1
|
Cao B, Wu C, Liu M, Song S, Wu T, Yuan T, Ding P, Wang T, Zhong L. Molecular Transmission Network and Drug Resistance in Treatment-Naive HIV-1-Infected Patients in the Liangshan District, China. AIDS Res Hum Retroviruses 2024; 40:489-495. [PMID: 38787318 DOI: 10.1089/aid.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
This study aimed to investigate the molecular transmission network and drug resistance in treatment-naive HIV-1-infected patients in the Liangshan District, China. The research subjects for this study were HIV-1-infected patients who did not receive any antiretroviral therapy (ART) in the Liangshan District between January 2022 and July 2023. Peripheral venous whole-blood samples were collected from the research subjects. Two milliliters of blood was used for CD4+ T lymphocyte counting detection. Ten milliliters of blood was centrifuged to separate the plasma and blood cells for quantitative detection of HIV-1 RNA and DNA and drug resistance testing of HIV-1. A total of 156 participants were included in this study (88 males and 68 females). The median age of the participants was 37 years. The findings revealed a positive correlation between the HIV-1 DNA and the HIV-1 RNA levels (r = 0.478, p < 0.001). However, a negative correlation was observed between the HIV-1 DNA levels and CD4+ T lymphocyte counts (r = -0.186, p = 0.020). Of the 156 participants, 145 were successfully tested for drug resistance of HIV-1 RNA and HIV-1 DNA simultaneously. Four cases failed the HIV-1 RNA drug resistance testing, and another two failed the HIV-1 DNA drug resistance testing. The most common HIV-1 subtype was the CRF07_BC recombinant. In this study, the overall incidence of transmitted drug resistance (TDR) was 8.33%. The resistance rates of non-nucleoside reverse transcriptase inhibitor (NNRTI) and protease inhibitor (PI) were 7.69% and 0.64%, respectively. In addition, 32 participants were found to have drug-resistant mutations. The primary drug-resistant mutations were K103N, V179D, E157Q, and A128T, mainly against efavirenz (EFV) and nevirapine (NVP) resistance. The drug resistance of HIV-1-infected ART-naive patients in the Liangshan District cannot be ignored. HIV-1 drug resistance testing is recommended before initiating ART.
Collapse
Affiliation(s)
- Bianchuan Cao
- Department of Infectious Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Tuberculosis, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Infection and Immune Laboratory, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Caihong Wu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Mei Liu
- Antiviral Therapy Center, the First People's Hospital of Yuexi County, Liangshan, China
| | - Shaofang Song
- Antiviral Therapy Center, the First People's Hospital of Yuexi County, Liangshan, China
| | - Tao Wu
- Antiviral Therapy Center, the First People's Hospital of Yuexi County, Liangshan, China
| | - Tianru Yuan
- Antiviral Therapy Center, the First People's Hospital of Yuexi County, Liangshan, China
| | - Ping Ding
- Antiviral Therapy Center, the First People's Hospital of Yuexi County, Liangshan, China
| | - Tong Wang
- MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Li Zhong
- Department of Infectious Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Tuberculosis, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Infection and Immune Laboratory, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
MOOLLA H, DAVIES MA, DAVIES C, EUVRARD J, PROZESKY HW, FOX MP, ORRELL C, VON GROOTE P, JOHNSON LF. The effect of care interruptions on mortality in adults resuming antiretroviral therapy. AIDS 2024; 38:1198-1205. [PMID: 38814712 PMCID: PMC11141523 DOI: 10.1097/qad.0000000000003859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To estimate the relative rate of all-cause mortality amongst those on antiretroviral treatment (ART) with a history of interruptions compared with those with no previous interruptions in care. DESIGN Retrospective cohort study. METHODS We used data from four South African cohorts participating in the International epidemiology Databases to Evaluate AIDS Southern Africa collaboration. We included adults who started ART between 2004 and 2019. We defined a care interruption as a gap in contact longer than 180 days. Observation time prior to interruption was allocated to a 'no interruption' group. Observation time after interruption was allocated to one of two groups based on whether the first interruption started before 6 months of ART ('early interruption') or later ('late interruption'). We used Cox regression to estimate hazard ratios. RESULTS Sixty-three thousand six hundred and ninety-two participants contributed 162 916 person-years of observation. There were 3469 deaths. Most participants were female individuals (67.4%) and the median age at ART initiation was 33.3 years (interquartile range: 27.5-40.7). Seventeen thousand and eleven (26.7%) participants experienced care interruptions. Those resuming ART experienced increased mortality compared with those with no interruptions: early interrupters had a hazard ratio of 4.37 (95% confidence interval (CI) 3.87-4.95) and late interrupters had a hazard ratio of 2.74 (95% CI 2.39-3.15). In sensitivity analyses, effect sizes were found to be proportional to the length of time used to define interruptions. CONCLUSION Our findings highlight the need to improve retention in care, regardless of treatment duration. Programmes to encourage return to care also need to be strengthened.
Collapse
Affiliation(s)
- Haroon MOOLLA
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Mary-Ann DAVIES
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Claire DAVIES
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Jonathan EUVRARD
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Hans W. PROZESKY
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Matthew P. FOX
- Department of Epidemiology and Department of Global Health, Boston University, Boston, Massachusetts, USA
| | | | - Per VON GROOTE
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Leigh F. JOHNSON
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
3
|
Alagaratnam J, Stöhr W, Hamlyn E, Porter K, Toombs J, Heslegrave A, Zetterberg H, Gisslén M, Underwood J, Schechter M, Kaleebu P, Tambussi G, Kinloch S, Miro JM, Kelleher AD, Babiker A, Frater J, Winston A, Fidler S. Impact of interrupting antiretroviral therapy started during primary HIV-1 infection on plasma neurofilament light chain protein, a marker of neuronal injury: The SPARTAC trial. J Virus Erad 2024; 10:100381. [PMID: 38988673 PMCID: PMC11234014 DOI: 10.1016/j.jve.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Antiretroviral therapy (ART)-conferred suppression of HIV replication limits neuronal injury and inflammation. ART interruption tests efficacy in HIV cure trials and viral rebound after ART interruption may induce neuronal injury. We investigated the impact of protocol-defined ART interruption, commenced during primary HIV-1 infection (PHI) on a biomarker of neuro-axonal injury (neurofilament light protein (NfL)), and its associations with inflammation (D-dimer and interleukin-6 (IL-6)) and HIV-1 reservoir size (total HIV-1 DNA). Design Retrospective study measuring plasma NfL in 83 participants enrolled in SPARTAC randomised to receive 48-weeks ART initiated during PHI, followed by ART interruption. Methods NfL (Simoa immunoassay, Quanterix™) was measured before ART, after 48 weeks on ART, and 12 weeks after stopping ART. Plasma D-dimer and IL-6, and total HIV-1 DNA in peripheral CD4+ T-cells results were available in a subset of participants. Longitudinal NfL changes were assessed using mixed models, and associations with clinical and laboratory parameters using linear regression. Results NfL decreased following 48-weeks ART (geometric mean 6.9 to 5.8 pg/mL, p = 0.006) with no further significant change up to 12-weeks post-stopping ART despite viral rebound in the majority of participants (median 1.7 to 3.9 plasma HIV-1 RNA log10 copies/mL). Higher baseline NfL was independently associated with higher plasma HIV-1 RNA (p = 0.020) and older age (p = 0.002). While NfL was positively associated with D-dimer (n = 48; p = 0.002), there was no significant association with IL-6 (n = 48) or total HIV-1 DNA (n = 51). Conclusions Using plasma NfL as a surrogate marker, a decrease in neuro-axonal injury was observed in a cohort of participants following ART initiation during PHI, with no evidence of neuro-axonal injury rebound following ART interruption for up to 12 weeks, despite viral rebound in the majority of participants.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - Elizabeth Hamlyn
- Caldecot Centre, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| | - Kholoud Porter
- Institute for Global Health, University College London, London, United Kingdom
| | - Jamie Toombs
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Jonathan Underwood
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mauro Schechter
- Projeto Praça Onze, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Sabine Kinloch
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, United Kingdom
| | - Jose M Miro
- Infectious Diseases Service, Hospital Clinic - IDIBAPS. University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Abdel Babiker
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Anderson M, Phinius BB, Phakedi BK, Mudanga M, Bhebhe LN, Tlhabano GN, Motshosi P, Ratsoma T, Baruti K, Mpebe G, Choga WT, Marlink R, Glebe D, Blackard JT, Moyo S, Kramvis A, Gaseitsiwe S. Persistence and risk factors of occult hepatitis B virus infections among antiretroviral therapy-naïve people living with HIV in Botswana. Front Microbiol 2024; 15:1342862. [PMID: 38784816 PMCID: PMC11112038 DOI: 10.3389/fmicb.2024.1342862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Aim This study aimed to determine the kinetics of occult hepatitis B virus infections (OBI) among people with HIV (PWH). Methods The study used archived plasma samples from longitudinal HIV natural history studies. We identified new OBI cases and assessed risk factors for OBI using Cox proportional hazards regression analysis. Results At baseline, 8 of 382 [(2.1%) (95% CI: 1.06-4.1)] samples tested positive for hepatitis B surface antigen (HBsAg+). Of the 374 HBsAg-negative samples, 76 had sufficient sample volume for HBV DNA screening. OBI positivity (OBI+) at baseline was reported in 11 of 76 [14.7 95% CI (8.3-24.1)] HBsAg-negative (HBsAg-) participants. Baseline HBsAg-negative samples with sufficient follow-up samples (n = 90) were used for analysis of newly identified OBI cases. Participants contributed 129.74 person-years to the study and were followed for a median of 1.02 years (IQR: 1.00-2.00). Cumulatively, there were 34 newly identified OBI cases from the 90 participants, at the rate of 26.2/100 person-years (95% CI: 18.7-36.7). Newly identified OBI cases were more common among men than women (61.1% vs. 31.9%) and among participants with CD4+ T-cell counts ≤450 cells/mL (p-value = 0.02). Most of the newly identified OBI cases [55.9% (19/34)] were possible reactivations as they were previously HBV core antibody positive. Conclusion There was a high rate of newly identified OBI among young PWH in Botswana, especially in men and in participants with lower CD4+ T-cell counts. OBI screening in PWH should be considered because of the risk of transmission, possible reactivation, and risk factors for the development of chronic liver disease, including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Motswedi Anderson
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Bonolo B. Phinius
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Mbatshi Mudanga
- Botswana – University of Maryland School of Medicine Health Initiative, Gaborone, Botswana
| | - Lynnette N. Bhebhe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Girlie N. Tlhabano
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Patience Motshosi
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Tsholofelo Ratsoma
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Kabo Baruti
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Gorata Mpebe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Wonderful T. Choga
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Richard Marlink
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, United States
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University of Giessen, Giessen, Germany
| | - Jason T. Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sikhulile Moyo
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Division of Medical Virology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Simani Gaseitsiwe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
5
|
Li JZ, Melberg M, Kittilson A, Abdel-Mohsen M, Li Y, Aga E, Bosch RJ, Wonderlich ER, Kinslow J, Giron LB, Di Germanio C, Pilkinton M, MacLaren L, Keefer M, Fox L, Barr L, Acosta E, Ananworanich J, Coombs R, Mellors J, Deeks S, Gandhi RT, Busch M, Landay A, Macatangay B, Smith DM. Predictors of HIV rebound differ by timing of antiretroviral therapy initiation. JCI Insight 2024; 9:e173864. [PMID: 38329130 PMCID: PMC10967395 DOI: 10.1172/jci.insight.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.
