1
|
Soni N, Bissa B. Exosomes, circadian rhythms, and cancer precision medicine: New frontiers. Biochimie 2024; 227:172-181. [PMID: 39032591 DOI: 10.1016/j.biochi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
"The environment shapes people's actions," a well-known proverb, strongly dictates that a change in our way of life changes our behavior. Circadian rhythms have been identified as a mechanism for maintaining homeostasis in the body, which, if disrupted by sleeping patterns, could result in significant metabolic alterations that adversely affect our health. The changes induced by circadian rhythm alter the secretion and cargo selection in exosomes which are nanovesicles important for intercellular communication. Exosomes were formerly known as "junk particles" but are now recognized as miniature copies of a cell's genetic material. Dysregulation of circadian rhythm has shown that it changes the gene expression of a cell to some extent and significantly alters the exosomal release. Meanwhile, cells secrete exosomes continuously to align the rhythmicity of the biological clock. In this study, we integrate circadian rhythms and exosomes with precision medicines to find better approaches to early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
2
|
Chang WC, Li SH, Tsai PS. Seminal Vesicle-Derived Exosomes for the Regulation of Sperm Activity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024. [PMID: 39287631 DOI: 10.1007/102_2024_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The seminal vesicle contributes to a large extent of the semen volume and composition. Removal of seminal vesicle or lack of seminal vesicle proteins leads to decreased fertility. Seminal plasma proteome revealed that seminal fluid contained a wide diversity of proteins. Many of them are known to modulate sperm capacitation and serve as capacitation inhibitors or decapacitation factors. Despite identifying secretory vesicles from the male reproductive tract, such as epididymosomes or prostasomes, isolation, identification, and characterization of seminal vesicle-derived exosomes are still unknown. This chapter aims to review the current understanding of the function of seminal vesicles on sperm physiology and male reproduction and provide ultracentrifugation-based isolation protocols for the isolation of seminal vesicle exosomes. Moreover, via proteomic analysis and functional categorization, a total of 726 proteins IDs were identified in the purified seminal vesicle exosomes fraction. Preliminary data showed seminal vesicle-derived exosomes inhibited sperm capacitation; however, more studies will be needed to reveal other functional involvements of seminal vesicle-derived exosomes on the sperm physiology and, more importantly, how these exosomes interact with sperm membrane to achieve their biological effects.
Collapse
Affiliation(s)
- Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, Tamsui, Taiwan.
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
4
|
Zhang Z, Xiong Y, Jiang H, Wang Q, Hu X, Wei X, Chen Q, Chen T. Vaginal extracellular vesicles impair fertility in endometriosis by favoring Th17/Treg imbalance and inhibiting sperm activity. J Cell Physiol 2024; 239:e31188. [PMID: 38192157 DOI: 10.1002/jcp.31188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.
Collapse
Affiliation(s)
- Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yangbai Xiong
- International Tourism and Convention Management, Hong Kong Polytechnic University, Hong Kong, China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
6
|
Nowak M, Górczyńska J, Kołodzińska K, Rubin J, Choromańska A. Extracellular Vesicles as Drug Transporters. Int J Mol Sci 2023; 24:10267. [PMID: 37373411 DOI: 10.3390/ijms241210267] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles. According to their size and synthesis pathway, EVs can be classified into exosomes, ectosomes (microvesicles), and apoptotic bodies. Extracellular vesicles are of great interest to the scientific community due to their role in cell-to-cell communication and their drug-carrying abilities. The study aims to show opportunities for the application of EVs as drug transporters by considering techniques applicable for loading EVs, current limitations, and the uniqueness of this idea compared to other drug transporters. In addition, EVs have therapeutic potential in anticancer therapy (especially in glioblastoma, pancreatic cancer, and breast cancer).
Collapse
Affiliation(s)
- Monika Nowak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Katarzyna Kołodzińska
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
8
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
9
|
Kaffash Farkhad N, Mahmoudi A, Mahdipour E. Regenerative therapy by using Mesenchymal Stem Cells-derived exosomes in COVID-19 treatment. The potential role and underlying mechanisms. Regen Ther 2022; 20:61-71. [PMID: 35340407 PMCID: PMC8938276 DOI: 10.1016/j.reth.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), started in December 2019 in Wuhan, China, and quickly became the global pandemic. The high spread rate, relatively high mortality rate, and the lack of specific medicine have led researchers and clinicians worldwide to find new treatment strategies. Unfortunately, evidence shows that the virus-specific receptor Angiotensin-Converting Enzyme 2 (ACE-2) is present on the surface of most cells in the body, leading to immune system dysfunction and multi-organ failure in critically ill patients. In this context, the use of Mesenchymal Stem Cells (MSCs) and their secret has opened new therapeutic horizons for patients due to the lack of ACE2 receptor expression. MSCs exert their beneficial therapeutic actions, particularly anti-inflammatory and immunomodulatory properties, mainly through paracrine effects which are mediated by exosomes. Exosomes are bilayer nanovesicles that carry a unique cargo of proteins, lipids and functional nucleic acids based on their cell origin. This review article aims to investigate the possible role of exosomes and the underlying mechanism involved in treating COVID-19 disease based on recent findings.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author. Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, University campus. Azadi Sq, Mashhad. Iran.
| |
Collapse
|
10
|
Clarke-Bland CE, Bill RM, Devitt A. Emerging roles for AQP in mammalian extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183826. [PMID: 34843700 PMCID: PMC8755917 DOI: 10.1016/j.bbamem.2021.183826] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Recent research in the aquaporin (AQP) field has identified a role for diverse AQPs in extracellular vesicles (EV). Though still in its infancy, there is a growing body of knowledge in the area; AQPs in EV have been suggested as biomarkers for disease, as drug targets and show potential as therapeutics. To advance further in this field, AQPs in EV must be better understood. Here we summarize current knowledge of the presence and function of AQPs in EV and hypothesise their roles in health and disease.
