1
|
Ye J, Lan Y, Wang J, Feng Y, Lin Y, Zhou Y, Liu J, Yuan D, Lu X, Guo W, Zheng M, Song X, Zhou Q, Yang H, Zheng C, Guo Q, Yang X, Yang K, Zhang L, Ge Z, Liu L, Yu F, Han Y, Huang H, Hao M, Chen Q, Ling X, Ruan Y, Dong Y, Zhou C, Liu X, Bai J, Tong X, Gao Y, Yang Z, Wang A, Wei W, Mei F, Qiao R, Luo X, Huang X, Chen J, Hu F, Shen X, Tan W, Tu A, Zhang X, He S, Ning Z, Fan J, Liu C, Xu C, Ren X, Sun Y, Li Y, Liu G, Li X, Li J, Duan J, Huang T, Liu S, Yu G, Wu D, Shao Y, Pan Q, Zhang L, Su B, Wu J, Jiang T, Zhao H, Zhang T, Chen F, Cai K, Hu B, Wang H, Zhao J, Gao B, Sun W, Ning T, Li J, Liang S, Huo Y, Fu G, Chen X, Li F, Xing H, Lu H. Improvement in the 95-95-95 Targets Is Accompanied by a Reduction in Both the Human Immunodeficiency Virus Transmission Rate and Incidence in China. J Infect Dis 2024:jiae302. [PMID: 39186695 DOI: 10.1093/infdis/jiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND In 2016, China has implemented the World Health Organization's "treat all" policy. We aimed to assess the impact of significant improvements in the 95-95-95 targets on population-level human immunodeficiency virus (HIV) transmission dynamics and incidence. METHODS We focused on 3 steps of the HIV care continuum: diagnosed, on antiretroviral therapy, and achieving viral suppression. The molecular transmission clusters were inferred using HIV-TRACE. New HIV infections were estimated using the incidence method in the European Centre for Disease Prevention and Control HIV Modelling Tool. RESULTS Between 2004 and 2023, the national HIV epidemiology database recorded 2.99 billion person-times of HIV tests and identified 1 976 878 new diagnoses. We noted a roughly "inverted-V" curve in the clustering frequency, with the peak recorded in 2014 (67.1% [95% confidence interval, 63.7%-70.5%]), concurrent with a significant improvement in the 95-95-95 targets from 10-13-<71 in 2005 to 84-93-97 in 2022. Furthermore, we observed a parabolic curve for a new infection with the vertex occurring in 2010. CONCLUSIONS In general, it was suggested that the improvements in the 95-95-95 targets were accompanied by a reduction in both the population-level HIV transmission rate and incidence. Thus, China should allocate more effort to the first "95" target to achieve a balanced 95-95-95 target.
Collapse
Affiliation(s)
- Jingrong Ye
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou
| | - Juan Wang
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Yi Feng
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control and National Center for AIDS/STD Prevention and Control, China CDC, Beijing
| | - Yi Lin
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | - Ying Zhou
- Institute of AIDS/STD Control and Prevention, Jiangsu CDC, Nanjing
| | - Jinjin Liu
- Center for Translational Medicine, Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Zhengzhou
| | - Dan Yuan
- Center for AIDS/STD Control and Prevention, Sichuan CDC, Chengdu
| | - Xinli Lu
- Department of AIDS Research, Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei CDC, Shijiazhuang
| | - Weigui Guo
- Institute of HIV/AIDS Prevention and Control, Beihai CDC, Beihai
| | - Minna Zheng
- Department of STDs/AIDS Control and Prevention, Tianjin CDC, Tianjin
| | - Xiao Song
- Institute for HIV/AIDS and STD Prevention and Control, Heilongjiang CDC, Harbin
| | - Quanhua Zhou
- Institute of Microbiology, Chongqing CDC, Chongqing
| | - Hong Yang
- STD/AIDS Prevention and Control Institute, Inner Mongolia CDC (Inner Mongolia Academy of Preventive Medicine), Hohhot
| | - Chenli Zheng
- Department of HIV/AIDS Control and Prevention, Shenzhen CDC, Shenzhen
| | - Qi Guo
- Virology Laboratory, Jilin CDC, Changchun
| | - Xiaohui Yang
- Institute for HIV/AIDS and STD Prevention and Control, Fuyang CDC, Fuyang
| | | | - Lincai Zhang
- Institute for HIV/AIDS and STD Prevention and Control, Gansu CDC, Lanzhou
| | - Zhangwen Ge
- Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang
| | - Lifeng Liu
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Fengting Yu
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
| | - Yang Han
- Department of Infectious Disease, Peking Union Medical College Hospital, Beijing
| | - Huihuang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing
| | - Mingqiang Hao
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Qiang Chen
