capable of altering the regulation of autophagy and that this biological process could be induced in uninfected and infected cells. Furthermore, previous reports have indicated that the involvement of HIV-1 in autophagy regulation is a complex phenomenon and that different viral proteins are contributing in its modulation upon viral infection. Herein, we review the recent literature over the complex crosstalk of the autophagy pathway and HIV-1, with a particular focus on HIV-1 viral proteins, which have been shown to modulate autophagy.
Collapse
|
35
|
Jacomin AC, Samavedam S, Charles H, Nezis IP. iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Autophagy 2017; 13:1782-1789. [PMID: 28806134 PMCID: PMC5640201 DOI: 10.1080/15548627.2017.1356978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Hannah Charles
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Ioannis P Nezis
- a School of Life Sciences , University of Warwick , Coventry , UK
| |
Collapse
|
36
|
Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses 2017; 9:v9070176. [PMID: 28684681 PMCID: PMC5537668 DOI: 10.3390/v9070176] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
37
|
Brief Report: Impaired CD4 T-Cell Response to Autophagy in Treated HIV-1-Infected Individuals. J Acquir Immune Defic Syndr 2017; 74:201-205. [PMID: 27787338 DOI: 10.1097/qai.0000000000001201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy restricts infection of CD4 T lymphocytes by HIV-1, but little is known about autophagy in treated HIV-1-infected individuals. We have analyzed the capability of CD4 T cells from aviremic-treated individuals to trigger autophagy and correlated this response with parameters known to be important for immunological recovery. Autophagy was significantly decreased in CD4 T cells from HIV-1-treated individuals compared with uninfected controls, and this defective autophagic response was more pronounced in individuals with poor CD4 T-cell recovery, suggesting a link between impaired autophagy in CD4 T cells and chronic immunological defects that remain in treated HIV infection.
Collapse
|
38
|
Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM. Role of autophagy in HIV infection and pathogenesis. J Intern Med 2017; 281:422-432. [PMID: 28139864 DOI: 10.1111/joim.12596] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of autophagy is to re-establish homeostasis in response to a variety of stress conditions. By forming double-membrane vesicles, autophagy engulfs damaged or superfluous cytoplasmic material and recycles degradation products for new synthesis or energy production. Of note, the same mechanism is used to capture pathogens and has important implications in both innate and adaptive immunity. To establish a chronic infection, pathogens have therefore evolved multiple mechanisms to evade autophagy-mediated degradation. HIV infection represents one of the best characterized systems in which autophagy is disarmed by a virus using multiple strategies to prevent the sequestration and degradation of its proteins and to establish a chronic infection. HIV alters autophagy at various stages of the process in both infected and bystander cells. In particular, the HIV proteins TAT, NEF and ENV are involved in this regulation by either blocking or stimulating autophagy through direct interaction with autophagy proteins and/or modulation of the mTOR pathway. Although the roles of autophagy during HIV infection are multiple and vary amongst the different cell types, several lines of evidence point to a potential beneficial effect of stimulating autophagy-mediated lysosomal degradation to potentiate the immune response to HIV. Characterization of the molecular mechanisms regulating selective autophagy is expected to be valuable for developing new drugs able to specifically enhance the anti-HIV response.
Collapse
Affiliation(s)
- R Nardacci
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - C Marsella
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - G Ippolito
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - M Piacentini
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy.,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
39
|
Vergne I, Lafont F, Espert L, Esclatine A, Biard-Piechaczyk M. [Autophagy, ATG proteins and infectious diseases]. Med Sci (Paris) 2017; 33:312-318. [PMID: 28367819 DOI: 10.1051/medsci/20173303019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the main functions of the autophagy pathway is to control infections. Intracellular micro-organisms or their products once internalized in the host cell can be directly degraded by autophagy, a process called xenophagy. Autophagy is also involved in other innate immune responses and participates to the adaptive immune system. In addition, several autophagy proteins play a role in the development of infectious diseases independently of their role in the autophagy pathway. To replicate efficiently, pathogens have therefore evolved to counteract this process or to exploit it to their own profit. The review focuses on the relationship between autophagy and micro-organisms, which is highly diverse and complex. Many research groups are now working on this topic to find new therapeutics and/or vaccines. Given the large number of data, we have addressed this subject through some representative examples.