Collapse
Affiliation(s)
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew Devitt
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
11
|
Dantas-Pereira L, Menna-Barreto R, Lannes-Vieira J. Extracellular Vesicles: Potential Role in Remote Signaling and Inflammation in Trypanosoma cruzi-Triggered Disease. Front Cell Dev Biol 2022; 9:798054. [PMID: 34988085 PMCID: PMC8721122 DOI: 10.3389/fcell.2021.798054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) act as cell communicators and immune response modulators and may be employed as disease biomarkers and drug delivery systems. In infectious diseases, EVs can be released by the pathogen itself or by the host cells (infected or uninfected), potentially impacting the outcome of the immune response and pathological processes. Chagas disease (CD) is caused by infection by the protozoan Trypanosoma cruzi and is the main cause of heart failure in endemic areas. This illness attracted worldwide attention due to the presence of symptomatic seropositive subjects in North America, Asia, Oceania, and Europe. In the acute phase of infection, nonspecific signs, and symptoms contribute to miss diagnosis and early etiological treatment. In this phase, the immune response is crucial for parasite control; however, parasite persistence, dysregulated immune response, and intrinsic tissue factors may contribute to the pathogenesis of chronic CD. Most seropositive subjects remain in the indeterminate chronic form, and from 30 to 40% of the subjects develop cardiac, digestive, or cardio-digestive manifestations. Identification of EVs containing T. cruzi antigens suggests that these vesicles may target host cells and regulate cellular processes and the immune response by molecular mechanisms that remain to be determined. Parasite-released EVs modulate the host-parasite interplay, stimulate intracellular parasite differentiation and survival, and promote a regulatory cytokine profile in experimental models of CD. EVs derived from the parasite-cell interaction inhibit complement-mediated parasite lysis, allowing evasion. EVs released by T. cruzi-infected cells also regulate surrounding cells, maintaining a proinflammatory profile. After a brief review of the basic features of EVs, the present study focuses on potential participation of T. cruzi-secreted EVs in cell infection and persistence of low-grade parasite load in the chronic phase of infection. We also discuss the role of EVs in shaping the host immune response and in pathogenesis and progression of CD.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Navarrete-Muñoz MA, Llorens C, Benito JM, Rallón N. Extracellular Vesicles as a New Promising Therapy in HIV Infection. Front Immunol 2022; 12:811471. [PMID: 35058938 PMCID: PMC8765339 DOI: 10.3389/fimmu.2021.811471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively blocks HIV replication but cannot completely eliminate HIV from the body mainly due to establishment of a viral reservoir. To date, clinical strategies designed to replace cART for life and alternatively to eliminate the HIV reservoir have failed. The reduced expression of viral antigens in the latently infected cells is one of the main reasons behind the failure of the strategies to purge the HIV reservoir. This situation has forced the scientific community to search alternative therapeutic strategies to control HIV infection. In this regard, recent findings have pointed out extracellular vesicles as therapeutic agents with enormous potential to control HIV infection. This review focuses on their role as pro-viral and anti-viral factors, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Maria A. Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - Carlos Llorens
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The exosomes play a critical role in HIV infection, which constitute a pathway to release intracellular material and exchange material and information between cells. Exosomes have become a hotspot in the field of AIDS research. This review introduces the formation process of HIV particles and exosomes, and summarizes the role of exosomes in the progression of HIV disease from multiple aspects. RECENT FINDINGS Many components of the exosomes involved in HIV transfer and replication affect the occurrence, development, and outcome of AIDS, and are closely related to HIV infection. Exosomes can have a dual impact on HIV infection, and play an important role in activating the latent reservoir of HIV and affecting the chronic inflammation of HIV. The biological information carried by exosomes is also of great significance for the prediction of HIV disease. SUMMARY The present review summarizes the role of exosomes in HIV disease progression in various aspects in order to further understand the underlying mechanism affecting the infection and providing a new idea for the clinical diagnosis and treatment of AIDS.