Collapse
Affiliation(s)
- Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yijia Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evgenia Aga
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Clara Di Germanio
- University of California, San Francisco, San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Mark Pilkinton
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lawrence Fox
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Liz Barr
- AIDS Clinical Trials Group Community Scientific Subcommittee, Los Angeles, California, USA
| | | | | | | | - John Mellors
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven Deeks
- University of California, San Francisco, San Francisco, California, USA
| | - Rajesh T. Gandhi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California, USA
| | - Alan Landay
- Rush University Medical Center, Chicago, Illinois, USA
| | | | - Davey M. Smith
- University of California, San Diego, San Diego, California, USA
| | | |
Collapse
|
6
|
Passaes C, Desjardins D, Chapel A, Monceaux V, Lemaitre J, Mélard A, Perdomo-Celis F, Planchais C, Gourvès M, Dimant N, David A, Dereuddre-Bosquet N, Barrail-Tran A, Gouget H, Guillaume C, Relouzat F, Lambotte O, Guedj J, Müller-Trutwin M, Mouquet H, Rouzioux C, Avettand-Fenoël V, Le Grand R, Sáez-Cirión A. Early antiretroviral therapy favors post-treatment SIV control associated with the expansion of enhanced memory CD8 + T-cells. Nat Commun 2024; 15:178. [PMID: 38212337 PMCID: PMC10784587 DOI: 10.1038/s41467-023-44389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs. late (week 24 post-infection) treatment initiation in SIVmac251-infected male cynomolgus macaques receiving 2 years of therapy before analytical treatment interruption. We show that early treatment strongly promotes post-treatment control, which is not related to a lower frequency of infected cells at treatment interruption. Rather, early treatment favors the development of long-term memory CD8+ T cells with enhanced proliferative and SIV suppressive capacity that are able to mediate a robust secondary-like response upon viral rebound. Our model allows us to formally demonstrate a link between treatment initiation during primary infection and the promotion of post-treatment control and provides results that may guide the development of new immunotherapies for HIV remission.
Collapse
Affiliation(s)
- Caroline Passaes
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France.
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France.
| | - Delphine Desjardins
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Anaïs Chapel
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Julien Lemaitre
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Adeline Mélard
- Université Paris Cité; INSERM, U1016; CNRS, UMR8104, Paris, France
| | - Federico Perdomo-Celis
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Maël Gourvès
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
| | - Nastasia Dimant
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Annie David
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Aurélie Barrail-Tran
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, Service de Pharmacie, Le Kremlin Bicêtre, France
| | - Hélène Gouget
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Céline Guillaume
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
- Université Paris-Saclay, AP-HP. Hôpital Bicêtre, Clinical Immunology Department, 94270, Le Kremlin Bicêtre, France
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Christine Rouzioux
- Université Paris Cité/APHP Hôpital Necker - Enfants Malades, Paris, France
| | - Véronique Avettand-Fenoël
- Université Paris Cité; INSERM, U1016; CNRS, UMR8104, Paris, France
- APHP Hôpital Cochin, Service de Virologie, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France.
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France.
| |
Collapse
|
7
|
Pinkevych M, Docken SS, Okoye AA, Fennessey CM, Del Prete GQ, Pino M, Harper JL, Betts MR, Paiardini M, Keele BF, Davenport MP. Timing of initiation of anti-retroviral therapy predicts post-treatment control of SIV replication. PLoS Pathog 2023; 19:e1011660. [PMID: 37801446 PMCID: PMC10558076 DOI: 10.1371/journal.ppat.1011660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023] Open
Abstract
One approach to 'functional cure' of HIV infection is to induce durable control of HIV replication after the interruption of antiretroviral therapy (ART). However, the major factors that determine the viral 'setpoint' level after treatment interruption are not well understood. Here we combine data on ART interruption following SIV infection for 124 total animals from 10 independent studies across 3 institutional cohorts to understand the dynamics and predictors of post-treatment viral control. We find that the timing of treatment initiation is an important determinant of both the peak and early setpoint viral levels after treatment interruption. During the first 3 weeks of infection, every day of delay in treatment initiation is associated with a 0.22 log10 copies/ml decrease in post-rebound peak and setpoint viral levels. However, delay in initiation of ART beyond 3 weeks of infection is associated with higher post-rebound setpoint viral levels. For animals treated beyond 3 weeks post-infection, viral load at ART initiation was the primary predictor of post-rebound setpoint viral levels. Potential alternative predictors of post-rebound setpoint viral loads including cell-associated DNA or RNA, time from treatment interruption to rebound, and pre-interruption CD8+ T cell responses were also examined in the studies where these data were available. This analysis suggests that optimal timing of treatment initiation may be an important determinant of post-treatment control of HIV.
Collapse
Affiliation(s)
- Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, New South Wales, Australia
| | - Steffen S. Docken
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, New South Wales, Australia
| | - Afam A. Okoye
- Vaccine & Gene Therapy Institute, and Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine; Emory University, Atlanta, Georgia, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Bottanelli M, Ceccarelli D, Lolatto R, Galli L, Guffanti M, Dell'Acqua R, Ponta G, Mori G, Castagna A, Muccini C. Risk of Cardiovascular Diseases or Mortality in People With Higher Values of HIV-1 DNA. J Acquir Immune Defic Syndr 2023; 93:e6-e8. [PMID: 36989135 DOI: 10.1097/qai.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Affiliation(s)
- Martina Bottanelli
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Ceccarelli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Lolatto
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Guffanti
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Dell'Acqua
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Ponta
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Mori
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Muccini
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Zhou C, Wu Y, Zhang Y, Wang Y, Wu H, Zhang T, Chen G, Huang X. Factors associated with post-treatment control of viral load in HIV-infected patients: a systematic review and meta-analysis. Int J Infect Dis 2023; 129:216-227. [PMID: 36707043 DOI: 10.1016/j.ijid.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the factors associated with maintenance of viral suppression after antiretroviral therapy (ART) discontinuation. METHODS Databases were searched for studies published between January 01, 2011, and July 01, 2022, that correlated the time of virus rebound with treatment interruption (TI). The corresponding data were extracted from these studies. A fixed-effects model was used to calculate pooled estimates. RESULTS Thirty-one studies were included in this analysis. Results showed that patients who started ART during acute or early infection had longer viral control than those who started ART during chronic infection. It has been reported that some broadly neutralizing HIV-1-specific antibodies can significantly prolong viral inhibition. The study also found that approximately 7.2% of patients achieved post-treatment control (PTC) approximately a year after TI. CONCLUSION ART initiation in the acute or early phases can delay viral rebound after TI. Cell-associated HIV RNA and HIV DNA have been difficult to prove as able to predict viral rebound time. Many vaccines and antibodies have also been shown to be effective in prolonging viral control in people without PTC, and more research is needed to develop alternative ART therapies that can effectively inhibit or even eliminate HIV.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China; Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yaxin Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingying Wang
- Department of Internal Medicine, Shenzhen Hospital of the University of Hong Kong, Shenzhen, China
| | - Hao Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Abstract
Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.
Collapse
|
11
|
Chu C, Armenia D, Walworth C, Santoro MM, Shafer RW. Genotypic Resistance Testing of HIV-1 DNA in Peripheral Blood Mononuclear Cells. Clin Microbiol Rev 2022; 35:e0005222. [PMID: 36102816 PMCID: PMC9769561 DOI: 10.1128/cmr.00052-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as integrated proviruses. In patients with plasma viremia, most peripheral blood mononuclear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART), most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type virus populations than they are in plasma, explaining why next-generation sequencing is particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing high levels of active virus replication, the DRMs detected in PBMCs and in plasma are usually highly concordant. However, in patients with lower levels of virus replication, it may take several months for plasma virus DRMs to reach detectable levels in PBMCs. This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT) is less sensitive than historical plasma virus GRT, if previous episodes of virological failure and emergent DRMs were either not prolonged or not associated with high levels of plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies have examined the predictive value of DRMs on the response to a simplified ART regimen. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics, particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-1 GRT, and the scenarios in which PBMC GRT has been used clinically.
Collapse
Affiliation(s)
- Carolyn Chu
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - Daniele Armenia
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Charles Walworth
- LabCorp-Monogram Biosciences, South San Francisco, California, USA
| | - Maria M. Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Samer S, Thomas Y, Araínga M, Carter C, Shirreff LM, Arif MS, Avita JM, Frank I, McRaven MD, Thuruthiyil CT, Heybeli VB, Anderson MR, Owen B, Gaisin A, Bose D, Simons LM, Hultquist JF, Arthos J, Cicala C, Sereti I, Santangelo PJ, Lorenzo-Redondo R, Hope TJ, Villinger FJ, Martinelli E. Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo. JCI Insight 2022; 7:e162290. [PMID: 36125890 PMCID: PMC9675457 DOI: 10.1172/jci.insight.162290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
TGF-β plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-β-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-β and a TGF-β type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-β reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-β signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.
Collapse
Affiliation(s)
- Sadia Samer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mariluz Araínga
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Crystal Carter
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Lisa M. Shirreff
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Muhammad S. Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Juan M. Avita
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher T. Thuruthiyil
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Veli B. Heybeli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benjamin Owen
- Integrated Molecular Structure Education and Research (IMSERC), Northwestern University, Evanston, Illinois, USA
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research (IMSERC), Northwestern University, Evanston, Illinois, USA
| | - Deepanwita Bose
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Lacy M. Simons
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip J. Santangelo
- WH Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francois J. Villinger
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
13
|
Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8+ T cells. EBioMedicine 2022; 84:104253. [PMID: 36088683 PMCID: PMC9471490 DOI: 10.1016/j.ebiom.2022.104253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background Harnessing CD8+ T cell responses is being explored to achieve HIV remission. Although HIV-specific CD8+ T cells become dysfunctional without treatment, antiretroviral therapy (ART) partially restores their function. However, the extent of this recovery under long-term ART is less understood. Methods We analyzed the differentiation status and function of HIV-specific CD8+ T cells after long-term ART initiated in acute or chronic HIV infection ex vivo and upon in vitro recall. Findings ART initiation in any stage of acute HIV infection promoted the persistence of long-lived HIV-specific CD8+ T cells with high expansion (P<0·0008) and cytotoxic capacity (P=0·02) after in vitro recall, albeit at low cell number (P=0·003). This superior expansion capacity correlated with stemness (r=0·90, P=0·006), measured by TCF-1 expression, similar to functional HIV-specific CD8+ T cells found in spontaneous controllers. Importanly, TCF-1 expression in these cells was associated with longer time to viral rebound ranging from 13 to 48 days after ART interruption (r =0·71, P=0·03). In contrast, ART initiation in chronic HIV infection led to more differentiated HIV-specific CD8+ T cells lacking stemness properties and exhibiting residual dysfunction upon recall, with reduced proliferation and cytolytic activity. Interpretation ART initiation in acute HIV infection preserves functional HIV-specific CD8+ T cells, albeit at numbers too low to control viral rebound post-ART. HIV remission strategies may need to boost HIV-specific CD8+ T cell numbers and induce stem cell-like properties to reverse the residual dysfunction persisting on ART in people treated after acute infection prior to ART release. Funding U.S. National Institutes of Health and U.S. Department of Defense.
