1
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2024:10.1038/s41434-024-00467-9. [PMID: 39025983 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
2
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Macharia GN, Yue L, Staller E, Dilernia D, Wilkins D, Song H, McGowan E, King D, Fast P, Imami N, Price MA, Sanders EJ, Hunter E, Gilmour J. Infection with multiple HIV-1 founder variants is associated with lower viral replicative capacity, faster CD4+ T cell decline and increased immune activation during acute infection. PLoS Pathog 2020; 16:e1008853. [PMID: 32886726 PMCID: PMC7498102 DOI: 10.1371/journal.ppat.1008853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
HIV-1 transmission is associated with a severe bottleneck in which a limited number of variants from a pool of genetically diverse quasispecies establishes infection. The IAVI protocol C cohort of discordant couples, female sex workers, other heterosexuals and men who have sex with men (MSM) present varying risks of HIV infection, diverse HIV-1 subtypes and represent a unique opportunity to characterize transmitted/founder viruses (TF) where disease outcome is known. To identify the TF, the HIV-1 repertoire of 38 MSM participants' samples was sequenced close to transmission (median 21 days post infection, IQR 18-41) and assessment of multivariant infection done. Patient derived gag genes were cloned into an NL4.3 provirus to generate chimeric viruses which were characterized for replicative capacity (RC). Finally, an evaluation of how the TF virus predicted disease progression and modified the immune response at both acute and chronic HIV-1 infection was done. There was higher prevalence of multivariant infection compared with previously described heterosexual cohorts. A link was identified between multivariant infection and replicative capacity conferred by gag, whereby TF gag tended to be of lower replicative capacity in multivariant infection (p = 0.02) suggesting an overall lowering of fitness requirements during infection with multiple variants. Notwithstanding, multivariant infection was associated with rapid CD4+ T cell decline and perturbances in the CD4+ T cell and B cell compartments compared to single variant infection, which were reversible upon control of viremia. Strategies aimed at identifying and mitigating multivariant infection could contribute toward improving HIV-1 prognosis and this may involve strategies that tighten the stringency of the transmission bottleneck such as treatment of STI. Furthermore, the sequences and chimeric viruses help with TF based experimental vaccine immunogen design and can be used in functional assays to probe effective immune responses against TF.
Collapse
Affiliation(s)
- Gladys N. Macharia
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Ling Yue
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Ecco Staller
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Dario Dilernia
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Daniel Wilkins
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Heeyah Song
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Edward McGowan
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Deborah King
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Pat Fast
- IAVI, New York, NY, United States of America
| | - Nesrina Imami
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Matthew A. Price
- IAVI, New York, NY, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States of America
| | - Eduard J. Sanders
- Kenya Medical Research Institute-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, United Kingdom
| | - Eric Hunter
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America
| | - Jill Gilmour
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| |
Collapse
|
4
|
Martin ML, Bitzer AA, Schrader A, Bergmann-Leitner ES, Soto K, Zou X, Beck Z, Matyas GR, Dutta S. Comparison of immunogenicity and safety outcomes of a malaria vaccine FMP013/ALFQ in rhesus macaques (Macaca mulatta) of Indian and Chinese origin. Malar J 2019; 18:377. [PMID: 31775762 PMCID: PMC6880475 DOI: 10.1186/s12936-019-3014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Background Indian-origin rhesus (InR) are preferred for research, but strict export restrictions continue to limit their use. Chinese-origin rhesus (ChR), although easier to procure, are genetically distinct from InR and differ in their immune response to infectious agents, such as the Simian Immunodeficiency Virus. The most advanced malaria vaccine, RTS,S (GlaxoSmithKline), is based on the circumsporozoite protein (CSP) of Plasmodium falciparum. The efficacy of RTS,S vaccine in the field remains low and short-lived; efforts are underway to improve CSP-based vaccines. Rhesus models can accelerate preclinical down-selection of the next generation of malaria vaccines. This study was used to determine if the safety and immunogenicity outcomes following vaccination with a CSP vaccine would differ in the InR and ChR models, given the genetic differences between the two sub-populations of rhesus. Methods The FMP013 vaccine, was composed of nearly full-length soluble P. falciparum CSP produced in Escherichia coli and was adjuvanted with the Army liposomal formulation (ALFQ). Three doses of the vaccine were administered in InR and ChR (n = 6) at 1-month intervals and the antibody and T cell responses were assessed. Results Local and systemic toxicity profile of FMP013 vaccine in InR and ChR were similar and they revealed that the FMP013 vaccine was safe and caused only mild and transient inflammatory adverse reactions. Following the first 2 vaccines, there was a slower acquisition of antibodies to the CSP repeat region in ChR. However after the 3rd vaccination the titers in the two models were comparable. The ChR group repeat-specific antibodies had higher avidity and ChR group showed higher inhibition of liver stage development activity compared to InR. There was no difference in T-cell responses to the FMP013 vaccine between the two models. Conclusions A difference in the quality of serological responses was detected between the two sub-populations of rhesus. However, both models confirmed that FMP013/ALFQ vaccine was safe, highly immunogenic, elicited functional antibodies and T-cell responses. Overall, the data suggests that rhesus of Indian and Chinese origins can be interchangeably used to compare the safety and immunogenicity of next-generation of malaria vaccines and adjuvants.
Collapse
Affiliation(s)
- Monica L Martin
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Alexis A Bitzer
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Andrew Schrader
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elke S Bergmann-Leitner
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kim Soto
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Zoltan Beck
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation, Rockville, MD, 20852, USA
| | - Gary R Matyas
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sheetij Dutta
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
5
|
He S, Fu Y, Guo J, Spear M, Yang J, Trinité B, Qin C, Fu S, Jiang Y, Zhang Z, Xu J, Ding H, Levy DN, Chen W, Petricoin E, Liotta LA, Shang H, Wu Y. Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α 4β 7 integrin antibody. SCIENCE ADVANCES 2019; 5:eaat7911. [PMID: 30662943 PMCID: PMC6326757 DOI: 10.1126/sciadv.aat7911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
A functional HIV cure requires immune reconstitution for lasting viremia control. A major immune dysfunction persisting in HIV infection is the impairment of T helper cell migration and homing to lymphoid tissues such as GALTs (gut-associated lymphoid tissues). ART (antiretroviral therapy) does not fully restore T cell motility for tissue repopulation. The molecular mechanism dictating this persistent T cell dysfunction is not understood. Cofilin is an actin-depolymerizing factor that regulates actin dynamics for T cell migration. Here, we demonstrate that blood CD4 T cells from HIV-infected patients (n = 193), with or without ART, exhibit significantly lower levels of cofilin phosphorylation (hyperactivation) than those from healthy controls (n = 100; ratio, 1.1:2.3; P < 0.001); cofilin hyperactivation is also associated with poor CD4 T cell recovery following ART. These results suggest an HIV-mediated systemic dysregulation of T cell motility that cannot be repaired solely by ART. We further demonstrate that stimulating blood CD4 T cells with an anti-human α4β7 integrin antibody can trigger signal transduction and modulate the cofilin pathway, partially restoring T cell motility in vitro. However, we also observed that severe T cell motility defect caused by high degrees of cofilin hyperactivation was not repairable by the anti-integrin antibody, demonstrating a mechanistic hindrance to restore immune functions in vivo. Our study suggests that cofilin is a key molecule that may need to be therapeutically targeted early for T cell tissue repopulation, immune reconstitution, and immune control of viremia.