Collapse
Affiliation(s)
| | - Chuanyun Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rong Li
- Beijing Institute of Hepatology
| | | | | | | |
Collapse
|
15
|
Gupta A, Shivaji K, Kadam S, Gupta M, Rodriguez HC, Potty AG, El-Amin SF, Maffulli N. Immunomodulatory extracellular vesicles: an alternative to cell therapy for COVID-19. Expert Opin Biol Ther 2021; 21:1551-1560. [PMID: 33886388 DOI: 10.1080/14712598.2021.1921141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: SARS-CoV-2 induces a cytokine storm and can cause inflammation, fibrosis and apoptosis in the lungs, leading to acute respiratory distress syndrome (ARDS). ARDS is the leading cause of mortality and morbidity the associated to COVID-19, and the cytokine storm is a prominent etiological factor. Mesenchymal stem cell-derived extracellular vesicles are an alternative therapy for the management of inflammatory and autoimmune conditions due to their immunosuppressive properties. The immunomodulatory and tissue regeneration capabilities of extracellular vesicles may support their application as a prospective therapy for COVID-19.Areas Covered: We explored the clinical evidence on extracellular vesicles as antiviral agents and in mitigating ARDS, and their therapeutic potential in COVID-19.Expert Opinion: Clinical trials using extracellular vesicles are registered against COVID-19 associated complications, with some evidence of safety and efficacy. Extracellular vesicles present an alternative potential for cell therapy for COVID-19 management, but further preclinical and clinical investigations are needed.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, USA.,BioIntegrate, Lawrenceville, USA.,South Texas Orthopedic Research Institute (STORI Inc), Laredo, USA.,Veterans in Pain, Los Angeles, USA
| | - Kashte Shivaji
- Department of Stem Cell & Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to Be University), Kolhapur, India
| | - Sachin Kadam
- Department of Stem Cell & Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to Be University), Kolhapur, India.,Advancells Group, Noida, India
| | | | - Hugo C Rodriguez
- Future Biologics, Lawrenceville, USA.,South Texas Orthopedic Research Institute (STORI Inc), Laredo, USA.,Future Physicians of South Texas, San Antonio, USA.,School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, USA
| | - Anish G Potty
- South Texas Orthopedic Research Institute (STORI Inc), Laredo, USA.,School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, USA.,The Institute of Musculoskeletal Excellence (TIME Orthopaedics), Laredo, USA
| | - Saadiq F El-Amin
- BioIntegrate, Lawrenceville, USA.,El-Amin Orthopaedic & Sports Medicine Institute, Lawrenceville, USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy.,San Giovanni Di Dio E Ruggi D'Aragona Hospital "Clinica Orthopedica" Department, Hospital of Salerno, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, London, England
| |
Collapse
|
16
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Burkova EE, Sedykh SE, Nevinsky GA. Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics. Int J Mol Sci 2021; 22:ijms22042158. [PMID: 33671527 PMCID: PMC7926398 DOI: 10.3390/ijms22042158] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are 40–100 nm nanovesicles participating in intercellular communication and transferring various bioactive proteins, mRNAs, miRNAs, and lipids. During pregnancy, the placenta releases exosomes into the maternal circulation. Placental exosomes are detected in the maternal blood even in the first trimester of pregnancy and their numbers increase significantly by the end of pregnancy. Exosomes are necessary for the normal functioning of the placenta and fetal development. Effects of exosomes on target cells depend not only on their concentration but also on their intrinsic components. The biochemical composition of the placental exosomes may cause various complications of pregnancy. Some studies relate the changes in the composition of nanovesicles to placental dysfunction. Isolation of placental exosomes from the blood of pregnant women and the study of protein, lipid, and nucleic composition can lead to the development of methods for early diagnosis of pregnancy pathologies. This review describes the biogenesis of exosomes, methods of their isolation, analyzes their biochemical composition, and considers the prospects for using exosomes to diagnose pregnancy pathologies.
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Correspondence: ; Tel.: +7-(383)-363-51-27
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
19
|
Talebjedi B, Tasnim N, Hoorfar M, Mastromonaco GF, De Almeida Monteiro Melo Ferraz M. Exploiting Microfluidics for Extracellular Vesicle Isolation and Characterization: Potential Use for Standardized Embryo Quality Assessment. Front Vet Sci 2021; 7:620809. [PMID: 33469556 PMCID: PMC7813816 DOI: 10.3389/fvets.2020.620809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent decades have seen a growing interest in the study of extracellular vesicles (EVs), driven by their role in cellular communication, and potential as biomarkers of health and disease. Although it is known that embryos secrete EVs, studies on the importance of embryonic EVs are still very limited. This limitation is due mainly to small sample volumes, with low EV concentrations available for analysis, and to laborious, costly and time-consuming procedures for isolating and evaluating EVs. In this respect, microfluidics technologies represent a promising avenue for optimizing the isolation and characterization of embryonic EVs. Despite significant improvements in microfluidics for EV isolation and characterization, the use of EVs as markers of embryo quality has been held back by two key challenges: (1) the lack of specific biomarkers of embryo quality, and (2) the limited number of studies evaluating the content of embryonic EVs across embryos with varying developmental competence. Our core aim in this review is to identify the critical challenges of EV isolation and to provide seeds for future studies to implement the profiling of embryonic EVs as a diagnostic test for embryo selection. We first summarize the conventional methods for isolating EVs and contrast these with the most promising microfluidics methods. We then discuss current knowledge of embryonic EVs and their potential role as biomarkers of embryo quality. Finally, we identify key ways in which microfluidics technologies could allow researchers to overcome the challenges of embryonic EV isolation and be used as a fast, user-friendly tool for non-invasive embryo selection.
Collapse
Affiliation(s)
- Bahram Talebjedi
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | | | | |
Collapse
|
20
|
Caobi A, Nair M, Raymond AD. Extracellular Vesicles in the Pathogenesis of Viral Infections in Humans. Viruses 2020; 12:E1200. [PMID: 33096825 PMCID: PMC7589806 DOI: 10.3390/v12101200] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review's scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.