Collapse
|
14
|
Adams P, Berkhout B, Pasternak AO. Towards a molecular profile of antiretroviral therapy-free HIV remission. Curr Opin HIV AIDS 2022; 17:301-307. [PMID: 35938464 DOI: 10.1097/coh.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To summarize the current status and highlight recent findings on predictive biomarkers for posttreatment HIV control (PTC) and virological remission. While historically, many studies focused on virological markers, there is an increasing tendency to enter immune and metabolic factors into the equation. RECENT FINDINGS On the virological side, several groups reported that cell-associated HIV RNA could predict time to viral rebound. Recent data hints at the possible importance of the genic location and chromatin context of the integrated provirus, although these factors still need to be assessed in relation to PTC and virological remission. Evidence from immunological studies highlighted innate and humoral immunity as important factors for prolonged HIV remission. Interestingly, novel metabolic markers have emerged, which offer additional angles to our understanding of latency and viral rebound. SUMMARY Facilitating PTC and virological remission remain top priorities for the HIV cure research. We advocate for clear and precise definitions for both phenomena in order to avoid misconceptions and to strengthen the conclusions that can be drawn. As no one-size-fits-all marker has emerged yet, more biomarkers are on the horizon, and viral rebound is a complex and heterogeneous process, it is likely that a combination of various biomarkers in cohesion will be necessary for a more accurate prediction of antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Philipp Adams
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The quest for HIV-1 cure could take advantage of the study of rare individuals that control viral replication spontaneously (elite controllers) or after an initial course of antiretroviral therapy (posttreatment controllers, PTCs). In this review, we will compare back-to-back the immunological and virological features underlying viral suppression in elite controllers and PTCs, and explore their possible contributions to the HIV-1 cure research. RECENT FINDINGS HIV-1 control in elite controllers shows hallmarks of an effective antiviral response, favored by genetic background and possibly associated to residual immune activation. The immune pressure in elite controllers might select against actively transcribing intact proviruses, allowing the persistence of a small and poorly inducible reservoir. Evidence on PTCs is less abundant but preliminary data suggest that antiviral immune responses may be less pronounced. Therefore, these patients may rely on distinct mechanisms, not completely elucidated to date, suppressing HIV-1 transcription and replication. SUMMARY PTCs and elite controllers may control HIV replication using distinct pathways, the elucidation of which may contribute to design future interventional strategies aiming to achieve a functional cure.
Collapse
|
16
|
Pace M, Ogbe A, Hurst J, Robinson N, Meyerowitz J, Olejniczak N, Thornhill JP, Jones M, Waters A, Lwanga J, Kuldanek K, Hall R, Zacharopoulou P, Martin GE, Brown H, Nwokolo N, Peppa D, Fox J, Fidler S, Frater J. Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNA following treatment interruption. Front Immunol 2022; 13:878743. [PMID: 36110857 PMCID: PMC9468877 DOI: 10.3389/fimmu.2022.878743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells play a key role in controlling HIV replication, with potential downstream impact on the size of the HIV reservoir and likelihood of viral rebound after antiretroviral therapy (ART) cessation. It is therefore important to understand how primary HIV infection (PHI) disrupts NK cell function, and how these functions are restored by early ART. We examined the impact of commencing ART during PHI on phenotypic and functional NK cell markers at treatment initiation (baseline), 3 months, 1 year, and 2 years in seven well-characterised participants in comparison to HIV seronegative volunteers. We then examined how those NK cell properties differentially impacted by ART related to time to viral rebound and HIV DNA levels in 44 individuals from the SPARTAC trial who stopped ART after 48 weeks treatment, started during PHI. NK cell markers that were significantly different between the seven people with HIV (PWH) treated for 2 years and HIV uninfected individuals included NKG2C levels in CD56dim NK cells, Tim-3 expression in CD56bright NK cells, IFN-γ expressed by CD56dim NK cells after IL-12/IL-18 stimulation and the fraction of Eomes-/T-bet+ in CD56dim and CD56bright NK cells. When exploring time to viral rebound after stopping ART among the 44 SPARTAC participants, no single NK phenotypic marker correlated with control. Higher levels of IL-12/IL-18 mediated NK cell degranulation at baseline were associated with longer times to viral rebound after treatment interruption (P=0.028). Additionally, we found higher fractions of CD56dim NK cells in individuals with lower levels of HIV DNA (P=0.048). NKG2A and NKp30 levels in CD56neg NK cells were higher in patients with lower HIV DNA levels (p=0.00174, r=-0.49 and p=0.03, r= -0.327, respectively) while CD27 levels were higher in those with higher levels of HIV DNA (p=0.026). These data show NK cell functions are heterogeneously impacted by HIV infection with a mixed picture of resolution on ART, and that while NK cells may affect HIV DNA levels and time to viral rebound, no single NK cell marker defined delayed viral rebound.
Collapse
Affiliation(s)
- Matthew Pace
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Etcembly Ltd, Harwell Campus, Didcot, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P. Thornhill
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mathew Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anele Waters
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Julianne Lwanga
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Kristen Kuldanek
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Rebecca Hall
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | | | - Genevieve E. Martin
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Helen Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Department of HIV/GUM, Chelsea and Westminster Hospital, London, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College, London, United Kingdom
| | - Julie Fox
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Sarah Fidler
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial College Biomedical Research Centre, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
17
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
18
|
External quality assessment of HIV-1 DNA quantification assays used in the clinical setting in Italy. Sci Rep 2022; 12:3291. [PMID: 35228581 PMCID: PMC8885833 DOI: 10.1038/s41598-022-07196-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractTotal cell-associated HIV-1 DNA is a surrogate marker of the HIV-1 reservoir, however, certified systems for its quantification are not available. The Italian HIV DNA Network was launched to validate HIV-1 DNA quantification methods in use at University and Hospital labs. A quality control panel including HIV-1 DNA standards, reconstructed blood samples (RBSs) and DNA from different HIV-1 subtypes was blindly tested by 12 participating labs by quantitative real-time PCR (n = 6), droplet digital PCR (n = 3) or both (n = 3). The median 95% hit rate was 4.6 (3.7–5.5) copies per test and linearity in the tested range was excellent (R2 = 1.000 [1.000–1.000]). The median values obtained across labs were 3,370 (2,287–4,245), 445 (299–498), 59 (40–81) and 7 (6–11) HIV-1 DNA copies, for the 3,584, 448, 56 and 7-copy standards, respectively. With RBSs, measured values were within twofold with respect to the median in two thirds of cases. HIV-1 subtypes were missed (CRF01_AE by 3 labs) or underestimated by > 1 log (subtypes A, C, D, F by one lab; CRF01_AE by one lab; CRF02_AG by one lab). The overall performance was excellent with HIV-1 DNA standards, however detection of different HIV-1 subtypes must be improved.
Collapse
|
19
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
20
|
Li Y, Mohammadi A, Li JZ. Challenges and Promise of Human Immunodeficiency Virus Remission. J Infect Dis 2021; 223:4-12. [PMID: 33586773 DOI: 10.1093/infdis/jiaa568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication but it is unable to fully eradicate the HIV reservoir and treatment must be life-long. Progress toward a strategy for HIV remission will require overcoming key hurdles to fill gaps in our understanding of HIV persistence, but the identification of individuals who have attained sterilizing or functional HIV cure show that such a goal is achievable. In this review, we first outline challenges in targeting the HIV reservoir, including difficulties identifying HIV-infected cells, ongoing work elucidating the complex intracellular environment that contribute to HIV latency, and barriers to reactivating and clearing the HIV reservoir. We then review reported cases of HIV sterilizing cure and explore natural models of HIV remission and the promise that such HIV spontaneous and posttreatment controllers may hold in our search for a broadly-applicable strategy for the millions of patients living with HIV.
Collapse
Affiliation(s)
- Yijia Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abbas Mohammadi
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
McMahon J, Lewin SR, Rasmussen TA. Viral, inflammatory, and reservoir characteristics of posttreatment controllers. Curr Opin HIV AIDS 2021; 16:249-256. [PMID: 34334614 DOI: 10.1097/coh.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of studies to date that have identified posttreatment controllers (PTCs) and to explore current evidence around clinical characteristics, immune effector function, and inflammatory and viral reservoir characteristics that may underlie the control mechanism. RECENT FINDINGS PTCs are broadly defined as individuals capable of maintaining control of HIV replication after cessation of antiretroviral therapy (ART). While starting ART early after HIV infection is associated with PTC, genetic disposition or CD8+ T-cell function do not appear to explain this phenomenon, but these features have not been exhaustively analyzed in PTCs. A lower frequency of latently infected cells prior to stopping ART has been associated with achieving PTC, including a lower level of intact HIV DNA, but more studies are needed to map the genetic location, epigenetic characteristics, and tissue distribution of the intact HIV reservoir in PTCs. SUMMARY Current studies are small and heterogeneous and there is a significant need to agree on a uniform definition of PTC. Many aspects of PTC are still unexplored including whether specific features of genetic disposition, immune effector functions, and/or viral reservoir characteristics play a role in PTC. A large multisite international cohort study could aide in providing the important insights needed to fully understand PTC.