Collapse
Affiliation(s)
- Sijia He
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Mark Spear
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jiuling Yang
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Chaolong Qin
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Shuai Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - David N. Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
6
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
7
|
Veazey RS, Ling B. Short Communication: Comparative Susceptibility of Rhesus Macaques of Indian and Chinese Origin to Vaginal Simian-Human Immunodeficiency Virus Transmission as Models for HIV Prevention Research. AIDS Res Hum Retroviruses 2017; 33:1199-1201. [PMID: 28793779 DOI: 10.1089/aid.2017.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Historically, Indian rhesus macaques (iRMs) have been preferred for simian immunodeficiency virus (SIV)/HIV prevention, pathogenesis, and treatment studies, yet their supply is limited. Chinese rhesus macaques (cRMs) are currently more available, yet little is known regarding the relative susceptibility of this subspecies to vaginal transmission of SIV or simian-human immunodeficiency virus (SHIV). In this study, we compared the susceptibility of 40 cRMs and 21 iRMs with a single vaginal challenge with SHIVsf162P. Our results showed that cRMs have comparable primary SHIV infection as iRMs, underscoring their equal importance in studies of HIV transmission and prevention.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
8
|
Perez S, Johnson AM, Xiang SH, Li J, Foley BT, Doyle-Meyers L, Panganiban A, Kaur A, Veazey RS, Wu Y, Ling B. Persistence of SIV in the brain of SIV-infected Chinese rhesus macaques with or without antiretroviral therapy. J Neurovirol 2017; 24:62-74. [PMID: 29181724 DOI: 10.1007/s13365-017-0594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Persistence of HIV-1 reservoirs in the central nervous system (CNS) is an obstacle to cure strategies. However, little is known about residual viral distribution, viral replication levels, and genetic diversity in different brain regions of HIV-infected individuals on combination antiretroviral therapy (cART). Because myeloid cells particularly microglia are likely major reservoirs in the brain, and more microglia exist in white matter than gray matter in a human brain, we hypothesized the major viral reservoirs in the brain are the white matter reflected by higher levels of viral DNA. To address the issue, we used the Chinese rhesus macaque (ChRM) model of SIV infection, and treated 11 SIVmac251-infected animals including long-term nonprogressors with cART for up to 24 weeks. SIV reservoirs were assessed by SIV DNA levels in 16 specific regions of the brain and 4 regions of spinal cord. We found relatively high frequencies of SIV in basal ganglia and brain stem compared to other regions. cART-receiving animals had significantly lower SIV DNA levels in the gray matter than white matter. Moreover, a shortened envelope gp120 with 21 nucleotide deletions and guanine-to-adenine hypermutations were observed. These results demonstrate that SIV enters the CNS in SIV-infected ChRM with a major reservoir in the white matter after cART; the SIV/ChRM/cART is an appropriate model for studying HIV CNS reservoirs and testing new eradication strategies. Further, examining multiple regions of the CNS may be needed when assessing whether an agent is successful in reducing the size of SIV reservoirs in the CNS.
Collapse
Affiliation(s)
- Stefanie Perez
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jian Li
- Department of Statistics, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, 70112, USA
| | - Brian T Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Antonito Panganiban
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Breed MW, Elser SE, Torben W, Jordan APO, Aye PP, Midkiff C, Schiro F, Sugimoto C, Alvarez-Hernandez X, Blair RV, Somasunderam A, Utay NS, Kuroda MJ, Pahar B, Wiseman RW, O'Connor DH, LaBranche CC, Montefiori DC, Marsh M, Li Y, Piatak M, Lifson JD, Keele BF, Fultz PN, Lackner AA, Hoxie JA. Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. J Virol 2015; 89:10156-75. [PMID: 26223646 PMCID: PMC4580161 DOI: 10.1128/jvi.01134-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4(+) T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4(+) T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4(+) T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4(+) T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8(+) cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection. IMPORTANCE The pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.
Collapse
Affiliation(s)
- Matthew W Breed
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Samra E Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Chie Sugimoto
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Roger W Wiseman
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - David H O'Connor
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | | | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Molina PE, Amedee AM, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer PJ, Vande Stouwe C, McGoey RR, Auten MW, LaMotte L, Chandra LC, Birke LL. Modulation of gut-specific mechanisms by chronic δ(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis. AIDS Res Hum Retroviruses 2014; 30:567-78. [PMID: 24400995 DOI: 10.1089/aid.2013.0182] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our studies have demonstrated that chronic Δ(9)-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques. Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression. We used a systems approach to examine the duodenal immune environment in 4- to 6-year-old male rhesus monkeys inoculated intravenously with SIVMAC251 after 17 months of chronic THC administration (0.18-0.32 mg/kg, intramuscularly, twice daily). Duodenal tissue samples excised from chronic THC- (N=4) and vehicle (VEH)-treated (N=4) subjects at ∼5 months postinoculation showed lower viral load, increased duodenal integrin beta 7(+)(β7) CD4(+) and CD8(+) central memory T cells, and a significant preferential increase in Th2 cytokine expression. Gene array analysis identified six genes that were differentially expressed in intestinal samples of the THC/SIV animals when compared to those differentially expressed between VEH/SIV and uninfected controls. These genes were identified as having significant participation in (1) apoptosis, (2) cell survival, proliferation, and morphogenesis, and (3) energy and substrate metabolic processes. Additional analysis comparing the duodenal gene expression in THC/SIV vs. VEH/SIV animals identified 93 differentially expressed genes that participate in processes involved in muscle contraction, protein folding, cytoskeleton remodeling, cell adhesion, and cell signaling. Immunohistochemical staining showed attenuated apoptosis in epithelial crypt cells of THC/SIV subjects. Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.