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Xuemei Ling
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou
| | - Yuhua Ruan
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control and National Center for AIDS/STD Prevention and Control, China CDC, Beijing
| | - Yuan Dong
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | - Chang Zhou
- Center for AIDS/STD Control and Prevention, Sichuan CDC, Chengdu
| | - Xuangu Liu
- Institute of HIV/AIDS Prevention and Control, Beihai CDC, Beihai
| | - Jianyun Bai
- Department of STDs/AIDS Control and Prevention, Tianjin CDC, Tianjin
| | - Xue Tong
- Institute for HIV/AIDS and STD Prevention and Control, Heilongjiang CDC, Harbin
| | - Ya Gao
- STD/AIDS Prevention and Control Institute, Inner Mongolia CDC (Inner Mongolia Academy of Preventive Medicine), Hohhot
| | - Zhengrong Yang
- Department of HIV/AIDS Control and Prevention, Shenzhen CDC, Shenzhen
| | - Ao Wang
- Virology Laboratory, Jilin CDC, Changchun
| | - Wei Wei
- Institute for HIV/AIDS and STD Prevention and Control, Fuyang CDC, Fuyang
| | | | - Ruijuan Qiao
- Institute for HIV/AIDS and STD Prevention and Control, Gansu CDC, Lanzhou
| | - Xinhua Luo
- Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Jing Chen
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou
| | - Xin Shen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | - Wei Tan
- Department of HIV/AIDS Control and Prevention, Shenzhen CDC, Shenzhen
| | - Aixia Tu
- Institute for HIV/AIDS and STD Prevention and Control, Gansu CDC, Lanzhou
| | - Xinhui Zhang
- Institute for Infectious Disease Prevention and Control, Guizhou CDC, Guiyang
| | - Shufang He
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Zhen Ning
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | | | | | - Conghui Xu
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Xianlong Ren
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Yanming Sun
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Yang Li
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Guowu Liu
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Xiyao Li
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Jie Li
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| | - Junyi Duan
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Tao Huang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Shuiqing Liu
- Department of Infectious Diseases, Guiyang Public Health Clinical Center, Guiyang
| | - Guolong Yu
- Institute of Pathogenic Microbiology, Guangdong CDC, Guangzhou
| | - Donglin Wu
- Virology Laboratory, Jilin CDC, Changchun
| | - Yiming Shao
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control and National Center for AIDS/STD Prevention and Control, China CDC, Beijing
| | - Qichao Pan
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | - Linglin Zhang
- Center for AIDS/STD Control and Prevention, Sichuan CDC, Chengdu
| | - Bin Su
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Jianjun Wu
- Institute for HIV/AIDS and STD Prevention and Control, Anhui CDC, Hefei
| | - Tianjun Jiang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
| | - Tong Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing
| | - Faqing Chen
- Institute for HIV/AIDS and STD Prevention and Control, Gansu CDC, Lanzhou
| | | | - Bing Hu
- Institute for HIV/AIDS and STD Prevention and Control, Fuyang CDC, Fuyang
| | - Hui Wang
- Virology Laboratory, Jilin CDC, Changchun
| | - Jin Zhao
- Department of HIV/AIDS Control and Prevention, Shenzhen CDC, Shenzhen
| | - Baicheng Gao
- STD/AIDS Prevention and Control Institute, Inner Mongolia CDC (Inner Mongolia Academy of Preventive Medicine), Hohhot
| | - Wei Sun
- Institute for HIV/AIDS and STD Prevention and Control, Heilongjiang CDC, Harbin
| | - Tielin Ning
- Department of STDs/AIDS Control and Prevention, Tianjin CDC, Tianjin
| | - Jianjun Li
- Institute of HIV/AIDS Prevention and Control, Guangxi CDC, Nanning
| | - Shu Liang
- Center for AIDS/STD Control and Prevention, Sichuan CDC, Chengdu
| | - Yuqi Huo
- Center for Translational Medicine, Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Zhengzhou
| | - Gengfeng Fu
- Institute of AIDS/STD Control and Prevention, Jiangsu CDC, Nanjing
| | - Xin Chen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai CDC
- Shanghai Institutes of Preventive Medicine