Collapse
Affiliation(s)
- James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University
- Department of Infectious Diseases, Monash Medical Centre
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Aarhus University Hospital, Arhus, Denmark
| |
Collapse
|
22
|
Nozza S, Galli L, Gianotti N, Parisi M, Poli A, Cinque P, Spagnuolo V, Bruzzesi E, Mastrangelo A, Castagna A. HIV-DNA undetectability during chronic HIV infection: frequency and predictive factors. J Antimicrob Chemother 2021; 75:2994-2997. [PMID: 32585684 DOI: 10.1093/jac/dkaa235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND HIV-DNA is a marker of HIV reservoirs. Objectives of the study were to determine prevalence of HIV-DNA < 100 copies/106 PBMCs in blood and to identify factors associated with this in a cohort of HIV-1-infected subjects treated with ART and with undetectable viral load (VL). METHODS This was a cross-sectional study on chronic HIV-1-infected people living with HIV (PLWH) followed up at the Department of Infectious Diseases of San Raffaele Scientific Institute on current ART without change for 12 months, with available pre-ART HIV-RNA and with undetectable VL for ≥12 months. HIV-DNA was amplified and quantified by real-time PCR (ABI Prism 7900); limit of detectability was 100 copies/106 PBMCs. Logistic regression was used to identify predictive factors for HIV-DNA < 100 copies/106 PBMCs. RESULTS Four hundred and sixty-eight PLWH were considered in the analyses, 119 (25%) with HIV-DNA < 100 copies/106 PBMCs. At multivariate analysis, we found that PLWH with lower zenith HIV-RNA, higher nadir CD4 and a shorter time between HIV diagnosis and ART start were more likely to have HIV-DNA < 100 copies/106 PBMCs, after adjustment for age, gender, calendar year of ART start, type of current ART regimen, percentage time spent with undetectable VL since ART start, current CD4 and CD4/CD8 ratio. CONCLUSIONS In our chronic PLWH on virological suppression for 4 years, the prevalence of HIV-DNA < 100 copies/106 PBMCs was found to be 25%. Lower zenith HIV-RNA, shorter time between HIV diagnosis and starting ART and higher CD4 nadir were independently associated with low HIV-DNA.
Collapse
Affiliation(s)
- Silvia Nozza
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Galli
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Gianotti
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Poli
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Spagnuolo
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | |
Collapse
|
23
|
Abstract
Plasma viremia reoccurs in most HIV-infected individuals once antiretroviral therapy is interrupted, and interindividual differences in the kinetics of viral rebound have been associated with virological and immunological factors. Antibody features, including Fc functionality and Fc glycosylation, have been identified as sensitive surrogates for disease activity in multiple diseases. Plasma viremia reoccurs in most HIV-infected individuals once antiretroviral therapy (ART) is interrupted. The kinetics of viral rebound, specifically the time until plasma virus becomes detectable, differ quite substantially between individuals, and associations with virological and immunological factors have been suggested. Standard clinical measures, like CD4 T-cell counts and plasma HIV RNA levels, however, are poor predictive markers. Antibody features, including Fc functionality and Fc glycosylation have been identified as sensitive surrogates for disease activity in multiple diseases. Here, we analyzed HIV-specific antibody quantities and qualitative differences like antibody-mediated functions, Fc gamma receptor (FcγR) binding, and IgG Fc glycosylation as well as cytokine profiles and cellular HIV DNA and RNA levels in 23 ART-suppressed individuals prior to undergoing an analytical ART interruption (ATI). We found that antibodies with distinct functional properties and Fc glycan signatures separated individuals into early and delayed viral rebounders (≤4 weeks versus >4 weeks) and tracked with levels of inflammatory cytokines and transcriptional activity of the viral reservoir. Specifically, individuals with early viral rebound exhibited higher levels of total HIV-specific IgGs carrying inflammatory Fc glycans, while delayed rebounders showed an enrichment of highly functional antibodies. Overall, only four features, including enhanced antibody-mediated NK cell activation in delayed rebounders, were necessary to discriminate the groups. These data suggest that antibody features can be used as sensitive indicators of HIV disease activity and could be included in future ATI studies.
Collapse
|
24
|
Pasternak AO, Psomas CK, Berkhout B. Predicting Post-treatment HIV Remission: Does Size of the Viral Reservoir Matter? Front Microbiol 2021; 12:648434. [PMID: 33717047 PMCID: PMC7952863 DOI: 10.3389/fmicb.2021.648434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function. However, due to the persistence of long-lived HIV reservoirs, therapy interruption almost inevitably leads to a fast viral rebound. A small percentage of individuals who are able to control HIV replication for extended periods after therapy interruption are of particular interest because they may represent a model of long-term HIV remission without ART. These individuals are characterized by a limited viral reservoir and low reservoir measures can predict post-treatment HIV remission. However, most individuals with a low reservoir still experience fast viral rebound. In this Perspective, we discuss the possible reasons behind this and propose to develop an integral profile, composed of viral and host biomarkers, that could allow the accurate prediction of post-treatment HIV remission. We also propose to incorporate information on the chromatin context of the proviral integration sites into the characterization of the HIV reservoir, as this likely influences the reactivation capacity of latent proviruses and, together with the actual number of intact proviruses, contributes to the replication competence of the reservoir.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christina K Psomas
- Department of Infectious Diseases and Internal Medicine, European Hospital, Marseille, France
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Zhang C, Hu W, Jin JH, Zhou MJ, Song JW, Deng JN, Huang L, Wang SY, Wang FS. The role of CD8 T cells in controlling HIV beyond the antigen-specific face. HIV Med 2020; 21:692-700. [PMID: 33369032 DOI: 10.1111/hiv.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Understanding the determinants of HIV immune control is important for seeking viable HIV prevention, treatment and curative strategies. The antigen-specific roles of CD8 T cells in controlling primary HIV infection have been well documented, but their abilities to control the latent HIV reservoir is less well studied. METHODS The scientific literature on this issue was searched on PubMed. RESULTS Recent reports have demonstrated that CD8 T cells are also involved in the control of viral replication in HIV-infected individuals receiving antiretroviral therapy (ART). However, based on accumulating evidence, the antiviral role of CD8 T cells in ART patients may not be achieved via an antigen-specific manner as HIV-specific CD8 T cells can sense, but not effectively eliminate, cells harbouring intact provirus without first being activated. Our recent study indicated that virtual memory CD8 T cells, a semi-differentiated component of CD8 T cells, may be involved in the mechanism restraining the HIV DNA reservoir in ART patients. CONCLUSIONS In this review, we summarize recent findings on the role of CD8 T cells in controlling HIV, highlighting differences between conventional antigen-specific and innate-like CD8 T cells. A better understanding of the roles of CD8 T cells during HIV infection should benefit the informed design of immune-based treatment strategies.
Collapse
Affiliation(s)
- C Zhang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - W Hu
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - J H Jin
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - M J Zhou
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J W Song
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J N Deng
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - L Huang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - S Y Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - F S Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
26
|
Xun J, Qi T, Zou L, Tang Q, Shen Y, Yang J, Xie L, Ji Y, Zhang R, Liu L, Wang J, Steinhart C, Wang Z, Tang Y, Song W, Sun J, Cheng J, Le X, Wu H, He X, Chen R, Chen J, Lu H. Mycobacterium tuberculosis co-infection is associated with increased surrogate marker of the HIV reservoir. AIDS Res Ther 2020; 17:63. [PMID: 33076959 PMCID: PMC7574250 DOI: 10.1186/s12981-020-00320-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/12/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tuberculosis (Tb) is the most frequent opportunistic infection among people living with HIV infection. The impact of Tb co-infection in the establishment and maintenance of the HIV reservoir is unclear. METHOD We enrolled 13 HIV-infected patients with microbiologically confirmed Tb and 10 matched mono-HIV infected controls. Total HIV DNA in peripheral blood mononuclear cells (PBMCs), plasma interleukin-7 (IL-7) concentrations and the activities of indoleamine 2,3-dioxygenase (IDO) were measured for all the participants prior to therapy and after antiretroviral therapy (ART). RESULTS After a duration of 16 (12, 22) months' ART, patients co-infected with Tb who were cured of Tb maintained higher levels of HIV DNA compared with mono-HIV infected patients [2.89 (2.65- 3.05) log10 copies/106 cells vs. 2.30 (2.11-2.84) log10 copies/106 cells, P = 0.008]. The levels of on-ART HIV DNA were positively correlated with the baseline viral load (r = 0.64, P = 0.02) in Tb co-infected group. However, neither plasma IL-7 concentration nor plasma IDO activity was correlated with the level of on-ART HIV DNA. CONCLUSIONS Tb co-infection was associated with the increased surrogate marker of the HIV reservoir, while its mechanism warrants further examination.
Collapse
Affiliation(s)
- Jingna Xun
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Lei Zou
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
- Department of Infectious Disease, Yancheng Second People's Hospital, Jiangsu, China
| | - Qi Tang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Junyang Yang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Luman Xie
- Infectious Disease Clinic, Longtan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yongjia Ji
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Renfang Zhang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Li Liu
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jiangrong Wang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Corky Steinhart
- CAN Community Health, Florida, USA
- The University of Central Florida College of Medicine, Florida, USA
| | - Zhenyan Wang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Yang Tang
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Wei Song
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jianjun Sun
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Juan Cheng
- Department of Infectious Disease, Yancheng Second People's Hospital, Jiangsu, China
| | - Xiaoqin Le
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Huanmei Wu
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Xiaoqing He
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Rong Chen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jun Chen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| | - Hongzhou Lu
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
- Department of Infectious Disease, HuaShan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Castagna A, Muccini C, Galli L, Bigoloni A, Poli A, Spagnuolo V, Nozza S, Racca S, Galli A, Cinque P, Carini E, Lazzarin A. Analytical treatment interruption in chronic HIV-1 infection: time and magnitude of viral rebound in adults with 10 years of undetectable viral load and low HIV-DNA (APACHE study). J Antimicrob Chemother 2020; 74:2039-2046. [PMID: 31225610 DOI: 10.1093/jac/dkz138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Despite the fact that there are individuals who have chronic HIV infection, few studies have investigated ART interruption in this setting. The aim of this study was to evaluate the ability to spontaneously control viral replication during analytical treatment interruption (ATI) in adults with chronic HIV-1 infection, on ART, with suppressed viraemia for >10 years and with a low reservoir. PATIENTS AND METHODS This was a prospective, open-label, single-arm, non-randomized, proof-of-concept study (NCT03198325) of subjects with chronic HIV-1 infection, HIV-RNA <50 copies/mL for ≥10 years, without residual viraemia for ≥5 years, CD4+ >500 cells/mm3, HIV-DNA <100 copies/106 PBMCs and without comorbidities or AIDS-defining diseases. Enrolled patients were strictly monitored. The ART regimen in use at ATI was resumed in the case of confirmed viral rebound (CVR, two consecutive HIV-RNA >50 copies/mL). Results are reported as median (IQR). RESULTS Nine patients underwent ATI. All participants experienced CVR [4.84 (IQR: 3.47-6.47) HIV-RNA log10 copies/mL] after ATI at a median time of 21 days (range 14-56) and restarted ART. After ART resumption, all the subjects achieved HIV-RNA <50 copies/mL in a median of 88 days (range 15-197). No serious adverse event occurred; one subject experienced acute retroviral syndrome. No significant correlation between baseline factors and time to viral rebound was observed, while the magnitude of viral rebound was significantly associated with pre-ART HIV-1 RNA (Spearman r = 0.786, P = 0.036), nadir CD4+ (Spearman r = -0.800, P = 0.010), baseline CD4+ (Spearman r = -0.667, P = 0.049) and years with undetectable viral load (Spearman r = -0.717, P = 0.030). CONCLUSIONS Despite a long period of HIV viral load suppression and a low viral reservoir, early and consistent viral rebound was observed during ATI in all subjects.