Collapse
Affiliation(s)
- Patricia E. Molina
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Angela M. Amedee
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jovanny Zabaleta
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mahesh Mohan
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Robin R. McGoey
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthew W. Auten
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lynn LaMotte
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lawrance C. Chandra
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
|
12
|
Kainth MK, Fisher SG, Fernandez D, Luque A, Hall CB, Hoang AT, Lashkari A, Peck A, Hasan L, Caserta MT. Understanding the association between chromosomally integrated human herpesvirus 6 and HIV disease: a cross-sectional study. F1000Res 2013; 2:269. [PMID: 24555113 PMCID: PMC3892924 DOI: 10.12688/f1000research.2-269.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
We conducted a cross-sectional investigation to identify evidence of a potential modifying effect of chromosomally integrated human herpes virus 6 (ciHHV-6) on human immunodeficiency virus (HIV) disease progression and/or severity. ciHHV-6 was identified by detecting HHV-6 DNA in hair follicle specimens of 439 subjects. There was no statistically significant relationship between the presence of ciHHV-6 and HIV disease progression to acquired immunodeficiency syndrome. However, after adjusting for use of antiretroviral therapy, all subjects with ciHHV-6 had low severity HIV disease; these findings were not statistically significant. A multi-center study with a larger sample size will be needed to more precisely determine if there is an association between ciHHV-6 and low HIV disease severity.
Collapse
Affiliation(s)
- Mundeep K Kainth
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan G Fisher
- Department of Pharmacy, Temple University School of Medicine, Philadelphia, PA, USA.,Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amneris Luque
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Caroline B Hall
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pharmacy, Temple University School of Medicine, Philadelphia, PA, USA.,Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Anh Thi Hoang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Anisha Lashkari
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexandra Peck
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Lubaba Hasan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Mary T Caserta
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Monjure CJ, Tatum CD, Panganiban AT, Arainga M, Traina-Dorge V, Marx PA, Didier ES. Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA. J Med Primatol 2013; 43:31-43. [PMID: 24266615 DOI: 10.1111/jmp.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. METHODS The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized. RESULTS Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification. CONCLUSIONS Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs.
Collapse
Affiliation(s)
- C J Monjure
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ling B, Rogers L, Johnson AM, Piatak M, Lifson J, Veazey RS. Effect of combination antiretroviral therapy on Chinese rhesus macaques of simian immunodeficiency virus infection. AIDS Res Hum Retroviruses 2013; 29:1465-74. [PMID: 23387294 DOI: 10.1089/aid.2012.0378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Definitive treatment of HIV infection remains a critical but elusive goal, with persistence of residual virus even in the face of prolonged administration of suppressive combination antiretroviral treatment (cART) providing a source for recrudescent infection if treatment is stopped. Characterization of the residual virus and devising strategies to target it for eradication are key goals in HIV treatment research. Indian rhesus macaques (In-RM) infected with SIVmac have been widely used in such research. However, it has proven challenging to achieve and sustain clinically relevant levels of suppression (<30 vRNA copies/ml plasma) with cART in such models. As ease of viral suppression by cART is related to pretreatment levels of viral replication, and levels of replication of SIVmac239/251 are lower in Chinese rhesus macaques (Ch-RM) than in In-RM, we evaluated cART administration to SIVmac-infected Ch-RM as a potential model for studies of residual virus and eradication strategies. Four SIVmac239-infected Ch-RM received cART including reverse transcriptase inhibitors PMPA/FTC and integrase inhibitor L-870812 daily for 8 weeks. Plasma viral loads were promptly reduced to <30 copies/ml upon initiation of cART. Cell-associated SIV DNA levels in lymphocytes from the gut were also significantly reduced. Jejunal and colonic CCR5(+)CD4(+) mucosal memory T cells increased significantly; restoration of these cells was associated with reductions in immune activation. In conclusion, cART effectively suppressed viral replication to <30 vRNA copies/ml in SIVmac239-infected Ch-RM, reducing immune activation and restoring mucosal immune cell populations. SIVmac239-infected Ch-RM may be a useful model for studying responses to cART and persistent tissue reservoirs and evaluating candidate eradication strategies to cure HIV infection.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Zhou Y, Bao R, Haigwood NL, Persidsky Y, Ho WZ. SIV infection of rhesus macaques of Chinese origin: a suitable model for HIV infection in humans. Retrovirology 2013; 10:89. [PMID: 23947613 PMCID: PMC3765527 DOI: 10.1186/1742-4690-10-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of Indian-origin rhesus macaques (RM) has been widely used as a well-established nonhuman primate (NHP) model for HIV/AIDS research. However, there have been a growing number of studies using Chinese RM to evaluate immunopathogenesis of SIV infection. In this paper, we have for the first time reviewed and discussed the major publications related to SIV or SHIV infection of Chinese RM in the past decades. We have compared the differences in the pathogenesis of SIV infection between Chinese RM and Indian RM with regard to viral infection, immunological response, and host genetic background. Given AIDS is a disease that affects humans of diverse origins, it is of importance to study animals with different geographical background. Therefore, to examine and compare results obtained from RM models of Indian and Chinese origins should lead to further validation and improvement of these animal models for HIV/AIDS research.
Collapse
Affiliation(s)
- Yu Zhou
- The Center for Animal Experiment/ ABSL-III Laboratory, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei 430071, P,R, China
| | | | | | | | | |
Collapse
|
16
|
Mumbauer A, Gettie A, Blanchard J, Cheng-Mayer C. Efficient mucosal transmissibility but limited pathogenicity of R5 SHIV SF162P3N in Chinese-origin rhesus macaques. J Acquir Immune Defic Syndr 2013; 62:496-504. [PMID: 23221980 PMCID: PMC3622143 DOI: 10.1097/qai.0b013e31827f1c11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Infection of rhesus macaques (RMs) of Indian origin with simian immunodeficiency virus or simian-HIV (SHIV) provided powerful tools to study HIV-1 transmission and disease and for testing the efficacy of novel drugs, vaccines, and prevention strategies. In developing alternative nonhuman primate AIDS models for the CCR5 (R5)-tropic SHIVSF162P3N, we characterized virus transmission and infection in Chinese-origin RMs. METHODS Virologic, immunologic, and pathogenic evaluations of R5 SHIVSF162P3N infection in Chinese RMs challenged intrarectally (ir) or intravaginally were performed and compared with those previously observed in Indian-origin rhesus exposed to the same inoculum dose and via similar route. RESULTS R5 SHIVSF162P3N transmits efficiently across mucosal surfaces in Chinese RMs. The magnitude and kinetics of early virus dissemination after ir inoculation in the Chinese macaques were similar to those observed in Indian rhesus, but a trend toward increased SHIVSF162P3N vaginal infectivity and rapid virus spread was seen in the Chinese macaques compared with the Indian-origin animals. Once infected, however, set point viremia in the ir- and intravaginal-infected Chinese rhesus was significantly lower and the animals survived longer compared with infected Indian rhesus. CONCLUSIONS The R5 SHIVSF162P3N/Chinese RM infection model is suitable for studies of mucosal HIV-1 transmission and protection, but the high frequency of spontaneous control of chronic viremia and reduced virulence with SHIVSF162P3N in this macaque subspecies may limit its utility in studying HIV-1 pathogenesis and in evaluating vaccines and antiretrovirals that rely on reduction in chronic viral load or AIDS development as an experimental end point.