Collapse
Affiliation(s)
| | | | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine at Florida International University, Miami, FL 33199, USA; (A.C.); (M.N.)
| |
Collapse
|
21
|
Lyu Y, Kopcho S, Mohan M, Okeoma CM. Long-Term Low-Dose Delta-9-Tetrahydrocannbinol (THC) Administration to Simian Immunodeficiency Virus (SIV) Infected Rhesus Macaques Stimulates the Release of Bioactive Blood Extracellular Vesicles (EVs) that Induce Divergent Structural Adaptations and Signaling Cues. Cells 2020; 9:E2243. [PMID: 33036231 PMCID: PMC7599525 DOI: 10.3390/cells9102243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Blood extracellular vesicles (BEVs) carry bioactive cargo (proteins, genetic materials, lipids, licit, and illicit drugs) that regulate diverse functions in target cells. The cannabinoid drug delta-9-tetrahydrocannabinol (THC) is FDA approved for the treatment of anorexia and weight loss in people living with HIV. However, the effect of THC on BEV characteristics in the setting of HIV/SIV infection needs to be determined. Here, we used the SIV-infected rhesus macaque model of AIDS to evaluate the longitudinal effects of THC (THC/SIV) or vehicle (VEH/SIV) treatment in HIV/SIV infection on the properties of BEVs. While BEV concentrations increased longitudinally (pre-SIV (0), 30, and 150 days post-SIV infection (DPI)) in VEH/SIV macaques, the opposite trend was observed with THC/SIV macaques. SIV infection altered BEV membrane properties and cargo composition late in infection, since i) the electrostatic surface properties (zeta potential, ζ potential) showed that RM BEVs carried negative surface charge, but at 150 DPI, SIV infection significantly changed BEV ζ potential; ii) BEVs from the VEH/SIV group altered tetraspanin CD9 and CD81 levels compared to the THC/SIV group. Furthermore, VEH/SIV and THC/SIV BEVs mediated divergent changes in monocyte gene expression, morphometrics, signaling, and function. These include altered tetraspanin and integrin β1 expression; altered levels and distribution of polymerized actin, FAK/pY397 FAK, pERK1/2, cleaved caspase 3, proapoptotic Bid and truncated tBid; and altered adhesion of monocytes to collagen I. These data indicate that HIV/SIV infection and THC treatment result in the release of bioactive BEVs with potential to induce distinct structural adaptations and signaling cues to instruct divergent cellular responses to infection.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Mahesh Mohan
- Host Pathogen Interaction, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| |
Collapse
|
22
|
Zhao Z, Muth DC, Mulka K, Liao Z, Powell BH, Hancock GV, Metcalf Pate KA, Witwer KW. miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential antiretroviral factor in macrophages. FEBS Open Bio 2020; 10:2021-2039. [PMID: 33017084 PMCID: PMC7530394 DOI: 10.1002/2211-5463.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.
Collapse
Affiliation(s)
- Zezhou Zhao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dillon C. Muth
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zhaohao Liao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bonita H. Powell
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
23
|
Kaddour H, Panzner TD, Welch JL, Shouman N, Mohan M, Stapleton JT, Okeoma CM. Electrostatic Surface Properties of Blood and Semen Extracellular Vesicles: Implications of Sialylation and HIV-Induced Changes on EV Internalization. Viruses 2020; 12:E1117. [PMID: 33019624 PMCID: PMC7601085 DOI: 10.3390/v12101117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although extracellular vesicle (EV) surface electrostatic properties (measured as zeta potential, ζ-potential) have been reported by many investigators, the biophysical implications of charge and EV origin remains uncertain. Here, we compared the ζ-potential of human blood EVs (BEVs) and semen EVs (SEVs) from 26 donors that were HIV-infected (HIV+, n = 13) or HIV uninfected (HIV-, n = 13). We found that, compared to BEVs that bear neutral surface charge, SEVs were significantly more negatively charged, even when BEVs and SEVs were from the same individual. Comparison of BEVs and SEVs from HIV- and HIV+ groups revealed subtle HIV-induced alteration in the ζ-potential of EVs, with the effect being more significant in SEVs (∆ζ-potential = -8.82 mV, p-value = 0.0062) than BEVs (∆ζ-potential = -1.4 mV, p-value = 0.0462). These observations were validated by differences in the isoelectric point (IEP) of EVs, which was in the order of HIV + SEV ≤ HIV-SEV ≪ HIV + BEV ≤ HIV-BEV. Functionally, the rate and efficiency of SEV internalization by the human cervical epithelial cell line, primary peripheral blood lymphocytes, and primary blood-derived monocytes were significantly higher than those of BEVs. Mechanistically, removal of sialic acids from the surface of EVs using neuraminidase treatment significantly decreased SEV's surface charge, concomitant with a substantial reduction in SEV's internalization. The neuraminidase effect was independent of HIV infection and insignificant for BEVs. Finally, these results were corroborated by enrichment of glycoproteins in SEVs versus BEVs. Taken together, these findings uncover fundamental tissue-specific differences in surface electrostatic properties of EVs and highlight the critical role of surface charge in EV/target cell interactions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Tyler D. Panzner
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.W.); (J.T.S.)
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.W.); (J.T.S.)