- Shanghai Center for AIDS Research, Shanghai
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou
| | - Hui Xing
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control and National Center for AIDS/STD Prevention and Control, China CDC, Beijing
| | - Hongyan Lu
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Control and Prevention (CDC), Beijing Academy of Preventive Medicine, Beijing
| |
Collapse
|
2
|
HIV transmission among acutely infected participants of a Dutch cohort study 2015-2021 is not associated with large, clustered outbreaks. AIDS 2023; 37:299-303. [PMID: 36305171 PMCID: PMC9794119 DOI: 10.1097/qad.0000000000003416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Timely identification of acute or early HIV infection (AEHI) is important to help prevent onward transmission, and understanding the number of secondary infections resulting from individuals with AEHI is key to planning HIV prevention services and case finding. DESIGN We performed a phylogenetic investigation of a dense sample of individuals with AEHI who took part in the Netherlands Cohort Study on Acute HIV infection (NOVA) in the Netherlands during 2015-2021. METHODS Transmission clusters were identified using phylogenetic analyses based on HIV pol sequences. The Tamura-Nei model was used to estimate genetic distance. A number of 1000 bootstraps was used to check the reliability of clustering using maximum likelihood. A cluster was defined as having a bootstrap value of at least 95% and a genetic distance of at most 1.5%. Sensitivity analyses using different values for the bootstrap and genetic distance were performed to study the reproducibility of the clustering. RESULTS Of the 156 participants included in NOVA between July 2015 and April 2021, 134 individuals for whom baseline characteristics and genotypic resistance data at baseline were available could be included. We identified 10 clusters, but the majority of persons (111/134) were not part of a cluster, suggesting mainly independent transmission events. CONCLUSION Mainly independent transmission events among a study population consisting predominantly of MSM in a low-incidence high-resource setting is likely the result of active AEHI case finding and direct start of treatment, and the roll-out over recent years of preventive measures such as preexposure prophylaxis.
Collapse
|
3
|
Sauter SR, Ratnayake A, Campbell MB, Kissinger PJ. Sexual Networks and STI Infection Among Young Black Men Who Have Sex With Women in a Southern U.S. City. J Adolesc Health 2023; 72:730-736. [PMID: 36599759 DOI: 10.1016/j.jadohealth.2022.11.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE The configuration of one's sexual network has been shown to influence sexually transmitted infection (STI) acquisition in some populations. Young Black men who have sex with women (MSW) have high rates of STIs, yet little is known about their sexual networks. The purpose of this study is to describe the characteristics of sexual networks and their association with selected STI infections among young Black MSW. METHODS Black MSW aged 15-26 years who were enrolled in the New Orleans community-based screening program named Check It from March 2018 to March 2020 were tested for C. trachomatis and N. gonorrhoeae infection and asked about the nature of their sexual partnerships. Sexual partnerships with women were defined as dyadic, somewhat dense (either themselves or their partner had multiple partners), and dense (both they and their partner(s) had multiple partners). RESULTS Men (n = 1,350) reported 2,291 sex partners. The percentage of men who reported their networks were dyadic, somewhat dense, and dense was 48.7%, 27.7%, and 23.3%, respectively; 11.2% were STI-positive and 39.2% thought their partner(s) had other partners. Compared to men in dyadic relationships, those in somewhat dense network did not have increased risk of STI infection, but those in dense networks were more likely to have an STI (adjusted odds ratio = 2.06, 95% confidence interval [1.35-3.13]). DISCUSSION Young Black MSW, who had multiple partners and who thought their partner(s) had other sex partners were at highest risk for STIs. Providers should probe not only about the youth's personal risk but should probe about perceived sexual partners' risk for more targeted counseling/STI testing.