Collapse
|
17
|
González-Hernández LA, Jave-Suarez LF, Fafutis-Morris M, Montes-Salcedo KE, Valle-Gutierrez LG, Campos-Loza AE, Enciso-Gómez LF, Andrade-Villanueva JF. Synbiotic therapy decreases microbial translocation and inflammation and improves immunological status in HIV-infected patients: a double-blind randomized controlled pilot trial. Nutr J 2012; 11:90. [PMID: 23101545 PMCID: PMC3494555 DOI: 10.1186/1475-2891-11-90] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 10/25/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HIV-infection results in damage and dysfunction of the gastrointestinal system. HIV enteropathy includes pronounced CD4+ T-cell loss, increased intestinal permeability, and microbial translocation that promotes systemic immune activation, which is implicated in disease progression. A synbiotic is the combination of probiotics and prebiotics that could improve gut barrier function. Our study goal was to determine whether the use of a synbiotic, probiotics or a prebiotic can recover immunological parameters in HIV-infected subjects through of a reduction of microbial translocation and pro-inflammatory cytokine production. METHODS A randomized, double-blind controlled study was performed; twenty Antiretroviral treatment-naïve HIV-infected subjects were subgrouped and assigned to receive a synbiotic, probiotics, a prebiotic, or a placebo throughout 16 weeks. RESULTS We had no reports of serious adverse-events. From baseline to week 16, the synbiotic group showed a reduction in bacterial DNA concentrations in plasma (p = 0.048). Moreover, the probiotic and synbiotic groups demonstrated a decrease in total bacterial load in feces (p = 0.05). The probiotic group exhibited a significant increment of beneficial bacteria load (such as Bifidobacterium; p = 0.05) and a decrease in harmful bacteria load (such as Clostridium; p = 0.063). In the synbiotic group, the CD4+ T-cells count increased (median: +102 cells/μL; p = 0.05) and the level of Interleukin 6 cytokine decreased significantly (p = 0.016). CONCLUSIONS Our study showed a significant increase in CD4+ T lymphocyte levels in the synbiotic group, which could delay the initiation of antiretroviral therapy and decrease costs in countries with limited resources.
Collapse
Affiliation(s)
- Luz A González-Hernández
- HIV Unit Hospital Civil de Guadalajara Fray Antonio Alcalde, University of Guadalajara, Calle Hospital 278, Colonia Alcalde Barranquitas, Guadalajara, Jalisco, 44280, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gartner S, Liu Y, Natesan S. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection. PLoS One 2012; 7:e40139. [PMID: 22911696 PMCID: PMC3399863 DOI: 10.1371/journal.pone.0040139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 06/04/2012] [Indexed: 12/03/2022] Open
Abstract
Nurse cells are defined as those that provide for the development of other cells. We report here, that in vitro, human monocyte-derived macrophages can behave as nurse cells with functional capabilities that include de novo generation of CD4+ T-lymphocytes and a previously unknown small cell with monocytoid characteristics. We named these novel cells “self-renewing monocytoid cells” (SRMC), because they could develop into nurse macrophages that produced another generation of SRMC. SRMC were not detectable in blood. Their transition to nurse behavior was characterized by expression of CD10, a marker of thymic epithelium and bone marrow stroma, typically absent on macrophages. Bromodeoxyuridine labeling and immunostaining for cdc6 expression confirmed DNA synthesis within nurse macrophages. T-cell excision circles were detected in macrophages, along with expression of pre-T-cell receptor alpha and recombination activating gene 1, suggesting that genetic recombination events associated with generation of the T-cell receptor were occurring in these cells. SRMC expressed CCR5, the coreceptor for R5 HIV-1 isolates, and were highly susceptible to HIV-1 entry leading to productive infection. While expressing HIV-1, SRMC could differentiate into nurse macrophages that produced another generation of HIV-1-expressing SRMC. The infected nurse macrophage/SRMC cycle could continue in vitro for multiple generations, suggesting it might represent a mechanism whereby HIV-1 can maintain persistence in vivo. HIV-1 infection of nurse macrophages led to a decline in CD4+ T-cell production. There was severe, preferential loss of the CCR5+ CD4+ T-cell subpopulation. Confocal microscopy revealed individual HIV-1-expressing nurse macrophages simultaneously producing both HIV-1-expressing SRMC and non-expressing CD3+ cells, suggesting that nurse macrophages might be a source of latently infected CD4+ T-cells. Real-time PCR experiments confirmed this by demonstrating 10-fold more HIV-1-genome-harboring T-cells, than virus-expressing ones. These phenomena have far-reaching implications, and elicit new perspectives regarding HIV pathogenesis and T-cell and hematopoietic cell development.
Collapse
Affiliation(s)
- Suzanne Gartner
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
19
|
Thirty Years with HIV Infection-Nonprogression Is Still Puzzling: Lessons to Be Learned from Controllers and Long-Term Nonprogressors. AIDS Res Treat 2012; 2012:161584. [PMID: 22693657 PMCID: PMC3368166 DOI: 10.1155/2012/161584] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
In the early days of the HIV epidemic, it was observed that a minority of the infected patients did not progress to AIDS or death and maintained stable CD4+ cell counts. As the technique for measuring viral load became available it was evident that some of these nonprogressors in addition to preserved CD4+ cell counts had very low or even undetectable viral replication. They were therefore termed controllers, while those with viral replication were termed long-term nonprogressors (LTNPs). Genetics and virology play a role in nonprogression, but does not provide a full explanation. Therefore, host differences in the immunological response have been proposed. Moreover, the immunological response can be divided into an immune homeostasis resistant to HIV and an immune response leading to viral control. Thus, non-progression in LTNP and controllers may be due to different immunological mechanisms. Understanding the lack of disease progression and the different interactions between HIV and the immune system could ideally teach us how to develop a functional cure for HIV infection. Here we review immunological features of controllers and LTNP, highlighting differences and clinical implications.