Collapse
Affiliation(s)
- Antonella Castagna
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Laura Galli
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alba Bigoloni
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Poli
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Spagnuolo
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Nozza
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Sara Racca
- Laboratory of Microbiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Galli
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Carini
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Lazzarin
- Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Virologic and Immunologic Features of Simian Immunodeficiency Virus Control Post-ART Interruption in Rhesus Macaques. J Virol 2020; 94:JVI.00338-20. [PMID: 32350073 DOI: 10.1128/jvi.00338-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Antiretroviral therapy (ART) cannot eradicate human immunodeficiency virus (HIV) and a rapid rebound of virus replication follows analytical treatment interruption (ATI) in the vast majority of HIV-infected individuals. Sustained control of HIV replication without ART has been documented in a subset of individuals, defined as posttreatment controllers (PTCs). The key determinants of post-ART viral control remain largely unclear. Here, we identified 7 SIVmac239-infected rhesus macaques (RMs), defined as PTCs, who started ART 8 weeks postinfection, continued ART for >7 months, and controlled plasma viremia at <104 copies/ml for up to 8 months after ATI and <200 copies/ml at the latest time point. We characterized immunologic and virologic features associated with post-ART SIV control in blood, lymph node (LN), and colorectal (RB) biopsy samples compared to 15 noncontroller (NC) RMs. Before ART initiation, PTCs had higher CD4 T cell counts, lower plasma viremia, and SIV-DNA content in blood and LN compared to NCs, but had similar CD8 T cell function. While levels of intestinal CD4 T cells were similar, PTCs had higher frequencies of Th17 cells. On ART, PTCs had significantly lower levels of residual plasma viremia and SIV-DNA content in blood and tissues. After ATI, SIV-DNA content rapidly increased in NCs, while it remained stable or even decreased in PTCs. Finally, PTCs showed immunologic benefits of viral control after ATI, including higher CD4 T cell levels and reduced immune activation. Overall, lower plasma viremia, reduced cell-associated SIV-DNA, and preserved Th17 homeostasis, including at pre-ART, are the main features associated with sustained viral control after ATI in SIV-infected RMs.IMPORTANCE While effective, antiretroviral therapy is not a cure for HIV infection. Therefore, there is great interest in achieving viral remission in the absence of antiretroviral therapy. Posttreatment controllers represent a small subset of individuals who are able to control HIV after cessation of antiretroviral therapy, but characteristics associated with these individuals have been largely limited to peripheral blood analysis. Here, we identified 7 SIV-infected rhesus macaques that mirrored the human posttreatment controller phenotype and performed immunologic and virologic analysis of blood, lymph node, and colorectal biopsy samples to further understand the characteristics that distinguish them from noncontrollers. Lower viral burden and preservation of immune homeostasis, including intestinal Th17 cells, both before and after ART, were shown to be two major factors associated with the ability to achieve posttreatment control. Overall, these results move the field further toward understanding of important characteristics of viral control in the absence of antiretroviral therapy.
Collapse
|
29
|
Phinius BB, Anderson M, Bokete R, Mbangiwa T, Choga WT, Baruti K, Makhema J, Musonda R, Blackard JT, Essex M, Moyo S, Marlink R, Gaseitsiwe S. Incidence of hepatitis B virus infection among human immunodeficiency virus-infected treatment naïve adults in Botswana. Medicine (Baltimore) 2020; 99:e19341. [PMID: 32118769 PMCID: PMC7478615 DOI: 10.1097/md.0000000000019341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) coinfection is highest in sub-Saharan Africa and results in accelerated clinical outcomes compared with HBV or HIV mono-infection. HBV clearance rates are higher in healthy adults; however, in sub-Saharan Africa, there are limited data on clearance of incident HBV in HIV-infected adults. Therefore, we sought to estimate HBV incidence and HBV surface antigen (HBsAg) clearance in HIV-infected adults in Botswana.This was a retrospective longitudinal study of 442 HIV-1C infected treatment naïve patients enrolled in a previous Botswana Harvard AIDS Institute Partnership study. Archived plasma samples from 435 HIV-infected treatment naïve participants were screened for HBsAg and HBV core antibody (anti-HBc). HBsAg was evaluated annually over a 4-year period, and HBV deoxyribonucleic acid (DNA) levels of HBsAg-positive chronic and incident patients were quantified.Baseline median CD4+ T-cell count was 458 cells/μL [Q1, Q3: 373, 593], and median HIV viral load was 4.15 copies/mL [Q1, Q3: 3.46, 4.64]. Twenty two HBV incident cases occurred, representing an incidence of 3.6/100 person-years [95% CI: 2.2-5.6]. All incident HBV cases with a follow-up sample available for screening (13/22) cleared HBsAg. Detectable HBV viral loads among chronic and incident cases ranged between 5.15 × 10 to 1.4 × 10 IU/L and 1.80 × 10 to 1.7 × 10 IU/mL, respectively.We report high HBV incidence associated with elevated HBV DNA levels despite high CD4+ T-cell counts in HIV-infected patients in Botswana. These incidence cases represent a potential source of HBV transmission in the population. Scaling-up of HIV treatment strategies utilizing antiretroviral therapy regimens with anti-HBV activity coupled with screening for HBV infections in households of the HBsAg-positive cases is recommended.
Collapse
Affiliation(s)
| | - Motswedi Anderson
- Botswana Harvard AIDS Institute Partnership
- University of Botswana, Gaborone, Botswana
| | | | - Tshepiso Mbangiwa
- Botswana Harvard AIDS Institute Partnership
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Wonderful Tatenda Choga
- Botswana Harvard AIDS Institute Partnership
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Kabo Baruti
- Botswana Harvard AIDS Institute Partnership
- University of Botswana, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership
- Harvard T.H. Chan School of Public Health AIDS Initiative, Boston, Massachusetts
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership
- Harvard T.H. Chan School of Public Health AIDS Initiative, Boston, Massachusetts
| | | | - Max Essex
- Botswana Harvard AIDS Institute Partnership
- Harvard T.H. Chan School of Public Health AIDS Initiative, Boston, Massachusetts
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership
- Harvard T.H. Chan School of Public Health AIDS Initiative, Boston, Massachusetts
| | - Richard Marlink
- Botswana Harvard AIDS Institute Partnership
- Rutgers University, New Jersey, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership
- Harvard T.H. Chan School of Public Health AIDS Initiative, Boston, Massachusetts
| |
Collapse
|
30
|
Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, Nescoi C, Aerts J, De Spiegelaere W, Tsoumanis A, Couttenye M, Herssens N, De Scheerder M, Vandekerckhove L, Florence E. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription. J Int AIDS Soc 2020; 23:e25453. [PMID: 32107887 PMCID: PMC7046528 DOI: 10.1002/jia2.25453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Viral remission after analytical treatment interruption (ATI), termed post-treatment control, has been described in a small proportion of HIV-positive patients. This phenomenon has been separately associated to both low levels of HIV-1 proviral DNA as well as cell-associated RNA. We investigated whether the combination of both parameters could help predict delayed viral rebound after treatment interruption (TI). METHODS We conducted an open single-arm ATI study in four Belgian HIV reference centres from January 2016 to July 2018. Eligible participants were adults who had fewer than 50 HIV-1 RNA copies/mL for more than two years, more than 500 CD4 cells/µL for more than three months, and were in general good health. Consenting participants who had fewer than 66 copies total HIV-1 DNA (t-DNA) and fewer than 10 copies cell-associated HIV-1 unspliced RNA (US-RNA) per million peripheral blood mononuclear cells (PBMCs), interrupted therapy and were monitored closely. Antiretroviral therapy (ART) was resumed after two consecutive viral loads exceeding 1000 copies or one exceeding 10,000 copies/mL. The primary outcome was the proportion of participants with fewer than 50 HIV-1 RNA copies/mL 48 weeks after TI. Secondary outcomes were time to viral rebound, the frequency of serious adverse events (AEs) and evolution of t-DNA and US-RNA after TI. RESULTS All 16 consenting participants who interrupted therapy experienced rapid viral rebound two to eight weeks after TI. No serious AEs were observed. Levels of t-DNA and US-RNA increased after TI but returned to pre-ATI levels after treatment restart. None of the studied demographic, clinical and biological parameters were predictive of time of viral rebound. CONCLUSIONS The combination of low levels of t-DNA and US-RNA in PBMCs, corresponding respectively to a small and transcriptionally silent viral reservoir, is not predictive of viral remission after TI in patients on ART.