Collapse
Affiliation(s)
- Isabelle Vergne
- IPBS, UMR 5089 CNRS - Université de Toulouse III, 205, route de Narbonne BP 64182, 31077 Toulouse, France
| | - Frank Lafont
- CMPI-CIIL, CNRS UMR 8204 - Inserm U 1019 - Institut Pasteur de Lille - CHRU de Lille - Université de Lille, 1, rue du Pr Calmette, 59019 Lille, France
| | - Lucile Espert
- IRIM (ex-CPBS)-UMR9004, Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, Montpellier, France
| | - Audrey Esclatine
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Universités Paris-Sud et Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Martine Biard-Piechaczyk
- IRIM (ex-CPBS)-UMR9004, Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, Montpellier, France
| |
Collapse
|
40
|
Portilho DM, Persson R, Arhel N. Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 2017; 7:283-292. [PMID: 27879481 DOI: 10.1515/bmc-2016-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
Viruses are entirely dependent on their ability to infect a host cell in order to replicate. To reach their site of replication as rapidly and efficiently as possible following cell entry, many have evolved elaborate mechanisms to hijack the cellular transport machinery to propel themselves across the cytoplasm. Long-range movements have been shown to involve motor proteins along microtubules (MTs) and direct interactions between viral proteins and dynein and/or kinesin motors have been well described. Although less well-characterized, it is also becoming increasingly clear that non-motile microtubule-associated proteins (MAPs), including structural MAPs of the MAP1 and MAP2 families, and microtubule plus-end tracking proteins (+TIPs), can also promote viral trafficking in infected cells, by mediating interaction of viruses with filaments and/or motor proteins, and modulating filament stability. Here we review our current knowledge on non-motile MAPs, their role in the regulation of cytoskeletal dynamics and in viral trafficking during the early steps of infection.
Collapse
|
41
|
Lippai M, Szatmári Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol 2016; 33:145-168. [PMID: 27957648 DOI: 10.1007/s10565-016-9374-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Autophagy is a lysosomal degradation pathway of eukaryotic cells that is highly conserved from yeast to mammals. During this process, cooperating protein complexes are recruited in a hierarchic order to the phagophore assembly site (PAS) to mediate the elongation and closure of double-membrane vesicles called autophagosomes, which sequester cytosolic components and deliver their content to the endolysosomal system for degradation. As a major cytoprotective mechanism, autophagy plays a key role in the stress response against nutrient starvation, hypoxia, and infections. Although numerous studies reported that impaired function of core autophagy proteins also contributes to the development and progression of various human diseases such as neurodegenerative disorders, cardiovascular and muscle diseases, infections, and different types of cancer, the function of this process in human diseases remains unclear. Evidence often suggests a controversial role for autophagy in the pathomechanisms of these severe disorders. Here, we provide an overview of the molecular mechanisms of autophagy and summarize the recent advances on its function in human health and disease.