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| |
Collapse
|
24
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2020. [PMID: 31512168 DOI: 10.1007/s11481-%20019-09874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Semen Extracellular Vesicles From HIV-1-Infected Individuals Inhibit HIV-1 Replication In Vitro, and Extracellular Vesicles Carry Antiretroviral Drugs In Vivo. J Acquir Immune Defic Syndr 2020; 83:90-98. [PMID: 31809364 DOI: 10.1097/qai.0000000000002233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-derived vesicles with diverse functions in intercellular communication including disease and infection, and EVs seem to influence HIV-1 pathogenesis. EVs isolated from HIV-1-uninfected semen (SE), but not blood (BE), contain factors that interfere with HIV-1 infection and replication in target cells. The reason for this dichotomy is unknown. Furthermore, the effect of HIV-1 infection and antiretroviral (ARV) drugs on the anti-HIV-1 effects of SE and BE is unknown. Here, we characterize EVs and EV-free plasma isolated from HIV-infected donor semen and blood and their effects on HIV infection. METHODS EVs and EV-free plasma were purified from autologous blood and semen of HIV-negative, HIV-infected antiretroviral therapy (ART)-naïve, and HIV-infected ART-treated participants. HIV infection was assessed in a TZM-bl cell reporter system. ARV concentrations were analyzed using liquid chromatography-mass spectrometry. RESULTS SE isolated from both HIV-negative and HIV-infected, ART-naïve donors inhibited HIV-1 infection, but BE and semen and blood EV-free plasma did not. By contrast, BE, SE, and EV-free plasma from HIV-infected, ART-treated donors inhibited HIV-1. Importantly, exosomes isolated from ART-treated donors contained concentrations of ARV drugs (ART-EVs) at biologically relevant inhibitory levels. CONCLUSIONS The HIV-1-inhibitory phenotype of SE is independent of donor HIV-1 or ART status, and ARV drugs and their metabolites are SE- and BE-associated in vivo.
Collapse
|
26
|
Shedding Light on the Role of Extracellular Vesicles in HIV Infection and Wound Healing. Viruses 2020; 12:v12060584. [PMID: 32471020 PMCID: PMC7354510 DOI: 10.3390/v12060584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication. They are naturally released from cells into the extracellular environment. Based on their biogenesis, release pathways, size, content, and function, EVs are classified into exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Previous research has documented that EVs, specifically exosomes and MVs, play an important role in HIV infection, either by promoting HIV infection and pathogenesis or by inhibiting HIV-1 to a certain extent. We have also previously reported that EVs (particularly exosomes) from vaginal fluids inhibit HIV at the post-entry step (i.e., reverse transcription, integration). Besides the role that EVs play in HIV, they are also known to regulate the process of wound healing by regulating both the immune and inflammatory responses. It is noted that during the advanced stages of HIV infection, patients are at greater risk of wound-healing and wound-related complications. Despite ongoing research, the data on the actual effects of EVs in HIV infection and wound healing are still premature. This review aimed to update the current knowledge about the roles of EVs in regulating HIV pathogenesis and wound healing. Additionally, we highlighted several avenues of EV involvement in the process of wound healing, including coagulation, inflammation, proliferation, and extracellular matrix remodeling. Understanding the role of EVs in HIV infection and wound healing could significantly contribute to the development of new and potent antiviral therapeutic strategies and approaches to resolve impaired wounds in HIV patients.
Collapse
|
27
|
de Almeida Monteiro Melo Ferraz M, Fujihara M, Nagashima JB, Noonan MJ, Inoue-Murayama M, Songsasen N. Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes. Sci Rep 2020; 10:8619. [PMID: 32451384 PMCID: PMC7248092 DOI: 10.1038/s41598-020-65497-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) contain multiple factors that regulate cell and tissue function. However, understanding of their influence on gametes, including communication with the oocyte, remains limited. In the present study, we characterized the proteome of domestic cat (Felis catus) follicular fluid EVs (ffEV). To determine the influence of follicular fluid EVs on gamete cryosurvival and the ability to undergo in vitro maturation, cat oocytes were vitrified using the Cryotop method in the presence or absence of ffEV. Vitrified oocytes were thawed with or without ffEVs, assessed for survival, in vitro cultured for 26 hours and then evaluated for viability and meiotic status. Cat ffEVs had an average size of 129.3 ± 61.7 nm (mean ± SD) and characteristic doughnut shaped circular vesicles in transmission electron microscopy. Proteomic analyses of the ffEVs identified a total of 674 protein groups out of 1,974 proteins, which were classified as being involved in regulation of oxidative phosphorylation, extracellular matrix formation, oocyte meiosis, cholesterol metabolism, glycolysis/gluconeogenesis, and MAPK, PI3K-AKT, HIPPO and calcium signaling pathways. Furthermore, several chaperone proteins associated with the responses to osmotic and thermal stresses were also identified. There were no differences in the oocyte survival among fresh and vitrified oocyte; however, the addition of ffEVs to vitrification and/or thawing media enhanced the ability of frozen-thawed oocytes to resume meiosis. In summary, this study is the first to characterize protein content of cat ffEVs and their potential roles in sustaining meiotic competence of cryopreserved oocytes.