Collapse
Affiliation(s)
- Sydney R Sauter
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Aneeka Ratnayake
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Mary Beth Campbell
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Patricia J Kissinger
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana.
| |
Collapse
|
4
|
Bataille A, Salami H, Seck I, Lo MM, Ba A, Diop M, Sall B, Faye C, Lo M, Kaba L, Sidime Y, Keyra M, Diallo AOS, Niang M, Sidibe CAK, Sery A, Dakouo M, El Mamy AB, El Arbi AS, Barry Y, Isselmou E, Habiboullah H, Lella AS, Doumbia B, Gueya MB, Coste C, Squarzoni Diaw C, Kwiatek O, Libeau G, Apolloni A. Combining viral genetic and animal mobility network data to unravel peste des petits ruminants transmission dynamics in West Africa. PLoS Pathog 2021; 17:e1009397. [PMID: 33735294 PMCID: PMC8009415 DOI: 10.1371/journal.ppat.1009397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/30/2021] [Accepted: 02/17/2021] [Indexed: 12/04/2022] Open
Abstract
Peste des petits ruminants (PPR) is a deadly viral disease that mainly affects small domestic ruminants. This disease threaten global food security and rural economy but its control is complicated notably because of extensive, poorly monitored animal movements in infected regions. Here we combined the largest PPR virus genetic and animal mobility network data ever collected in a single region to improve our understanding of PPR endemic transmission dynamics in West African countries. Phylogenetic analyses identified the presence of multiple PPRV genetic clades that may be considered as part of different transmission networks evolving in parallel in West Africa. A strong correlation was found between virus genetic distance and network-related distances. Viruses sampled within the same mobility communities are significantly more likely to belong to the same genetic clade. These results provide evidence for the importance of animal mobility in PPR transmission in the region. Some nodes of the network were associated with PPRV sequences belonging to different clades, representing potential "hotspots" for PPR circulation. Our results suggest that combining genetic and mobility network data could help identifying sites that are key for virus entrance and spread in specific areas. Such information could enhance our capacity to develop locally adapted control and surveillance strategies, using among other risk factors, information on animal mobility.
Collapse
Affiliation(s)
- Arnaud Bataille
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Habib Salami
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevahge et de Recherches Vétérinaires (LNERV), Dakar-Hann, Sénégal
| | - Ismaila Seck
- Direction des Services Vétérinaires, Dakar, Senegal
- FAO, ECTAD Regional Office for Africa, Accra, Ghana
| | - Modou Moustapha Lo
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevahge et de Recherches Vétérinaires (LNERV), Dakar-Hann, Sénégal
| | - Aminata Ba
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevahge et de Recherches Vétérinaires (LNERV), Dakar-Hann, Sénégal
| | - Mariame Diop
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevahge et de Recherches Vétérinaires (LNERV), Dakar-Hann, Sénégal
| | - Baba Sall
- Direction des Services Vétérinaires, Dakar, Senegal
| | - Coumba Faye
- Direction des Services Vétérinaires, Dakar, Senegal
| | - Mbargou Lo
- Direction des Services Vétérinaires, Dakar, Senegal
| | - Lanceï Kaba
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba, Guinea
| | - Youssouf Sidime
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba, Guinea
| | - Mohamed Keyra
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba, Guinea
| | | | | | | | - Amadou Sery
- Laboratoire Central Vétérinaire (LCV), Bamako, Mali
| | | | - Ahmed Bezeid El Mamy
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Ahmed Salem El Arbi
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Yahya Barry
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Ekaterina Isselmou
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Habiboullah Habiboullah
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Abdellahi Salem Lella
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Baba Doumbia
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Mohamed Baba Gueya
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott, Mauritania
| | - Caroline Coste
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Cécile Squarzoni Diaw
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Ste-Clotilde, La Réunion, France
| | - Olivier Kwiatek
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Geneviève Libeau
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Andrea Apolloni
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevahge et de Recherches Vétérinaires (LNERV), Dakar-Hann, Sénégal
- CIRAD, UMR ASTRE, Dakar Hann, Sénégal
| |
Collapse
|
5
|
Vasylyeva TI, Zarebski A, Smyrnov P, Williams LD, Korobchuk A, Liulchuk M, Zadorozhna V, Nikolopoulos G, Paraskevis D, Schneider J, Skaathun B, Hatzakis A, Pybus OG, Friedman SR. Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention. Viruses 2020; 12:E469. [PMID: 32326127 PMCID: PMC7232463 DOI: 10.3390/v12040469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013-2016, we obtained HIV pol gene sequences and used phylogenetics to identify HIV transmission clusters. We further applied the birth-death skyline model to the sequences from Odessa (n = 275) and Kyiv (n = 92) in order to estimate changes in the epidemic's effective reproductive number (Re) and rate of becoming uninfectious (δ). We identified 12 transmission clusters in Odessa; phylogenetic clustering was correlated with younger age and higher average viral load at the time of sampling. Estimated Re were similar in Odessa and Kyiv before the initiation of TRIP; Re started to decline in 2013 and is now below Re = 1 in Odessa (Re = 0.4, 95%HPD 0.06-0.75), but not in Kyiv (Re = 2.3, 95%HPD 0.2-5.4). Similarly, estimates of δ increased in Odessa after the initiation of TRIP. Given that both cities shared the same HIV prevention programs in 2013-2019, apart from TRIP, the observed changes in transmission parameters are likely attributable to the TRIP intervention. We propose that molecular epidemiology analysis can be used as a post-intervention effectiveness assessment tool.