Collapse
|
20
|
Ananworanich J, Schuetz A, Vandergeeten C, Sereti I, de Souza M, Rerknimitr R, Dewar R, Marovich M, van Griensven F, Sekaly R, Pinyakorn S, Phanuphak N, Trichavaroj R, Rutvisuttinunt W, Chomchey N, Paris R, Peel S, Valcour V, Maldarelli F, Chomont N, Michael N, Phanuphak P, Kim JH. Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection. PLoS One 2012; 7:e33948. [PMID: 22479485 PMCID: PMC3316511 DOI: 10.1371/journal.pone.0033948] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/20/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Limited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage of a novel therapeutic strategy. METHODS AND FINDINGS We prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART (tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15 at week 24. At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm(3). HIV RNA was 5.5 log(10) copies/ml. Median total blood HIV DNA was higher in Fiebig III (550 copy/10(6) PBMC) vs. Fiebig I (8 copy/10(6) PBMC) (p = 0.01) while the median %CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008). After 24 weeks of megaHAART, HIV RNA levels of <50 copies were achieved in 14/15 in blood and 13/13 in gut. Total blood HIV DNA at week 0 predicted reservoir size at week 24 (p<0.001). Total HIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut. Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p>0.050); subjects with less than 40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02). CONCLUSIONS Gut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-free remission.
Collapse
|
21
|
Sui Y, Gagnon S, Dzutsev A, Zhu Q, Yu H, Hogg A, Wang Y, Xia Z, Belyakov IM, Venzon D, Klinman D, Strober W, Kelsall B, Franchini G, Berzofsky JA. TLR agonists and/or IL-15 adjuvanted mucosal SIV vaccine reduced gut CD4⁺ memory T cell loss in SIVmac251-challenged rhesus macaques. Vaccine 2011; 30:59-68. [PMID: 22041305 PMCID: PMC3258186 DOI: 10.1016/j.vaccine.2011.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/18/2011] [Indexed: 01/08/2023]
Abstract
Adjuvant plays an important role in increasing and directing vaccine-induced immune responses. In a previous study, we found that a mucosal SIV vaccine using a combination of IL-15 and TLR agonists as adjuvant mediated partial protection against SIVmac251 rectal challenge, whereas neither IL-15 nor TLR agonists alone as an adjuvant impacted the plasma viral loads. In this study, dissociation of CD4(+) T cell preservation with viral loads was observed in the animals vaccinated with adjuvants. Significantly higher levels of memory CD4(+) T cell numbers were preserved after SIVmac251 infection in the colons of the animals vaccinated with vaccine containing any of these adjuvants compared to no adjuvant. When we measured the viral-specific CD8(+) tetramer responses in the colon lamina propria, we found significantly higher levels of gag, tat, and pol epitope tetramer(+) T cell responses in these animals compared to ones without adjuvant, even if some of the animals had similarly high viral loads. Furthermore, this CD4(+) T preservation was positively correlated with increased levels of gag and Tat, but not pol tetramer(+) T cell responses, and inversely correlated with beta-chemokine expression. The pre-challenged APOBEC3G expression level, which has previously been shown inversely associated with viral loads, was further found positively correlated with CD4(+) T cell number preservation. Overall, these data highlight one unrecognized role of adjuvant in HIV vaccine development, and show that vaccines can produce a surprising discordance between CD4(+) T cell levels and SIV viral load.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Susan Gagnon
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Amiran Dzutsev
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Qing Zhu
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Huifeng Yu
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Alison Hogg
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Yichuan Wang
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Zheng Xia
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Igor M. Belyakov
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - David Venzon
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| | - Dennis Klinman
- Laboratory of Experimental Immunology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Warren Strober
- Laboratory of Host Defenses, National Institutes of Health, Bethesda, MD 20892
| | - Brian Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892
| | | | - Jay A. Berzofsky
- Vaccine Branch, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Barsov EV, Trivett MT, Minang JT, Sun H, Ohlen C, Ott DE. Transduction of SIV-specific TCR genes into rhesus macaque CD8+ T cells conveys the ability to suppress SIV replication. PLoS One 2011; 6:e23703. [PMID: 21886812 PMCID: PMC3160320 DOI: 10.1371/journal.pone.0023703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal. PRINCIPAL FINDINGS We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8(+) T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones. CONCLUSIONS Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases.
Collapse
Affiliation(s)
- Eugene V. Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Haosi Sun
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
23
|
Variability of bio-clinical parameters in Chinese-origin Rhesus macaques infected with simian immunodeficiency virus: a nonhuman primate AIDS model. PLoS One 2011; 6:e23177. [PMID: 21850259 PMCID: PMC3151272 DOI: 10.1371/journal.pone.0023177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/07/2011] [Indexed: 11/22/2022] Open
Abstract
Background Although Chinese-origin Rhesus macaques (Ch RhMs) infected with simian immunodeficiency virus (SIV) have been used for many years to evaluate the efficacy of AIDS vaccines and therapeutics, the bio-clinical variability of such a nonhuman primate AIDS model was so far not established. Methodology/Principal Findings By randomizing 150 (78 male and 72 female) Ch RhMs with diverse MHC class I alleles into 3 groups (50 animals per group) challenged with intrarectal (ir) SIVmac239, intravenous (iv) SIVmac239, or iv SIVmac251, we evaluated variability in bio-clinical endpoints for 118 weeks. All SIV-challenged Ch RhMs became seropositive for SIV during 1–2 weeks. Plasma viral load (VL) peaked at weeks 1–2 and then declined to set-point levels as from week 5. The set-point VL was 30 fold higher in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. This difference in plasma VL increased overtime (>100 fold as from week 68). The rates of progression to AIDS or death were more rapid in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. No significant difference in bio-clinical endpoints was observed in animals challenged with ir or iv SIVmac239. The variability (standard deviation) in peak/set-point VL was nearly one-half lower in animals infected with SIVmac239 (ir or iv) than in those infected with SIVmac251 (iv), allowing that the same treatment-related difference can be detected with one-half fewer animals using SIVmac239 than using SIVmac251. Conclusion/Significance These results provide solid estimates of variability in bio-clinical endpoints needed when designing studies using the Ch RhM SIV model and contribute to the improving quality and standardization of preclinical studies.
Collapse
|
24
|
Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, Montefiori D, Keele BF, Ribeiro RM, Veazey RS, Apetrei C. Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion. PLoS Pathog 2011; 7:e1002170. [PMID: 21829366 PMCID: PMC3150280 DOI: 10.1371/journal.ppat.1002170] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/02/2011] [Indexed: 01/01/2023] Open
Abstract
Understanding the mechanism of infection control in elite controllers (EC) may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs) and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4+ T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi) and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4+ T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This “functional cure” of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status. A small proportion of HIV-infected patients control viral replication and disease progression in the absence of any antiretroviral treatment. Understanding the mechanisms of viral control in these elite controllers may help to identify new therapeutic approaches in order to control HIV infection. However, elite controllers are identified AFTER control is established, therefore it is difficult to identify the virus and host factors that drive the infection to the controlled status. We identified an animal model (the rhesus macaque infection with SIVagm) in which, after massive acute viral replication and CD4+ T cell depletion, SIV infection is controlled in 100% of cases during chronic infection. This “functional cure” of SIVagm infection in rhesus macaques results in a complete immune restoration after four years and can be reverted by depleting the cellular immune responses in vivo. An animal model of elite controlled lentiviral infection in which complete control can be predicted in all cases permits research on the early events of infection when host factors are actively driving the infection towards the controlled status to understand the pathogenesis of HIV/SIV infections and design of new approaches for controlling HIV infection.