Collapse
Affiliation(s)
- Pieter Pannus
- Departments of Clinical and Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Sofie Rutsaert
- Department of General Internal MedicineHIV Cure Research CentreGhent University Hospital and Ghent UniversityGhentBelgium
| | - Stéphane De Wit
- Saint Pierre University HospitalUniversité Libre de BruxellesBrusselsBelgium
| | - Sabine D Allard
- HIV Reference CentreUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Guido Vanham
- Departments of Clinical and Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Basiel Cole
- Department of General Internal MedicineHIV Cure Research CentreGhent University Hospital and Ghent UniversityGhentBelgium
| | - Coca Nescoi
- Saint Pierre University HospitalUniversité Libre de BruxellesBrusselsBelgium
| | | | - Ward De Spiegelaere
- Department of MorphologyFaculty of Veterinary MedicineGhent UniversityGhentBelgium
| | - Achilleas Tsoumanis
- Departments of Clinical and Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | | | - Natacha Herssens
- Departments of Clinical and Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Marie‐Angélique De Scheerder
- Department of General Internal MedicineHIV Cure Research CentreGhent University Hospital and Ghent UniversityGhentBelgium
| | - Linos Vandekerckhove
- Department of General Internal MedicineHIV Cure Research CentreGhent University Hospital and Ghent UniversityGhentBelgium
| | - Eric Florence
- Departments of Clinical and Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| |
Collapse
|
31
|
Lyu T, Yue Y, Hsieh E, Han Y, Zhu T, Song X, Cao W, Lyu W, Wang J, Li T. HIV-1 CRF01_AE subtype and HIV-1 DNA level among patients with chronic HIV-1 infection: a correlation study. BMC Infect Dis 2020; 20:66. [PMID: 31964364 PMCID: PMC6975045 DOI: 10.1186/s12879-020-4785-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background The impact of HIV-1 subtype (CRF01_AE and non-CRF01_AE) on HIV-1 DNA levels in HIV-1 chronically infected patients with suppressive antiretroviral therapy (ART) remains poorly understood. To evaluate the correlation of HIV-1 subtype with DNA level, and identify baseline predictors of HIV-1 DNA decay. Methods ART-naïve HIV-1-infected patients from two large multi-center studies in China were classified into CRF01_AE and non-CRF01_AE subtype groups. Peripheral blood samples were collected at baseline and week 12, 24, 48 and 96 after ART initiation and total HIV-1 DNA levels were quantified by real-time PCR. HIV-1 DNA levels at week 96 were categorized into high, moderate, and low levels, reflecting HIV-1 DNA ≥ 3, 2–3, ≤ 2 log10 copies/106 PBMCs, respectively, and the corresponding proportion of CRF01_AE and non-CRF01_AE subtype were compared. The baseline predictors of low HIV-1 total DNA levels (≤ 2 log10 copies/106 PBMCs) at week 96 were evaluated using a logistic regression model. Results Compared to the non-CRF01_AE subtypes (n = 185), patients with CRF01_AE subtype (n = 188) harboured a higher level of HIV-1 DNA (median: 3.19 vs. 2.95 log10 copies/106 PBMCs, P < 0.001) prior to treatment. After 96 weeks of ART, HIV-1 DNA levels remained higher in the CRF01_AE subtype group (median: 2.63 vs. 2.39 log10 copies/106 PBMCs, P = 0.002). There was no significant difference in the proportion of patients achieving high (22.3% vs. 14.6%, P = 0.054), moderate (59.6% vs. 60.5%, P = 0.849) and low levels (18.1% vs 24.9%, P = 0.111) between CRF01_AE and non-CRF01_AE groups. In the multivariable analysis, baseline HIV-1 DNA level and CD4+ T cell count but not the subtype were independent risk factors for achieving HIV-1 DNA level ≤ 2 log10 copies/106 PBMCs. Conclusion HIV-1 CRF01_AE subtype is neither correlated with HIV-1 DNA reservoir decline nor a prognostic factor for achieving lower HIV-1 DNA levels (≤ 2 log10 copies/106 PBMCs) after ART. However, higher HIV-1 DNA level in HIV-1 CRF01_AE patients should be aroused much attention and strengthen surveillance during ART.
Collapse
Affiliation(s)
- Tingxia Lyu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yongsong Yue
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Evelyn Hsieh
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ting Zhu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wei Lyu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianhua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China. .,School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Abstract
The Berlin patient, a famous example for human immunodeficiency virus (HIV) cure, had received a bone marrow transplantation with an HIV resistance mutation. The authors describe his case and others that had shown HIV control, like the Mississippi baby who was started on antiretroviral therapy very early after birth, and posttreatment controllers, like the VISCONTI cohort. Moreover, the authors outline various strategies, oftentimes informed by these individuals, that have been tried in vitro, in animal models, or in human trials, to deplete the latent reservoir, which is considered the basis of HIV persistence and the obstacle to cure.
Collapse
Affiliation(s)
- Nikolaus Jilg
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jonathan Z Li
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Pinkevych M, Fennessey CM, Cromer D, Reid C, Trubey CM, Lifson JD, Keele BF, Davenport MP. Predictors of SIV recrudescence following antiretroviral treatment interruption. eLife 2019; 8:e49022. [PMID: 31650954 PMCID: PMC6917497 DOI: 10.7554/elife.49022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022] Open
Abstract
There is currently a need for proxy measures of the HIV rebound competent reservoir (RCR) that can predict viral rebound after combined antiretroviral treatment (cART) interruption. In this study, macaques infected with a barcoded SIVmac239 virus received cART beginning between 4- and 27 days post-infection, leading to the establishment of different levels of viral dissemination and persistence. Later treatment initiation led to higher SIV DNA levels maintained during treatment, which was significantly associated with an increased frequency of SIV reactivation and production of progeny capable of causing rebound viremia following treatment interruption. However, a 100-fold increase in SIV DNA in PBMCs was associated with only a 2-fold increase in the frequency of reactivation. These data suggest that the RCR can be established soon after infection, and that a large fraction of persistent viral DNA that accumulates after this time makes relatively little contribution to viral rebound.
Collapse
Affiliation(s)
- Mykola Pinkevych
- Infection Analytics ProgramKirby Institute for Infection and Immunity, UNSW AustraliaSydneyAustralia
| | - Christine M Fennessey
- AIDS and Cancer Virus ProgramFrederick National Laboratory for Cancer ResearchFrederickUnited States
| | - Deborah Cromer
- Infection Analytics ProgramKirby Institute for Infection and Immunity, UNSW AustraliaSydneyAustralia
| | - Carolyn Reid
- AIDS and Cancer Virus ProgramFrederick National Laboratory for Cancer ResearchFrederickUnited States
| | - Charles M Trubey
- AIDS and Cancer Virus ProgramFrederick National Laboratory for Cancer ResearchFrederickUnited States
| | - Jeffrey D Lifson
- AIDS and Cancer Virus ProgramFrederick National Laboratory for Cancer ResearchFrederickUnited States
| | - Brandon F Keele
- AIDS and Cancer Virus ProgramFrederick National Laboratory for Cancer ResearchFrederickUnited States
| | - Miles P Davenport
- Infection Analytics ProgramKirby Institute for Infection and Immunity, UNSW AustraliaSydneyAustralia
| |
Collapse
|
34
|
Goswami R, Nelson AN, Tu JJ, Dennis M, Feng L, Kumar A, Mangold J, Mangan RJ, Mattingly C, Curtis AD, Obregon-Perko V, Mavigner M, Pollara J, Shaw GM, Bar KJ, Chahroudi A, De Paris K, Chan C, Van Rompay KKA, Permar SR. Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model. mBio 2019; 10:e01971-19. [PMID: 31488511 PMCID: PMC6945967 DOI: 10.1128/mbio.01971-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure.IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.
Collapse
Affiliation(s)
- Ria Goswami
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley N Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Liqi Feng
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jesse Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Riley J Mangan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, Georgia, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, California, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
35
|
Etemad B, Esmaeilzadeh E, Li JZ. Learning From the Exceptions: HIV Remission in Post-treatment Controllers. Front Immunol 2019; 10:1749. [PMID: 31396237 PMCID: PMC6668499 DOI: 10.3389/fimmu.2019.01749] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Among the top priorities of the HIV field is the search for therapeutic interventions that can lead to sustained antiretroviral therapy (ART)-free HIV remission. Although the majority of HIV-infected persons will experience rapid viral rebound after ART interruption, there are rare individuals, termed post-treatment controllers (PTCs), who demonstrate sustained virologic suppression for months or years after treatment cessation. These individuals are considered an ideal example of durable HIV control, with direct implications for HIV cure research. However, understanding of the mechanisms behind the capacity of PTCs to control HIV remains incomplete. This is in part due to the scarcity of PTCs identified through any one research center or clinical trial, and in part because of the limited scope of studies that have been performed in these remarkable individuals. In this review, we summarize the results of both clinical and basic research studies of PTCs to date, explore key differences between PTCs and HIV spontaneous controllers, examine potential mechanisms of post-treatment control, and discuss unanswered questions and future research directions in this field.
Collapse
Affiliation(s)
| | | | - Jonathan Z. Li
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The aim of the current review is to explore the evidence around virological remission in ART-treated and untreated individuals living with HIV. With increasing evidence and interest in post-treatment control within the HIV-cure field, it is now increasingly important to agree on definitions to allow different 'controller' phenotypes to be clearly distinguished and mechanisms compared. RECENT FINDINGS This review explores recent data on potential predictors and mechanisms driving spontaneous and post-treatment control. We explore data on the role of the reservoir as a determinant of control and the challenges associated with its study, including the safety of treatment interruption. We explore options around deriving a consensus on how to define different forms of control and the longer term utility of achieving remission. SUMMARY Post-treatment control and remission following treatment interruption are becoming increasingly common measures of intervention efficacy in cure trials. As well as a need to show treatment interruption protocols are well tolerated and acceptable, for these measures to be robust and comparable between studies, clear and consensual definitions need to be agreed.
Collapse
|
37
|
Jacobson JM, Khalili K. Toward the Cure of HIV-1 Infection: Lessons Learned and Yet to be Learned as New Strategies are Developed. AIDS Rev 2019; 20:220-225. [PMID: 30548022 DOI: 10.24875/aidsrev.18000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we review the progress that has been made in achieving a cure of HIV-1 infection. To date, this has only occurred in one person after he received allogeneic stem cell transplants from a CCR5 ∆32 homozygous donor in addition to chemotherapy and radiation to treat his acute myelocytic leukemia. The general consensus is that achieving a sustained remission of infection in the absence of antiretroviral therapy will involve a combination of strategies that involve both the targeting of the latent proviral genome and the induction of more effective anti-HIV-1 immune responses. Efforts to reverse HIV-1 proviral DNA integration in the host cell genome and those to enhance anti-HIV immunity have been disappointing thus far. The lack of clinically validated assays to measure both effects has hampered the development of effective therapies. We suggest the consideration of genome editing as a new approach to reduce the latently integrated proviral genome. In addition, new approaches to therapeutic immunization, alterations of immunoregulatory pathways, anti-HIV-1 antibodies, and anti-HIV-1 chimeric antigen receptor T lymphocytes are in development.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Department of Neuroscience, Center for Translational AIDS Research, Philadelphia, USA
- Department of Medicine. Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Translational AIDS Research, Philadelphia, USA
| |
Collapse
|
38
|
Total HIV-1 DNA Dynamics and Influencing Factors in Long-Term ART-Treated Japanese Adults: A Retrospective Longitudinal Analysis. J Acquir Immune Defic Syndr 2019; 78:239-247. [PMID: 29481485 DOI: 10.1097/qai.0000000000001662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Understanding HIV persistence in treated patients is an important milestone toward drug-free control. We aimed at analyzing total HIV DNA dynamics and influencing factors in Japanese patients who received more than a decade of suppressive antiretroviral treatment (ART). METHODS A retrospective study including clinical records and 840 peripheral blood mononuclear cells samples (mean 14 samples/patient) for 59 patients (92% male) was performed. Subjects were divided into 2 groups: with and without hematological comorbidity (mainly hemophilia) plus hepatitis C virus coinfection. Total HIV DNA was measured in peripheral blood mononuclear cells by quantitative polymerase chain reaction. The dynamics, regression over time, and influence of antiretrovirals by group were estimated using a novel regression model (R software v 3.2.3). RESULTS Total HIV DNA decreased on ART initiation, and subsequently, its dynamics varied between groups with previously undescribed fluctuations. If calculated by on-treatment, the mean total HIV DNA levels were similar. The comorbidity group had unstable levels showing different regression over time (P = 0.088/0.094 in year 1/after year 8 of ART) and significantly different treatment responses as shown by antiretroviral group switching estimates. Furthermore, curing hepatitis C virus in hemophiliacs did not significantly alter total HIV DNA levels or regression. CONCLUSIONS Our data identified some effects of the long-term treatment on total HIV DNA levels and highlighted the partial influence of comorbidities and coinfections. Total HIV DNA monitoring contributed to therapy response estimates and HIV reservoir quantification. The results suggest that HIV DNA monitoring during ART might be useful as a persistence marker in both HIV-monoinfected patients and those with comorbidities and coinfections.