Collapse
Affiliation(s)
- Tetyana I. Vasylyeva
- Department of Zoology, University of Oxford, OX1 3SY Oxford, UK
- New College, University of Oxford, OX1 3BN Oxford, UK
| | | | | | - Leslie D. Williams
- Division of Community Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | | | - Mariia Liulchuk
- State Institution “The L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”, Kyiv 03038, Ukraine
| | - Viktoriia Zadorozhna
- State Institution “The L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”, Kyiv 03038, Ukraine
| | | | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - John Schneider
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Britt Skaathun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, OX1 3SY Oxford, UK
| | - Samuel R. Friedman
- Department of Population Health, New York University, New York, NY 10003, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW A major goal of public health in relation to HIV/AIDS is to prevent new transmissions in communities. Phylogenetic techniques have improved our understanding of the structure and dynamics of HIV transmissions. However, there is still no consensus about phylogenetic methodology, sampling coverage, gene target and/or minimum fragment size. RECENT FINDINGS Several studies use a combined methodology, which includes both a genetic or patristic distance cut-off and a branching support threshold to identify phylogenetic clusters. However, the choice about these thresholds remains an inherently subjective process, which affects the results of these studies. There is still a lack of consensus about the genomic region and the size of fragments that should be used, although there seems to be emerging a consensus that using longer segments, allied with the use of a realistic model of evolution and a codon alignment, increases the likelihood of inferring true transmission clusters. The pol gene is still the most used genomic region, but recent studies have suggested that whole genomes and/or sequences from nef and gp41 are also good targets for cluster reconstruction. SUMMARY The development and application of standard methodologies for phylogenetic clustering analysis will advance our understanding of factors associated with HIV transmission. This will lead to the design of more precise public health interventions.
Collapse
|
7
|
Gibson KM, Jair K, Castel AD, Bendall ML, Wilbourn B, Jordan JA, Crandall KA, Pérez-Losada M. A cross-sectional study to characterize local HIV-1 dynamics in Washington, DC using next-generation sequencing. Sci Rep 2020; 10:1989. [PMID: 32029767 PMCID: PMC7004982 DOI: 10.1038/s41598-020-58410-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/31/2019] [Indexed: 11/08/2022] Open
Abstract
Washington, DC continues to experience a generalized HIV-1 epidemic. We characterized the local phylodynamics of HIV-1 in DC using next-generation sequencing (NGS) data. Viral samples from 68 participants from 2016 through 2017 were sequenced and paired with epidemiological data. Phylogenetic and network inferences, drug resistant mutations (DRMs), subtypes and HIV-1 diversity estimations were completed. Haplotypes were reconstructed to infer transmission clusters. Phylodynamic inferences based on the HIV-1 polymerase (pol) and envelope genes (env) were compared. Higher HIV-1 diversity (n.s.) was seen in men who have sex with men, heterosexual, and male participants in DC. 54.0% of the participants contained at least one DRM. The 40-49 year-olds showed the highest prevalence of DRMs (22.9%). Phylogenetic analysis of pol and env sequences grouped 31.9-33.8% of the participants into clusters. HIV-TRACE grouped 2.9-12.8% of participants when using consensus sequences and 9.0-64.2% when using haplotypes. NGS allowed us to characterize the local phylodynamics of HIV-1 in DC more broadly and accurately, given a better representation of its diversity and dynamics. Reconstructed haplotypes provided novel and deeper phylodynamic insights, which led to networks linking a higher number of participants. Our understanding of the HIV-1 epidemic was expanded with the powerful coupling of HIV-1 NGS data with epidemiological data.