Collapse
Affiliation(s)
| | - Mayako Fujihara
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Jennifer Beth Nagashima
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - Michael James Noonan
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nucharin Songsasen
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| |
Collapse
|
28
|
Haque S, Kodidela S, Sinha N, Kumar P, Cory TJ, Kumar S. Differential packaging of inflammatory cytokines/ chemokines and oxidative stress modulators in U937 and U1 macrophages-derived extracellular vesicles upon exposure to tobacco constituents. PLoS One 2020; 15:e0233054. [PMID: 32433651 PMCID: PMC7239484 DOI: 10.1371/journal.pone.0233054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Smoking, which is highly prevalent in HIV-infected populations, has been shown to exacerbate HIV replication, in part via the cytochrome P450 (CYP)-induced oxidative stress pathway. Recently, we have shown that extracellular vesicles (EVs), derived from tobacco- and/or HIV-exposed macrophages, alter HIV replication in macrophages by cell-cell interactions. We hypothesize that cigarette smoke condensate (CSC) and/or HIV-exposed macrophage-derived EVs carry relatively high levels of pro-oxidant and pro-inflammatory cargos and/or low levels of antioxidant and anti-inflammatory cargos, which are key mediators for HIV pathogenesis. Therefore, in this study, we investigated differential packaging of pro- and anti-inflammatory cytokines/chemokines and pro- and anti-oxidant contents in EVs after CSC exposure to myeloid cells (uninfected U937 and HIV-infected U1 cells). Our results showed that relatively long to short exposures with CSC increased the expression of cytokines in EVs isolated from HIV-infected U1 macrophages. Importantly, pro-inflammatory cytokines, especially IL-6, were highly packaged in EVs isolated from HIV-infected U1 macrophages upon both long and short-term CSC exposures. In general, anti-inflammatory cytokines, particularly IL-10, had a lower packaging in EVs, while packaging of chemokines was mostly increased in EVs upon CSC exposure in both HIV-infected U1 and uninfected U937 macrophages. Moreover, we observed higher expression of CYPs (1A1 and 1B1) and lower expression of antioxidant enzymes (SOD-1 and catalase) in EVs from HIV-infected U1 macrophages than in uninfected U937 macrophages. Together, they are expected to increase oxidative stress factors in EVs derived from HIV-infected U1 cells. Taken together, our results suggest packaging of increased level of oxidative stress and inflammatory elements in the EVs upon exposure to tobacco constituents and/or HIV to myeloid cells, which would ultimately enhance HIV replication in macrophages via cell-cell interactions.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Prashant Kumar
- Division of Pediatric Nephrology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Theodore J. Cory
- Department of Clinical Pharmacy and Translational Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
29
|
Yang JE, Rossignol ED, Chang D, Zaia J, Forrester I, Raja K, Winbigler H, Nicastro D, Jackson WT, Bullitt E. Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus. Sci Rep 2020; 10:7939. [PMID: 32409751 PMCID: PMC7224179 DOI: 10.1038/s41598-020-64531-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses support cell-to-cell viral transmission prior to their canonical lytic spread of virus. Poliovirus (PV), a prototype for human pathogenic positive-sense RNA enteroviruses, and picornaviruses in general, transport multiple virions en bloc via infectious extracellular vesicles, 100~1000 nm in diameter, secreted from host cells. Using biochemical and biophysical methods we identify multiple components in secreted microvesicles, including mature PV virions; positive-sense genomic and negative-sense replicative, template viral RNA; essential viral replication proteins; and cellular proteins. Using cryo-electron tomography, we visualize the near-native three-dimensional architecture of secreted infectious microvesicles containing both virions and a unique morphological component that we describe as a mat-like structure. While the composition of these mat-like structures is not yet known, based on our biochemical data they are expected to be comprised of unencapsidated RNA and proteins. In addition to infectious microvesicles, CD9-positive exosomes released from PV-infected cells are also infectious and transport virions. Thus, our data show that, prior to cell lysis, non-enveloped viruses are secreted within infectious vesicles that also transport viral unencapsidated RNAs, viral and host proteins. Understanding the structure and function of these infectious particles helps elucidate the mechanism by which extracellular vesicles contribute to the spread of non-enveloped virus infection.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, United States.,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, United States
| | - Evan D Rossignol
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, United States.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, United States
| | - Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Isaac Forrester
- Department of Biochemistry, Baylor College of Medicine, Houston, United States
| | - Kiran Raja
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Holly Winbigler
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 20201, United States
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75235, United States
| | - William T Jackson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 20201, United States
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, United States.
| |
Collapse
|
30
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
31
|
Pérez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, Martin-Jaular L, Witwer KW, Théry C, Ostrowski M. Extracellular vesicles and chronic inflammation during HIV infection. J Extracell Vesicles 2019; 8:1687275. [PMID: 31998449 PMCID: PMC6963413 DOI: 10.1080/20013078.2019.1687275] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.
Collapse
Affiliation(s)
- Paula Soledad Pérez
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | - Gabriel A. Duette
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena Martin-Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Matías Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
32
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2019; 15:459-472. [PMID: 31512168 DOI: 10.1007/s11481-019-09874-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
33
|
Human Immunodeficiency Virus (HIV) Infection and Use of Illicit Substances Promote Secretion of Semen Exosomes that Enhance Monocyte Adhesion and Induce Actin Reorganization and Chemotactic Migration. Cells 2019; 8:cells8091027. [PMID: 31484431 PMCID: PMC6770851 DOI: 10.3390/cells8091027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Semen exosomes (SE) from HIV-uninfected (HIV−) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV− and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV−Drug−, HIV−Drug+, HIV+Drug−, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV−Drug− SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances.
Collapse
|
34
|
Ouattara LA, Anderson SM, Doncel GF. Seminal exosomes and HIV-1 transmission. Andrologia 2019; 50:e13220. [PMID: 30569645 PMCID: PMC6378409 DOI: 10.1111/and.13220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are endosomal‐derived membrane‐confined nanovesicles secreted by many (if not all) cell types and isolated from every human bodily fluid examined up to now including plasma, semen, vaginal secretions and breast milk. Exosomes are thought to represent a new player in cell‐to‐cell communication pathways and immune regulation, and be involved in many physiological and pathological processes. Susceptibility to HIV‐1 infection can be impacted by exosomes, while HIV‐1 pathogenesis can alter exosomal function and composition. Exosomes isolated from semen and vaginal fluid of healthy individuals can inhibit HIV‐1 infection and/or potently block viral transfer in vitro. However, the role of exosomes in HIV‐1 transmission and progression is not fully understood yet and some studies show conflicting results, mainly for exosomes isolated from plasma and breast milk. Determining the composition of exosomes from infected donors and studying their interaction with HIV‐1 in vitro compared to exosomes isolated from uninfected donors will provide insights into the role exosomes play in HIV‐1 transmission during sexual intercourse and breastfeeding.