Collapse
|
39
|
Pitman MC, Lau JSY, McMahon JH, Lewin SR. Barriers and strategies to achieve a cure for HIV. Lancet HIV 2019; 5:e317-e328. [PMID: 29893245 DOI: 10.1016/s2352-3018(18)30039-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/14/2022]
Abstract
9 years since the report of a cure for HIV after C-C chemokine receptor type 5 Δ32 stem cell transplantation, no other case of HIV cure has been reported, despite much research. However, substantial progress has been made in understanding the biology of the latent HIV reservoir, and in measuring the amount of virus that persists after antiretroviral therapy (ART) with increasingly sophisticated approaches. This knowledge is being translated into a long pipeline of clinical trials seeking to reduce viral persistence in participants on suppressive treatment and ultimately to allow safe cessation of ART. In this Review, we discuss the main barriers preventing the development of an HIV cure, methods used to measure HIV persistence in individuals on ART, clinical strategies that aim to cure HIV, and future directions for studies in the field of HIV cure research.
Collapse
Affiliation(s)
- Matthew C Pitman
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton, VIC, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Monash University, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Luo L, Wang N, Yue Y, Han Y, Lv W, Liu Z, Qiu Z, Lu H, Tang X, Zhang T, Zhao M, He Y, Shenghua H, Wang M, Li Y, Huang S, Li Y, Liu J, Tuofu Z, Routy JP, Li T. The effects of antiretroviral therapy initiation time on HIV reservoir size in Chinese chronically HIV infected patients: a prospective, multi-site cohort study. BMC Infect Dis 2019; 19:257. [PMID: 30871484 PMCID: PMC6419375 DOI: 10.1186/s12879-019-3847-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background The effect of ART initiation time on HIV-1 DNA reservoir in chronically infected individuals is not well understood. Determining the potential influencing factors associated with a low HIV-1 DNA level in chronic infection is an important step toward drug-free control. Methods A prospective study included 444 chronically HIV-infected adults was performed. Participants were divided into two groups: early initiation group (EIG) or delayed initiation group (DIG) based on their baseline CD4 count; 350 to 500 and < 350 cells/mm3, respectively. Total HIV-1 DNA was measured by quantitative PCR. Using the Mann-Whitney U test, the HIV-1 DNA level at week 48 was compared between the two groups. The influencing factors of the HIV-1 DNA and factors associated with achieving a low HIV-1 level at week 48 were analyzed. Results The HIV-1 DNA at week 48 in EIG was significantly lower than in DIG [2.12 (1.80–2.51) vs 2.58 (2.21–2.87) log10 copies/106peripheral blood mononuclear cells (PBMCs); p = 0.001]. Early ART initiation was positively associated with lower HIV-1 DNA at week 48 (p = 0.025). Similarly, baseline HIV-1DNA (p = 0.001) was positively associated with HIV-1DNA at week 48 and baseline CD4/CD8 ratio (p = 0.001) was inversely associated with HIV-1DNA at week 48. Early ART initiation (p = 0.003) and baseline HIV-1 DNA level (p < 0.001) were positively associated with achieving HIV-1 DNA < 100 copies/106 PBMCs at week 48. Conclusion Early ART initiation is positively associated with a smaller size of viral reservoir and a higher possibility of achieving a low HIV-1DNA level at week 48 in Chinese chronically HIV-1 infected adult. Trial registration NCT01844297; Registered 1 May, 2013.
Collapse
Affiliation(s)
- Ling Luo
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Nidan Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yongsong Yue
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wei Lv
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Zhifeng Qiu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center affiliated with Fudan University, Shanghai, China
| | | | - Tong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Min Zhao
- 302 Military Hospital of China, Beijing, China
| | - Yun He
- The Infectious Disease Hospital of Henan Province, Zhengzhou, China
| | - He Shenghua
- Chengdu Infectious Diseases Hospital, Chengdu, China
| | - Min Wang
- The First Hospital of Changsha, Changsha, China
| | - Yongzhen Li
- The Center for Disease Prevention and Control of Guangxi province, Nanning, China
| | | | - Yong Li
- The Longtan Hospital, Liuzhou, China
| | - Jing Liu
- The hospital affiliated with the Chinese Medical University, Hangzhou, China
| | - Zhu Tuofu
- Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Chronic Viral Illness Service, and Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
41
|
Namazi G, Fajnzylber JM, Aga E, Bosch RJ, Acosta EP, Sharaf R, Hartogensis W, Jacobson JM, Connick E, Volberding P, Skiest D, Margolis D, Sneller MC, Little SJ, Gianella S, Smith DM, Kuritzkes DR, Gulick RM, Mellors JW, Mehraj V, Gandhi RT, Mitsuyasu R, Schooley RT, Henry K, Tebas P, Deeks SG, Chun TW, Collier AC, Routy JP, Hecht FM, Walker BD, Li JZ. The Control of HIV After Antiretroviral Medication Pause (CHAMP) Study: Posttreatment Controllers Identified From 14 Clinical Studies. J Infect Dis 2018; 218:1954-1963. [PMID: 30085241 PMCID: PMC6217727 DOI: 10.1093/infdis/jiy479] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
Background HIV posttreatment controllers are rare individuals who start antiretroviral therapy (ART), but maintain HIV suppression after treatment interruption. The frequency of posttreatment control and posttreatment interruption viral dynamics have not been well characterized. Methods Posttreatment controllers were identified from 14 studies and defined as individuals who underwent treatment interruption with viral loads ≤400 copies/mL at two-thirds or more of time points for ≥24 weeks. Viral load and CD4+ cell dynamics were compared between posttreatment controllers and noncontrollers. Results Of the 67 posttreatment controllers identified, 38 initiated ART during early HIV infection. Posttreatment controllers were more frequently identified in those treated during early versus chronic infection (13% vs 4%, P < .001). In posttreatment controllers with weekly viral load monitoring, 45% had a peak posttreatment interruption viral load of ≥1000 copies/mL and 33% had a peak viral load ≥10000 copies/mL. Of posttreatment controllers, 55% maintained HIV control for 2 years, with approximately 20% maintaining control for ≥5 years. Conclusions Posttreatment control was more commonly identified amongst early treated individuals, frequently characterized by early transient viral rebound and heterogeneous durability of HIV remission. These results may provide mechanistic insights and have implications for the design of trials aimed at achieving HIV remission.
Collapse
Affiliation(s)
- Golnaz Namazi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Fajnzylber
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Evgenia Aga
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ronald J Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Radwa Sharaf
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | | | | | - Daniel R Kuritzkes
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Vikram Mehraj
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Rajesh T Gandhi
- Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | | | | | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | | | | | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
| | - Jonathan Z Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Abstract
In this brief review and perspective, we address the question of whether the immune responses that bring about immune control of acute HIV infection are the same as, or distinct from, those that maintain long-term viral suppression once control of viremia has been achieved. To this end, we describe the natural history of elite and post-treatment control, noting the lack of data regarding what happens acutely. We review the evidence suggesting that the two clinical phenotypes may differ in terms of the mechanisms required to achieve and maintain control, as well as the level of inflammation that persists once a steady state is achieved. We then describe the evidence from longitudinal studies of controllers who fail and studies of biologic sex (male versus female), age (children versus adults), and simian immunodeficiency virus (SIV) (pathogenic/experimental versus nonpathogenic/natural infection). Collectively, these studies demonstrate that the battle between the inflammatory and anti-inflammatory pathways during acute infection has long-term consequences, both for the degree to which control is maintained and the health of the individual. Potent and stringent control of HIV may be required acutely, but once control is established, the chronic inflammatory response can be detrimental. Interventional approaches designed to bring about HIV cure and/or remission should be nuanced accordingly.
Collapse
Affiliation(s)
- Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
43
|
Sharaf R, Lee GQ, Sun X, Etemad B, Aboukhater LM, Hu Z, Brumme ZL, Aga E, Bosch RJ, Wen Y, Namazi G, Gao C, Acosta EP, Gandhi RT, Jacobson JM, Skiest D, Margolis DM, Mitsuyasu R, Volberding P, Connick E, Kuritzkes DR, Lederman MM, Yu XG, Lichterfeld M, Li JZ. HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers. J Clin Invest 2018; 128:4074-4085. [PMID: 30024859 PMCID: PMC6118642 DOI: 10.1172/jci120549] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023] Open
Abstract
HIV posttreatment controllers (PTCs) represent a natural model of sustained HIV remission, but they are rare and little is known about their viral reservoir. We obtained 1,450 proviral sequences after near-full-length amplification for 10 PTCs and 16 posttreatment noncontrollers (NCs). Before treatment interruption, the median intact and total reservoir size in PTCs was 7-fold lower than in NCs, but the proportion of intact, defective, and total clonally expanded proviral genomes was not significantly different between the 2 groups. Quantification of total but not intact proviral genome copies predicted sustained HIV remission as 81% of NCs, but none of the PTCs had a total proviral genome greater than 4 copies per million peripheral blood mononuclear cells (PBMCs). The results highlight the restricted intact and defective HIV reservoir in PTCs and suggest that total proviral genome burden could act as the first biomarker for identifying PTCs. Total and defective but not intact proviral copy numbers correlated with levels of cell-associated HIV RNA, activated NK cell percentages, and both HIV-specific CD4+ and CD8+ responses. These results support the concept that defective HIV genomes can lead to viral antigen production and interact with both the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Radwa Sharaf
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Guinevere Q. Lee
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Behzad Etemad
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Layla M. Aboukhater
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zixin Hu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zabrina L. Brumme
- Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Evgenia Aga
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ying Wen
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Golnaz Namazi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | | - Rajesh T. Gandhi
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Daniel Skiest
- University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | | | | | - Paul Volberding
- Gladstone Center for AIDS Research, UCSF, San Francisco, California, USA
| | | | - Daniel R. Kuritzkes
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Xu G. Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mathias Lichterfeld
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Dubrocq G, Rakhmanina N. Antiretroviral therapy interruptions: impact on HIV treatment and transmission. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2018; 10:91-101. [PMID: 29942160 PMCID: PMC6005325 DOI: 10.2147/hiv.s141965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction Successful management of pediatric and adult human immunodeficiency virus (HIV) disease includes lifelong administration of antiretroviral therapy (ART). The need for the continuous use of antiretroviral drugs throughout the life course poses a challenge to children, adolescents, and adults living with HIV and their caregivers. Historically, treatment interruptions have been viewed as a negative therapeutic strategy. Recently, however, treatment interruptions or treatment reduction strategies have become a focus of investigations as innovative approaches to the long-term management of HIV disease. Current challenges with treatment interruptions include identifying an appropriate timeframe for length of interruptions and identifying HIV patient populations in whom the treatment interruption can be successful. Objective In this review, we aimed at summarizing recent studies of planned and unplanned treatment interruptions in children and adults living with HIV. Materials and methods We searched two databases (PubMed and Cochrane Controlled Trials Register) using keywords (HIV OR AIDS OR acquired immunodeficiency syndrome OR HIV-1 OR antiretroviral) AND (treatment interruption OR planned interruption OR therapeutic interruption OR unplanned interruption), for published randomized and nonrandomized clinical trials and observational cohort studies in children and adults (from birth to 99 years of age) in global settings covering a period from 2012 to 2018. In this review, only the studies that contained pediatric and adolescent populations with baseline immunological, virological, and clinical characteristics and outcomes after treatment interruption were included. Results A total of 174 eligible citations from the two databases were identified. We identified 10 prospective treatment interruption studies on children (five studies) and adults (five studies) during 2012–2018 with a total of 863 pediatric and 273 adult subjects. Collectively, recent studies on children and adults with HIV infection suggest that treatment interruptions with proper monitoring can be successful by instituting well-defined immunological and virological parameters or thresholds such as CD4 count, CD4%, and HIV RNA viral load that identify low-risk populations with treatment failure. In addition to standard virological and immunological outcome measurements, selected biomarkers that help detect early immune activation may also be useful in the monitoring of treatment interruption. Conclusion Treatment interruptions in adult and especially pediatric patients with well-controlled HIV disease may provide an alternative opportunity to optimize long-term HIV management by minimizing drug-associated toxicity and improving long-term adherence and quality of life.