Collapse
Affiliation(s)
- Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
42
|
Singh SK, Andersson AM, Ellegård R, Lindestam Arlehamn CS, Sette A, Larsson M, Stendahl O, Blomgran R. HIV Interferes with Mycobacterium tuberculosis Antigen Presentation in Human Dendritic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3083-3093. [PMID: 27746182 DOI: 10.1016/j.ajpath.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/01/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
HIV coinfection is the most prominent risk factor for progression of Mycobacterium tuberculosis (Mtb) infection into active tuberculosis (TB) disease. The mechanisms behind the increased transition from latent to active TB in coinfected individuals have not been well elucidated at the cellular level. We hypothesized that HIV infection contributes to Mtb pathogenesis by interfering with the dendritic cell (DC)-mediated immune control. Mtb-antigen processing and presentation are key events in the immune response against TB. Human immature DCs coinfected with HIV/Mtb had decreased expression of human leukocyte antigen antigen D related and the costimulatory molecules CD40, CD80, and CD86. In addition, Mtb-infected DCs triggered a significant release of the proinflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-α, whereas coinfected DCs did not. To assess the DC antigen presentation capacity, we measured interferon-γ from co-cultures of DCs and autologous Mtb antigen-specific CD4+ T cells. Interferon-γ release was significantly reduced when purified protein derivative- and Ag85B-specific CD4+ T cells had been activated with coinfected DCs compared to Mtb-infected DCs, and this effect was attributed to Mtb antigen processing rather than peptide-major histocompatibility complex class II loading. Evaluating autophagy as a measure of vesicular processing and maturation further revealed that HIV efficiently blocks initiation of this pathway during coinfection. Overall, our results demonstrate that HIV impairs Mtb antigen presentation in DCs, thereby suppressing an important cell linking innate and adaptive immune response in TB.
Collapse
Affiliation(s)
- Susmita K Singh
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Anna-Maria Andersson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stendahl
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Blomgran
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
43
|
Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, Choi A, O'Brien-Ladner A, Dhillon NK. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension. Autophagy 2016; 12:2420-2438. [PMID: 27723373 DOI: 10.1080/15548627.2016.1238551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.
Collapse
Affiliation(s)
- Pranjali Dalvi
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Himanshu Sharma
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mahendran Chinnappan
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Miles Sanderson
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Julie Allen
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Ruoxi Zeng
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Augustine Choi
- b Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Amy O'Brien-Ladner
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Navneet K Dhillon
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA.,c Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
44
|
Paul P, Münz C. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond. Adv Virus Res 2016; 95:149-95. [PMID: 27112282 DOI: 10.1016/bs.aivir.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an important cellular catabolic process conserved from yeast to man. Double-membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. However, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facilitating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host-pathogen coevolution.
Collapse
Affiliation(s)
- P Paul
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 2015; 212:979-90. [PMID: 26101267 PMCID: PMC4493419 DOI: 10.1084/jem.20150956] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
46
|
Espert L, Beaumelle B, Vergne I. Autophagy in Mycobacterium tuberculosis and HIV infections. Front Cell Infect Microbiol 2015; 5:49. [PMID: 26082897 PMCID: PMC4451423 DOI: 10.3389/fcimb.2015.00049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (M.tb) are among the most lethal human pathogens worldwide, each being responsible for around 1.5 million deaths annually. Moreover, synergy between acquired immune deficiency syndrome (AIDS) and tuberculosis (TB) has turned HIV/M.tb co-infection into a major public health threat in developing countries. In the past decade, autophagy, a lysosomal catabolic process, has emerged as a major host immune defense mechanism against infectious agents like M.tb and HIV. Nevertheless, in some instances, autophagy machinery appears to be instrumental for HIV infection. Finally, there is mounting evidence that both pathogens deploy various countermeasures to thwart autophagy. This mini-review proposes an overview of the roles and regulations of autophagy in HIV and M.tb infections with an emphasis on microbial factors. We also discuss the role of autophagy manipulation in the context of HIV/M.tb co-infection. In future, a comprehensive understanding of autophagy interaction with these pathogens will be critical for development of autophagy-based prophylactic and therapeutic interventions for AIDS and TB.
Collapse
Affiliation(s)
- Lucile Espert
- CPBS FRE 3689 Centre National de la Recherche Scientifique, UM Montpellier, France
| | - Bruno Beaumelle
- CPBS FRE 3689 Centre National de la Recherche Scientifique, UM Montpellier, France
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 Centre National de la Recherche Scientifique - Université de Toulouse Toulouse, France
| |
Collapse
|