Collapse
Grants
- P30 AI117970 NIAID NIH HHS
- U01 AI069503 NIAID NIH HHS
- UM1 AI069503 NIAID NIH HHS
- This study was supported by the DC Cohort Study (U01 AI69503-03S2), a supplement from the Women’s Interagency Study for HIV-1 (410722_GR410708), a DC D-CFAR pilot award, and a 2015 HIV-1 Phylodynamics Supplement award from the District of Columbia for AIDS Research, an NIH funded program (AI117970), which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, NIGMS, NIDDK and OAR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Keylie M Gibson
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
| | - Kamwing Jair
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Amanda D Castel
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Matthew L Bendall
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Brittany Wilbourn
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Jeanne A Jordan
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
8
|
Analysis of HIV-1 diversity, primary drug resistance and transmission networks in Croatia. Sci Rep 2019; 9:17307. [PMID: 31754119 PMCID: PMC6872562 DOI: 10.1038/s41598-019-53520-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Molecular epidemiology of HIV-1 infection in treatment-naive HIV-1 infected persons from Croatia was investigated. We included 403 persons, representing 92.4% of all HIV-positive individuals entering clinical care in Croatia in 2014–2017. Overall prevalence of transmitted drug resistance (TDR) was estimated at 16.4%. Resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside RTI (NNRTIs) and protease inhibitors (PIs) was found in 11.4%, 6.7% and 2.5% of persons, respectively. Triple-class resistance was determined in 2.2% of individuals. In addition, a single case (1.0%) of resistance to integrase strand-transfer inhibitors (InSTIs) was found. Deep sequencing was performed on 48 randomly selected samples and detected additional TDR mutations in 6 cases. Phylogenetic inference showed that 347/403 sequences (86.1%) were part of transmission clusters and identified forward transmission of resistance in Croatia, even that of triple-class resistance. The largest TDR cluster of 53 persons with T215S was estimated to originate in the year 1992. Our data show a continuing need for pre-treatment HIV resistance testing in Croatia. Even though a low prevalence of resistance to InSTI was observed, surveillance of TDR to InSTI should be continued.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW HIV phylogenetic and molecular epidemiology analyses are increasingly being performed with a goal of improving HIV prevention efforts. However, ethical, legal and social issues are associated with these analyses, and should be considered when performed. RECENT FINDINGS Several working groups have recently outlined the major issues surrounding the use of molecular epidemiology for HIV prevention. First, the benefits of HIV molecular epidemiology remain unclear, and further work is needed to quantitatively demonstrate the benefits that can be expected. Second, privacy loss is an important risk, with implications of disclosure varying by the regional legal and social climate. Inferential privacy risks will increase with technological improvements in sequencing and analysis. Third, data sharing, which enhances the utility of the data, may also increase the risk of inferential privacy loss. Mitigation strategies are available to address each of these issues. SUMMARY HIV molecular epidemiology for research and public health pose significant ethical issues that continue to evolve with improving technology, increased sampling and a changing legal and social climate. Guidance surrounding these issues needs to be developed for researchers and public health officials in an iterative and region specific manner that accounts for the potential benefits and risks of this technology.
Collapse
Affiliation(s)
- Sanjay R Mehta
- Departments of Medicine and Pathology, University of California San Diego
- Department of Medicine San Diego Veterans Affairs Medical Center
| | | | - Susan Little
- Department of Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Delgado E, Benito S, Montero V, Cuevas MT, Fernández-García A, Sánchez-Martínez M, García-Bodas E, Díez-Fuertes F, Gil H, Cañada J, Carrera C, Martínez-López J, Sintes M, Pérez-Álvarez L, Thomson MM. Diverse Large HIV-1 Non-subtype B Clusters Are Spreading Among Men Who Have Sex With Men in Spain. Front Microbiol 2019; 10:655. [PMID: 31001231 PMCID: PMC6457325 DOI: 10.3389/fmicb.2019.00655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 11/23/2022] Open
Abstract
In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries.