Collapse
Affiliation(s)
- Ivona Pandrea
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Mandell
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Brandon F. Keele
- SAIC Frederick, Inc, NCI, NIH, Frederick, Maryland, United States of America
| | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos New Mexico, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The phenomenon of long-term nonprogression in HIV infection has been recognized for some time, and the ability of rare individuals, designated 'elite controllers', to control HIV in the absence of therapy is the focus of numerous ongoing studies. This review focuses on studies of HIV-specific immune responses in mucosal tissues as a potential correlate of immune control, with an emphasis on recently published work. RECENT FINDINGS Genetic studies have implicated a role for elements localized to the major histocompatibility complex (MHC) on chromosome 6 in the immune control of HIV infection. In parallel, functional studies have strongly implicated MHC class I-restricted, CD8+ T-cell responses as a major contributor to elite control. In addition, the localization of HIV-specific CD8+ and CD4+ T cells with respect to the major sites of virus replication in the body may be critical in determining clinical outcome. SUMMARY Recent findings suggest that MHC class I-restricted, CD8+ T cells are a major component of immune control in 'elite controllers'. In addition, the presence of these effector cells at or near critical viral reservoirs, such as mucosal tissues, may be critical in determining their effectiveness at limiting viral replication and dissemination.
Collapse
|
26
|
Sullivan NL, Eickhoff CS, Zhang X, Giddings OK, Lane TE, Hoft DF. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1358-68. [PMID: 21715689 DOI: 10.4049/jimmunol.1100033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi is an intracellular parasite and the causative agent of Chagas disease. Previous work has shown that the chemokine receptor CCR5 plays a role in systemic T. cruzi protection. We evaluated the importance of CCR5 and CCL5 for mucosal protection against natural oral and conjunctival T. cruzi challenges. T. cruzi-immune CCR5(-/-) and wild-type C57BL/6 mice were generated by repeated infectious challenges with T. cruzi. CCR5(-/-) and wild-type mice developed equivalent levels of cellular, humoral, and protective mucosal responses. However, CCR5(-/-)-immune mice produced increased levels of CCL5 in protected gastric tissues, suggesting compensatory signaling through additional receptors. Neutralization of CCL5 in CCR5(-/-)-immune mice resulted in decreased mucosal inflammatory responses, reduced T. cruzi-specific Ab-secreting cells, and significantly less mucosal T. cruzi protection, confirming an important role for CCL5 in optimal immune control of T. cruzi replication at the point of initial mucosal invasion. To investigate further the mechanism responsible for mucosal protection mediated by CCL5-CCR5 signaling, we evaluated the effects of CCL5 on B cells. CCL5 enhanced proliferation and IgM secretion in highly purified B cells triggered by suboptimal doses of LPS. In addition, neutralization of endogenous CCL5 inhibited B cell proliferation and IgM secretion during stimulation of highly purified B cells, indicating that B cell production of CCL5 has important autocrine effects. These findings demonstrate direct effects of CCL5 on B cells, with significant implications for the development of mucosal adjuvants, and further suggest that CCL5 may be important as a general B cell coactivator.
Collapse
Affiliation(s)
- Nicole L Sullivan
- Department of Molecular Microbiology and Immunology, Saint Louis University Medical Center, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schultheiss T, Schulte R, Sauermann U, Ibing W, Stahl-Hennig C. Strong mucosal immune responses in SIV infected macaques contribute to viral control and preserved CD4+ T-cell levels in blood and mucosal tissues. Retrovirology 2011; 8:24. [PMID: 21481223 PMCID: PMC3096904 DOI: 10.1186/1742-4690-8-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since there is still no protective HIV vaccine available, better insights into immune mechanism of persons effectively controlling HIV replication in the absence of any therapy should contribute to improve further vaccine designs. However, little is known about the mucosal immune response of this small unique group of patients. Using the SIV-macaque-model for AIDS, we had the rare opportunity to analyze 14 SIV-infected rhesus macaques durably controlling viral replication (controllers). We investigated the virological and immunological profile of blood and three different mucosal tissues and compared their data to those of uninfected and animals progressing to AIDS-like disease (progressors). RESULTS Lymphocytes from blood, bronchoalveolar lavage (BAL), and duodenal and colonic biopsies were phenotypically characterized by polychromatic flow cytometry. In controllers, we observed higher levels of CD4+, CD4+CCR5+ and Gag-specific CD8+ T-cells as well as lower immune activation in blood and all mucosal sites compared to progressors. However, we could also demonstrate that immunological changes are distinct between these three mucosal sites.Intracellular cytokine staining demonstrated a significantly higher systemic and mucosal CD8+ Gag-specific cellular immune response in controllers than in progressors. Most remarkable was the polyfunctional cytokine profile of CD8+ lymphocytes in BAL of controllers, which significantly dominated over their blood response. The overall suppression of viral replication in the controllers was confirmed by almost no detectable viral RNA in blood and all mucosal tissues investigated. CONCLUSION A strong and complex virus-specific CD8+ T-cell response in blood and especially in mucosal tissue of SIV-infected macaques was associated with low immune activation and an efficient suppression of viral replication. This likely afforded a repopulation of CD4+ T-cells in different mucosal compartments to almost normal levels. We conclude, that a robust SIV-specific mucosal immune response seems to be essential for establishing and maintaining the controller status and consequently for long-term survival.
Collapse
Affiliation(s)
- Tina Schultheiss
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany.
| | | | | | | | | |
Collapse
|
28
|
Li B, Berry N, Ham C, Ferguson D, Smith D, Hall J, Page M, Quartey-Papafio R, Elsley W, Robinson M, Almond N, Stebbings R. Vaccination with live attenuated simian immunodeficiency virus causes dynamic changes in intestinal CD4+CCR5+ T cells. Retrovirology 2011; 8:8. [PMID: 21291552 PMCID: PMC3038908 DOI: 10.1186/1742-4690-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Background Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. Results In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. Conclusions This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.
Collapse
Affiliation(s)
- Bo Li
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities. Immunogenetics 2011; 63:275-90. [PMID: 21274527 PMCID: PMC3068250 DOI: 10.1007/s00251-010-0502-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/07/2010] [Indexed: 01/15/2023]
Abstract
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques' major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC-peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.