Collapse
|
35
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
36
|
Fereshteh Z, Bathala P, Galileo DS, Martin-DeLeon PA. Detection of extracellular vesicles in the mouse vaginal fluid: Their delivery of sperm proteins that stimulate capacitation and modulate fertility. J Cell Physiol 2018; 234:12745-12756. [PMID: 30536802 DOI: 10.1002/jcp.27894] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) were isolated by ultracentrifugation of vaginal luminal fluid (VLF) from superovulated mice and identified for the first time using transmission electron microscopy. Characterized by size and biochemical markers (CD9 and HSC70), EVs were shown to be both microvesicular and exosomal and were dubbed as "Vaginosomes" (VGS). Vaginal cross-sections were analyzed to visualize EVs in situ: EVs were present in the lumen and also embedded between squamous epithelial and keratinized cells, consistent with their endogenous origin. Western blots detected Plasma membrane Ca2+ -ATPase 1 (PMCA1) and tyrosine-phosphorylated proteins in the VGS cargo and also in uterosomes. Flow cytometry revealed that following coincubation of caudal sperm and VLF for 30 min, the frequencies of cells with the highest Sperm adhesion molecule 1 (SPAM1), PMCA1/4, and PMCA1 levels increased 16.4-, 8.2-, and 27-fold, respectively; compared with control coincubated in phosphate buffered saline (PBS). Under identical conditions, sperm tyrosine-phosphorylated proteins were elevated ~3.3-fold, after VLF coincubation. Progesterone-induced acrosome reaction (AR) rates were significantly (p < 0.001) elevated in sperm coincubated with VGS for 10-30 min, compared with PBS. Sperm artificially deposited in the vaginas of superovulated females for these periods also showed significant (p < 0.01) increases in AR rates, compared with PBS. Thus in vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus. Overall, VGS appear to deliver higher levels of proteins involved in preventing premature capacitation and AR than those promoting them. Our findings which have implications for humans open the possibility of new approaches to infertility treatment with exosome therapeutics.
Collapse
Affiliation(s)
- Zeinab Fereshteh
- Department of Biological Sciences, University of Delaware, Newark, Delaware.,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | |
Collapse
|
37
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
38
|
Dias MVS, Costa CS, daSilva LLP. The Ambiguous Roles of Extracellular Vesicles in HIV Replication and Pathogenesis. Front Microbiol 2018; 9:2411. [PMID: 30364166 PMCID: PMC6191503 DOI: 10.3389/fmicb.2018.02411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cells from all kingdoms of life can release membrane-enclosed vesicles to the extracellular milieu. These extracellular vesicles (EVs) may function as mediators of intercellular communication, allowing the transfer of biologically active molecules between cells and organisms. It has become clear that HIV particles and certain types of EVs, such as exosomes, share many similarities regarding morphology, composition, and biogenesis. This review presents a summary of the literature describing the intricate relationship between HIV and EVs biogenesis. Also, we discuss the latest progress toward understanding the mechanisms by which EVs influence HIV pathogenesis, as well as, how HIV modulates EVs composition in infected cells to facilitate viral spread.
Collapse
Affiliation(s)
- Marcos V S Dias
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina S Costa
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Tyssen D, Wang YY, Hayward JA, Agius PA, DeLong K, Aldunate M, Ravel J, Moench TR, Cone RA, Tachedjian G. Anti-HIV-1 Activity of Lactic Acid in Human Cervicovaginal Fluid. mSphere 2018; 3:e00055-18. [PMID: 29976641 PMCID: PMC6034077 DOI: 10.1128/msphere.00055-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Women of reproductive age with a Lactobacillus-dominated vaginal microbiota have a reduced risk of acquiring and transmitting HIV and a vaginal pH of ~4 due to the presence of ~1% (wt/vol) lactic acid. While lactic acid has potent HIV virucidal activity in vitro, whether lactic acid present in the vaginal lumen inactivates HIV has not been investigated. Here we evaluated the anti-HIV-1 activity of native, minimally diluted cervicovaginal fluid obtained from women of reproductive age (n = 20) with vaginal microbiota dominated by Lactobacillus spp. Inhibition of HIVBa-L was significantly associated with the protonated form of lactic acid in cervicovaginal fluid. The HIVBa-L inhibitory activity observed in the <3-kDa acidic filtrate was similar to that of the corresponding untreated native cervicovaginal fluid as well as that of clarified neat cervicovaginal fluid subjected to protease digestion. These ex vivo studies indicate that protonated lactic acid is a major anti-HIV-1 metabolite present in acidic cervicovaginal fluid, suggesting a potential role in reducing HIV transmission by inactivating virus introduced or shed into the cervicovaginal lumen.IMPORTANCE The Lactobacillus-dominated vaginal microbiota is associated with a reduced risk of acquiring and transmitting HIV and other sexually transmitted infections (STIs). Lactic acid is a major organic acid metabolite produced by lactobacilli that acidifies the vagina and has been reported to have inhibitory activity in vitro against bacterial, protozoan, and viral STIs, including HIV infections. However, the anti-HIV properties of lactic acid in native vaginal lumen fluids of women colonized with Lactobacillus spp. have not yet been established. Our study, using native cervicovaginal fluid from women, found that potent and irreversible anti-HIV-1 activity is significantly associated with the concentration of the protonated (acidic, uncharged) form of lactic acid. This work advances our understanding of the mechanisms by which vaginal microbiota modulate HIV susceptibility and could lead to novel strategies to prevent women from acquiring HIV or transmitting the virus during vaginal intercourse and vaginal birth.