Collapse
Affiliation(s)
- Gueorgui Dubrocq
- Division of Pediatric Infectious Diseases, Baylor Scott & White McLane Children's Medical Center, Temple, TX, USA.,Department of Pediatrics, Baylor Scott & White McLane Children's Medical Center, Temple, TX, USA
| | - Natella Rakhmanina
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, USA
| |
Collapse
|
45
|
Rouzioux C, Avettand-Fenoël V. Total HIV DNA: a global marker of HIV persistence. Retrovirology 2018; 15:30. [PMID: 29615133 PMCID: PMC5883363 DOI: 10.1186/s12977-018-0412-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
Among the different markers of HIV persistence in infected cells, total HIV DNA is to date the most widely used. It allows an overall quantification of all viral forms of HIV DNA in infected cells, each playing a different role in HIV replication and pathophysiology. The real-time PCR technology is to date, a precise, sensitive and reproducible technology that allows the description of the distribution of HIV infected cells in blood and tissues. The objective of this review is to present some examples which show the interest to quantify total HIV DNA levels. This marker brought an undeniable and considerable contribution to reservoir studies. Many results, both in clinical and basic research, allowed to get a large overview of the distribution of infected cells in the body, at all stages of HIV disease and during therapy. Future clinical studies aiming at reducing HIV reservoirs will benefit from HIV DNA quantification in blood and tissues, in association with other markers of HIV reservoir activity.
Collapse
Affiliation(s)
- Christine Rouzioux
- Laboratoire de Virologie, APHP Hôpital Necker Enfants Malades, Paris, France. .,EA 7327, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France.
| | - Véronique Avettand-Fenoël
- Laboratoire de Virologie, APHP Hôpital Necker Enfants Malades, Paris, France.,EA 7327, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
46
|
Abstract
OBJECTIVE Control HIV replication requires continuous combined antiretroviral therapy (cART) as discontinuation of cART results in a rapid viral rebound. However, a few individuals exist who took cART for several years and did not show the expected viral rebound after treatment cessation. Most post-treatment controllers (PTCs) are early treated individuals. We report three cases who started cART during chronic infection. DESIGN Patients were treated and monitored according to Italian guidelines. For the description of cases, the percentage of CD8CD38HLA*DR cells, CD8CD38HLA*DR cells, major histocompatibility complex genotyping, total HIV-DNA and plasma levels of anti-retroviral (ARV) drugs were performed. RESULTS Patients started therapy during chronic infection. Patient 26636 started her first ARV drug two years after diagnosis and patients 93016 and 50293 started cART with high viral loads and low CD4 cell counts. Time without cART was 13, 11 and 1.5 years, respectively. None presented any of the protective class I HLA alleles and patient 93016 has the HLA-B*35 allele that appears to be enriched in PTCs. Patients 93016 and 50293 had very low levels of CD8CD38HLA*DR cells (<5%) much lower than those of patient 26636 (27%). T-cell-associated HIV-DNA was 3.78, 3.48 and 3.13 log copies/10 CD4, respectively. CONCLUSION Patients like ours may advance our understanding of the characteristics for which individuals may be more likely to achieve ART-free remissions. Furthermore, our patients are among the few so far described who started cART during chronic infection extending the hope that a functional cure is possible even in this setting.
Collapse
|
47
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
48
|
CHOMONT N, OKOYE AA, FAVRE D, TRAUTMANN L. Wake me up before you go: a strategy to reduce the latent HIV reservoir. AIDS 2018; 32:293-298. [PMID: 29135580 PMCID: PMC5758429 DOI: 10.1097/qad.0000000000001695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the quest to eliminate or reduce the HIV reservoir, shock and kill strategies require the combined administration of a latency reversing agent (LRA) to reactivate the latent reservoir and an intervention to boost effector functions to clear this reservoir. Both parts of this strategy are quite inefficient when LRAs are administered to HIV-infected individuals on suppressive ART for several years, possibly due to low levels of induced antigen expression, negative impact of LRAs on clearance mechanisms, and very low number of effective cytotoxic T cells (CTLs). Here we provide rationale for an approach that would require only the administration of an LRA at the time of ART initiation to significantly reduce the HIV reservoir. The advantage of this strategy is an efficient reactivation of the latent HIV reservoir when high numbers of HIV-specific CD8+ T cells are present. This strategy may also potentiate more effective CTL responses and the establishment of a longer period of immune surveillance. This “window of opportunity” has been validated in silico , can be tested in preclinical non-human primate (NHP) models and translated rapidly in the clinic.
Collapse
Affiliation(s)
- Nicolas CHOMONT
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine. Université de Montréal, Montreal, Quebec, Canada
| | - Afam A. OKOYE
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David FAVRE
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Lydie TRAUTMANN
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Dubé K, Evans D, Dee L, Sylla L, Taylor J, Skinner A, Weiner BJ, Greene SB, Rennie S, Tucker JD. "We Need to Deploy Them Very Thoughtfully and Carefully": Perceptions of Analytical Treatment Interruptions in HIV Cure Research in the United States-A Qualitative Inquiry. AIDS Res Hum Retroviruses 2018; 34:67-79. [PMID: 28562069 DOI: 10.1089/aid.2017.0067] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Strategies to control HIV in the absence of antiretroviral therapy are needed to cure HIV. However, such strategies will require analytical treatment interruptions (ATIs) to determine their efficacy. We investigated how U.S. stakeholders involved in HIV cure research perceive ATIs. We conducted 36 in-depth interviews with three groups of stakeholders: 12 people living with HIV, 11 clinician-researchers, and 13 policy-makers/bioethicists. Qualitative data revealed several themes. First, there was little consensus on when ATIs would be ethically warranted. Second, the most frequent perceived hypothetical motivators for participating in research on ATIs were advancing science and contributing to society. Third, risks related to viral rebound were the most prevalent concerns related to ATIs. Stakeholders suggested ways to minimize the risks of ATIs in HIV cure research. Increased cooperation between scientists and local communities may be useful for minimizing risk. Further ethics research is necessary.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina
| | - David Evans
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, California
- Project Inform, San Francisco, California
| | - Lynda Dee
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, California
- AIDS Action Baltimore, Baltimore, Maryland
- amfAR Institute for HIV Cure Research CAB, San Francisco, California
| | | | - Jeff Taylor
- amfAR Institute for HIV Cure Research CAB, San Francisco, California
- Collaboratory of AIDS Researchers for Eradication (CARE), Palm Springs, California
| | - Asheley Skinner
- University of North Carolina Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina
- Duke Clinical Research Institute (DCRI), Durham, North Carolina
| | - Bryan J. Weiner
- University of North Carolina Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina
- Department of Global Health, University of Washington, Seattle, Washington
| | - Sandra B. Greene
- University of North Carolina Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina
| | - Stuart Rennie
- Department of Social Medicine and UNC Center for Bioethics, Chapel Hill, North Carolina
| | - Joseph D. Tucker
- UNC Project China, Guangzhou, China
- UNC Institute of Global Health and Infectious Diseases (IGHID), Chapel Hill, North Carolina
| |
Collapse
|
50
|
Modeling of Antilatency Treatment in HIV: What Is the Optimal Duration of Antiretroviral Therapy-Free HIV Remission? J Virol 2017; 91:JVI.01395-17. [PMID: 29021399 DOI: 10.1128/jvi.01395-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
A number of treatment strategies are currently being developed to promote antiretroviral therapy-free HIV cure or remission. While complete elimination of the HIV reservoir would prevent recurrence of infection, it is not clear how different remission lengths would affect viral rebound and transmission. In this work, we use a stochastic model to show that a treatment that achieves a 1-year average time to viral remission will still lead to nearly a quarter of subjects experiencing viral rebound within the first 3 months. Given quarterly viral testing intervals, this leads to an expected 39 (95% uncertainty interval [UI], 22 to 69) heterosexual transmissions and up to 262 (95% UI, 107 to 534) homosexual transmissions per 1,000 treated subjects over a 10-year period. Thus, a balance between high initial treatment levels, risk of recrudescence, and risk of transmission should be considered when assessing the "useful" or optimal length of antiretroviral therapy-free HIV remission to be targeted. We also investigate the trade-off between increasing the average duration of remission versus the risk of treatment failure (viral recrudescence) and the need for retreatment. To minimize drug exposure, we found that the optimal target of antilatency interventions is a 1,700-fold reduction in the size of the reservoir, which leads to an average time to recrudescence of 30 years. Interestingly, this is a significantly lower level of reduction than that required for complete elimination of the viral reservoir. Additionally, we show that when shorter periods are targeted, there is a real probability of viral transmission occurring between tests for viral rebound.IMPORTANCE Current treatment of HIV involves patients taking antiretroviral therapy to ensure that the level of virus remains very low or undetectable. Continuous therapy is required, as the virus persists in a latent state within cells, and when therapy is stopped, the virus rebounds, usually within 2 weeks. A major question is how to reduce the amount of persistent virus and therefore allow a delay or remission until the virus returns after ceasing therapy. In this work, we consider the probability that HIV will still rebound even after this reduction and ask what the likelihood of viral transmission would be in this case.
Collapse
|