Collapse
|
30
|
Schultheiss T, Stolte-Leeb N, Sopper S, Stahl-Hennig C. Flow cytometric characterization of the lymphocyte composition in a variety of mucosal tissues in healthy rhesus macaques. J Med Primatol 2011; 40:41-51. [DOI: 10.1111/j.1600-0684.2010.00446.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Ling B, Mohan M, Lackner AA, Green LC, Marx PA, Doyle LA, Veazey RS. The large intestine as a major reservoir for simian immunodeficiency virus in macaques with long-term, nonprogressing infection. J Infect Dis 2010; 202:1846-54. [PMID: 21050120 DOI: 10.1086/657413] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although patients with human immunodeficiency virus type 1 infection who are receiving antiretroviral therapy and those with long-term, nonprogressive infection (LTNPs) usually have undetectable viremia, virus persists in tissue reservoirs throughout infection. However, the distribution and magnitude of viral persistence and replication in tissues has not been adequately examined. Here, we used the simian immunodeficiency virus (SIV) macaque model to quantify and compare viral RNA and DNA in the small (jejunum) and large (colon) intestine of LTNPs. In LTNPs with chronic infection, the colon had consistently higher viral levels than did the jejunum. The colon also had higher percentages of viral target cells (memory CD4(+) CCR5(+) T cells) and proliferating memory CD4(+) T cells than did the jejunum, whereas markers of cell activation were comparable in both compartments. These data indicate that the large intestine is a major viral reservoir in LTNPs, which may be the result of persistent, latently infected cells and higher turnover of naive and central memory CD4(+) T cells in this major immunologic compartment.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana 70433, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review some of the recent progress in the development of HIV vaccines that induce immune responses in mucosal tissues that may correlate with protection of the mucosal CD4 T cell compartment. RECENT FINDINGS Mucosal tissues are the primary sites for viral entry and the resident CD4 T cells serve as readily available target cells for active infection. Viral entry is associated with a massive destruction of these cells. The resident CD4 cells are memory T cells and hence play an important role in the generation of secondary immune responses. Protecting these CD4 T cells is critical for controlling viral infection and for preserving immune competence. Numerous mucosal vaccine regimens currently under development have been shown to induce both B and T cell responses in mucosal tissues. Though induction of neutralizing antibodies still remains an elusive goal, the demonstration that antibodies can have a protective role through alternative mechanisms offers hope that humoral responses can be harnessed to yield a protective response in mucosal tissues. SUMMARY The mucosal immune system is highly compartmentalized and hence immunization regimens need to target mucosal tissues to be successful in inducing protective immune responses in mucosal tissues.
Collapse
|
33
|
Faul EJ, Aye PP, Papaneri AB, Pahar B, McGettigan JP, Schiro F, Chervoneva I, Montefiori DC, Lackner AA, Schnell MJ. Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIV(mac251) challenge. Vaccine 2009; 28:299-308. [PMID: 19879223 PMCID: PMC2826816 DOI: 10.1016/j.vaccine.2009.10.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 09/27/2009] [Accepted: 10/12/2009] [Indexed: 11/28/2022]
Abstract
Highly attenuated rabies virus (RV) vaccine vectors were evaluated for their ability to protect against highly pathogenic SIV(mac251) challenge. Mamu-A*01 negative rhesus macaques were immunized in groups of four with either: RV expressing SIV(mac239)-GagPol, a combination of RV expressing SIV(mac239)-Env and RV expressing SIV(mac239)-GagPol, or with empty RV vectors. Eight weeks later animals received a booster immunization with a heterologous RV expressing the same antigens. At 12 weeks post-boost, all animals were challenged intravenously with 100 TCID(50) of pathogenic SIV(mac251-CX). Immunized macaques in both vaccine groups had 1.3-1.6-log-fold decrease in viral set point compared to control animals. The GagPol/Env immunized animals also had a significantly lower peak viral load. When compared to control animals following challenge, vaccinated macaques had a more rapid induction of SIV(mac251) neutralizing antibodies and of CD8(+) T cell responses to various SIV epitopes. Moreover, vaccinated macaques better maintained peripheral memory CD4(+) T cells and were able to mount a poly-functional CD8(+) T cell response in the mucosa. These findings indicate promise for RV-based vectors and have important implications for the development of an efficacious HIV vaccine.
Collapse
Affiliation(s)
- Elizabeth J. Faul
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, 70433, USA
| | - Amy B. Papaneri
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, 70433, USA
| | - James P. McGettigan
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, 70433, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | | | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana, 70433, USA
| | - Matthias J. Schnell
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
34
|
Inaba K, Fukazawa Y, Matsuda K, Himeno A, Matsuyama M, Ibuki K, Miura Y, Koyanagi Y, Nakajima A, Blumberg RS, Takahashi H, Hayami M, Igarashi T, Miura T. Small intestine CD4+ cell reduction and enteropathy in simian/human immunodeficiency virus KS661-infected rhesus macaques in the presence of low viral load. J Gen Virol 2009; 91:773-81. [PMID: 19889928 DOI: 10.1099/vir.0.017368-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1, simian immunodeficiency virus and simian/human immunodeficiency virus (SHIV) infection generally lead to death of the host accompanied by high viraemia and profound CD4(+) T-cell depletion. SHIV clone KS661-infected rhesus macaques with a high viral load set point (HVL) ultimately experience diarrhoea and wasting at 6-12 months after infection. In contrast, infected macaques with a low viral load set point (LVL) usually live asymptomatically throughout the observation period, and are therefore referred to as asymptomatic LVL (Asym LVL) macaques. Interestingly, some LVL macaques exhibit diarrhoea and wasting similar to the symptoms of HVL macaques and are termed symptomatic LVL (Sym LVL) macaques. This study tested the hypothesis that Sym LVL macaques have the same degree of intestinal abnormalities as HVL macaques. The proviral DNA loads in lymphoid tissue and the intestines of Sym LVL and Asym LVL macaques were comparable and all infected monkeys showed villous atrophy. Notably, the CD4(+) cell frequencies of lymphoid tissues and intestines in Sym LVL macaques were remarkably lower than those in Asym LVL and uninfected macaques. Furthermore, Sym LVL and HVL macaques exhibited an increased number of activated macrophages. In conclusion, intestinal disorders including CD4(+) cell reduction and abnormal immune activation can be observed in SHIV-KS661-infected macaques independent of virus replication levels.
Collapse
Affiliation(s)
- Katsuhisa Inaba
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ho O, Larsen K, Polacino P, Li Y, Anderson D, Song R, Ruprecht RM, Hu SL. Pathogenic infection of Macaca nemestrina with a CCR5-tropic subtype-C simian-human immunodeficiency virus. Retrovirology 2009; 6:65. [PMID: 19602283 PMCID: PMC2720380 DOI: 10.1186/1742-4690-6-65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/14/2009] [Indexed: 12/22/2022] Open
Abstract
Background Although pig-tailed macaques (Macaca nemestrina) have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta). Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV), but less so for chimeric simian-human immunodeficiency viruses (SHIV), although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. Results Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5–4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. Conclusion These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research.