Collapse
Affiliation(s)
- David Tyssen
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
| | - Ying-Ying Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joshua A Hayward
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
| | - Paul A Agius
- Maternal and Child Health Program, Public Health Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kevin DeLong
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muriel Aldunate
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Richard A Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in Pathogen Infections: A Bridge to Deliver Molecules and Link Functions. Front Immunol 2018; 9:90. [PMID: 29483904 PMCID: PMC5816030 DOI: 10.3389/fimmu.2018.00090] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from cell endocytosis which act as transmitters between cells. They are composed of proteins, lipids, and RNAs through which they participate in cellular crosstalk. Consequently, they play an important role in health and disease. Our view is that exosomes exert a bidirectional regulatory effect on pathogen infections by delivering their content. First, exosomes containing proteins and RNAs derived from pathogens can promote infections in three ways: (1) mediating further infection by transmitting pathogen-related molecules; (2) participating in the immune escape of pathogens; and (3) inhibiting immune responses by favoring immune cell apoptosis. Second, exosomes play anti-infection roles through: (1) inhibiting pathogen proliferation and infection directly; (2) inducing immune responses such as those related to the function of monocyte-macrophages, NK cells, T cells, and B cells. We believe that exosomes act as “bridges” during pathogen infections through the mechanisms mentioned above. The purpose of this review is to describe present findings regarding exosomes and pathogen infections, and highlight their enormous potential in clinical diagnosis and treatment. We discuss two opposite aspects: infection and anti-infection, and we hypothesize a balance between them. At the same time, we elaborate on the role of exosomes in immune regulation.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| | - Xiaofeng Jiang
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| | - Jinghui Bao
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi Wang
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| | - Huixing Liu
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| | - Lijun Tang
- School of Life Science, Central South University, Changsha, China.,XiangYa School of Medicine, Central South University, Changsha, China
| |
Collapse
|
41
|
Mueller SK, Nocera AL, Bleier BS. Exosome function in aerodigestive mucosa. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:269-277. [DOI: 10.1016/j.nano.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
42
|
Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Sci Rep 2017; 7:15611. [PMID: 29142313 PMCID: PMC5688118 DOI: 10.1038/s41598-017-15961-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small extracellular vesicles (EVs), released by a wide variety of cell types, carry donor origin-proteins, cytokines, and nucleic acids, transport these cargos to adjacent or distant specific recipient cells, and thereby regulate gene expression and activation of target cells. In this study, we isolated and identified exosomes in rhesus macaques, and investigated their effects on cell tropism and activation, especially their potential to reactivate HIV latency. The results indicated that plasma-derived exosomes preferentially fuse to TCR-activated T cells and autologous parent cells. Importantly, the uptake of exosomes, derived from IL-2 stimulated CD4+ T cells, effectively promoted reactivation of resting CD4+ T-cell, as indicated by an increased viral transcription rate in these cells. These findings provide premise for the potential application of exosome in the reactivation of HIV latency, in combination its use as functional delivery vehicles with antiretroviral therapy (ART).
Collapse
Affiliation(s)
- Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Blake Schouest
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA.
| |
Collapse
|
43
|
Du W, Zuo K, Sun X, Liu W, Yan X, Liang L, Wan H, Chen F, Hu J. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA. J Mol Graph Model 2017; 78:96-109. [PMID: 29055187 DOI: 10.1016/j.jmgm.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN.
Collapse
Affiliation(s)
- Wenyi Du
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Ke Zuo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Fengzheng Chen
- Department of Chemistry, Leshan Normal University, Leshan, China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China.
| |
Collapse
|
44
|
Ellwanger JH, Veit TD, Chies JAB. Exosomes in HIV infection: A review and critical look. INFECTION GENETICS AND EVOLUTION 2017; 53:146-154. [PMID: 28546080 DOI: 10.1016/j.meegid.2017.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
Exosomes are nanovesicles released into the extracellular medium by different cell types. These vesicles carry a variety of protein and RNA cargos, and have a central role in cellular signaling and regulation. A PubMed search using the term "exosomes" finds 67 articles published in 2006. Ten years later, the same search returns approximately 1200 results for 2016 alone. The growing interest in exosomes within the scientific community reflects the different roles exerted by extracellular vesicles in biological systems and diseases. However, the increase in academic production addressing the biological function of exosomes causes much confusion, especially where the focus is on the role of exosomes in pathological situations. In this review, we critically interpret the current state of the research on exosomes and HIV infection. It is plausible to assume that exosomes influence the pathogenesis of HIV infection through their biological cargo (primarily membrane proteins and microRNAs). On the other hand, evidence for a usurpation of the exosomal budding and trafficking machinery by HIV during infection is limited, although such a mechanism cannot be ruled out. This review also discusses several biological aspects of exosomal function in the immune system. Finally, the limitations of current exosome research are pointed out.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tiago Degani Veit
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|