Collapse
Affiliation(s)
- On Ho
- Department of Pharmaceutics, University of Washington, Seattle, 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pahar B, Lackner AA, Piatak M, Lifson JD, Wang X, Das A, Ling B, Montefiori DC, Veazey RS. Control of viremia and maintenance of intestinal CD4(+) memory T cells in SHIV(162P3) infected macaques after pathogenic SIV(MAC251) challenge. Virology 2009; 387:273-84. [PMID: 19298994 PMCID: PMC2674129 DOI: 10.1016/j.virol.2009.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/17/2008] [Accepted: 02/06/2009] [Indexed: 11/16/2022]
Abstract
Recent HIV vaccine failures have prompted calls for more preclinical vaccine testing in non-human primates. However, similar to HIV infection of humans, developing a vaccine that protects macaques from infection following pathogenic SIV(MAC251) challenge has proven difficult, and current vaccine candidates at best, only reduce viral loads after infection. Here we demonstrate that prior infection with a chimeric simian-human immunodeficiency virus (SHIV) containing an HIV envelope gene confers protection against intravenous infection with the heterologous, highly pathogenic SIV(MAC251) in rhesus macaques. Although definitive immune correlates of protection were not identified, preservation and/or restoration of intestinal CD4(+) memory T cells were associated with protection from challenge and control of viremia. These results suggest that protection against pathogenic lentiviral infection or disease progression is indeed possible, and may correlate with preservation of mucosal CD4(+) T cells.
Collapse
Affiliation(s)
- Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Plotkin SA. Sang Froid in a time of trouble: is a vaccine against HIV possible? J Int AIDS Soc 2009; 12:2. [PMID: 19187552 PMCID: PMC2647531 DOI: 10.1186/1758-2652-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Since the announcement of the STEP trial results in the past months, we have heard many sober pronouncements on the possibility of an HIV vaccine. On the other hand, optimistic quotations have been liberally used, from Shakespeare's Henry V's "Once more unto the breach, dear friends" to Winston Churchill's definition of success as "going from one failure to another with no loss of enthusiasm". I will forgo optimistic quotations for the phrase "Sang Froid", which translates literally from the French as "cold blood"; what it really means is to avoid panic when things look bad, to step back and coolly evaluate the situation. This is not to counsel easy optimism or to fly in face of the facts, but I believe that while the situation is serious, it is not desperate.I should stipulate at the outset that I am neither an immunologist nor an expert in HIV, but someone who has spent his life in vaccine development. What I will try to do is to provide a point of view from that experience.There is no doubt that the results of STEP were disappointing: not only did the vaccine fail to control viral load, but may have adversely affected susceptibility to infection. But HIV is not the only vaccine to experience difficulties; what lessons can we glean from prior vaccine development?
Collapse
|
38
|
Abstract
Mucosal surfaces of the body serve as the major portal of entry for human immunodeficiency virus (HIV). These tissues also house a majority of the body's lymphocytes, including the CD4(+) T cells that are the major cellular target for HIV infection. Mucosal surfaces are defended by innate and adaptive immune mechanisms, including secreted antibodies and CD8(+) cytotoxic T cells (CTL). CTL in mucosal lymphoid tissues may serve to limit viral replication, decreasing the host's viral burden as well as reducing the likelihood of sexual transmission to a naïve host. This review summarizes recent literature on HIV-specific T-cell responses in mucosal tissues, with an emphasis on the gastrointestinal tract.
Collapse
Affiliation(s)
- B L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
39
|
Ling B, Veazey RS, Marx PA. Nonpathogenic CCR2-tropic SIVrcm after serial passage and its effect on SIVmac infection of Indian rhesus macaques. Virology 2008; 379:38-44. [PMID: 18662820 DOI: 10.1016/j.virol.2008.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/25/2008] [Accepted: 06/11/2008] [Indexed: 11/18/2022]
Abstract
The natural host of SIVrcm is the red-capped mangabey (Cercocebus torquatus torquatus). Although this virus infects macaques and human PBMCs, its pathogenic potential is unknown. We serially passaged SIVrcm through 9 rhesus macaques to assess its potential for virulence. SIVrcm infected all macaques with peak viremia 2 weeks postinfection yet viral loads decreased to undetectable levels about one month after inoculation. Remarkably, SIVrcm replication and virulence did not increase following 7 serial passages. While CD4+ T cells in the gut were decreased in early infection, proportions of memory CD4+CCR5+ T cells were not affected. Three SIVrcm-infected macaques were subsequently challenged with SIVmac251 to assess the potential for superinfection. Interestingly, animals previously infected with SIVrcm had 100 fold lower levels of SIVmac251 in plasma compared to naive animals inoculated with SIVmac251. These results suggest that SIVrcm is nonpathogenic and may be useful for examining effective immune responses in SIV infection.
Collapse
Affiliation(s)
- Binhua Ling
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA 70433, USA.
| | | | | |
Collapse
|
40
|
Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008; 82:4016-27. [PMID: 18272585 DOI: 10.1128/jvi.02164-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.
Collapse
|
41
|
Efficient in vitro expansion of human immunodeficiency virus (HIV)-specific T-cell responses by gag mRNA-electroporated dendritic cells from treated and untreated HIV type 1-infected individuals. J Virol 2008; 82:3561-73. [PMID: 18234800 DOI: 10.1128/jvi.02080-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing an immunotherapy to keep human immunodeficiency virus type 1 (HIV-1) replication suppressed while discontinuing highly active antiretroviral therapy (HAART) is an important challenge. In the present work, we evaluated in vitro whether dendritic cells (DC) electroporated with gag mRNA can induce HIV-specific responses in T cells from chronically infected subjects. Monocyte-derived DC, from therapy-naïve and HAART-treated HIV-1-seropositive subjects, that were electroporated with consensus codon-optimized HxB2 gag mRNA efficiently expanded T cells, secreting gamma interferon (IFN-gamma) and interleukin 2 (IL-2), as well as other cytokines and perforin, upon restimulation with a pool of overlapping Gag peptides. The functional expansion levels after 1 week of stimulation were comparable in T cells from HAART-treated and treatment-naïve patients and involved both CD4(+) and CD8(+) T cells, with evidence of bifunctionality in T cells. Epitope mapping of p24 showed that stimulated T cells had a broadened response toward previously nondescribed epitopes. DC, from HAART-treated subjects, that were electroporated with autologous proviral gag mRNA equally efficiently expanded HIV-specific T cells. Regulatory T cells did not prevent the induction of effector T cells in this system, whereas the blocking of PD-L1 slightly increased the induction of T-cell responses. This paper shows that DC, loaded with consensus or autologous gag mRNA, expand HIV-specific T-cell responses in vitro.
Collapse
|