Collapse
Affiliation(s)
- Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Fernández-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Sánchez-Martínez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,European Program for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Javier Cañada
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Martínez-López
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Sintes
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
11
|
Villandré L, Labbe A, Brenner B, Ibanescu RI, Roger M, Stephens DA. Assessing the role of transmission chains in the spread of HIV-1 among men who have sex with men in Quebec, Canada. PLoS One 2019; 14:e0213366. [PMID: 30840706 PMCID: PMC6402664 DOI: 10.1371/journal.pone.0213366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Phylogenetics has been used to investigate HIV transmission among men who have sex with men. This study compares several methodologies to elucidate the role of transmission chains in the dynamics of HIV spread in Quebec, Canada. METHODS The Quebec Human Immunodeficiency Virus (HIV) genotyping program database now includes viral sequences from close to 4,000 HIV-positive individuals classified as Men who have Sex with Men (MSMs), collected between 1996 and early 2016. Assessment of chain expansion may depend on the partitioning scheme used, and so, we produce estimates from several methods: the conventional Bayesian and maximum likelihood-bootstrap methods, in combination with a variety of schemes for applying a maximum distance criterion, and two other algorithms, DM-PhyClus, a Bayesian algorithm that produces a measure of uncertainty for proposed partitions, and the Gap Procedure, a fast non-phylogenetic approach. Sequences obtained from individuals in the Primary HIV Infection (PHI) stage serve to identify incident cases. We focus on the period ranging from January 1st 2012 to February 1st 2016. RESULTS AND CONCLUSION The analyses reveal considerable overlap between chain estimates obtained from conventional methods, thus leading to similar estimates of recent temporal expansion. The Gap Procedure and DM-PhyClus suggest however moderately different chains. Nevertheless, all estimates stress that longer older chains are responsible for a sizeable proportion of the sampled incident cases among MSMs. Curbing the HIV epidemic will require strategies aimed specifically at preventing such growth.
Collapse
Affiliation(s)
- Luc Villandré
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Decision Sciences, HEC Montréal, Montreal, Québec, Canada
| | - Aurélie Labbe
- Department of Decision Sciences, HEC Montréal, Montreal, Québec, Canada
| | - Bluma Brenner
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada
| | | | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Québec, Canada
| | - David A. Stephens
- Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
12
|
Jovanović L, Šiljić M, Ćirković V, Salemović D, Pešić-Pavlović I, Todorović M, Ranin J, Jevtović D, Stanojević M. Exploring Evolutionary and Transmission Dynamics of HIV Epidemic in Serbia: Bridging Socio-Demographic With Phylogenetic Approach. Front Microbiol 2019; 10:287. [PMID: 30858834 PMCID: PMC6397891 DOI: 10.3389/fmicb.2019.00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/04/2019] [Indexed: 12/04/2022] Open
Abstract
Previous molecular studies of Serbian HIV epidemic identified the dominance of subtype B and presence of clusters related HIV-1 transmission, in particular among men who have sex with men (MSM). In order to get a deeper understanding of the complexities of HIV sub-epidemics in Serbia, epidemic trends, temporal origin and phylodynamic characteristics in general population and subpopulations were analyzed by means of mathematical modeling, phylogenetic analysis and latent class analysis (LCA). Fitting of the logistic curve of trends for a cumulative annual number of new HIV cases in 1984–2016, in general population and MSM transmission group, was performed. Both datasets fitted the logistic growth model, showing the early exponential phase of the growth curve. According to the suggested model, in the year 2030, the number of newly diagnosed HIV cases in Serbia will continue to grow, in particular in the MSM transmission group. Further, a detailed phylogenetic analysis was performed on 385 sequences from the period 1997–2015. Identification of transmission clusters, estimation of population growth (Ne), of the effective reproductive number (Re) and time of the most recent common ancestor (tMRCA) were estimated employing Bayesian and maximum likelihood methods. A substantial proportion of 53% of subtype B sequences was found within transmission clusters/network. Phylodynamic analysis revealed Re over one during the whole period investigated, with the steepest slopes and a recent tMRCA for MSM transmission group subtype B clades, in line with a growing trend in the number of transmissions in years approaching the end of the study period. Contrary, heterosexual clades in both studied subtypes – B and C – showed modest growth and stagnation. LCA analysis identified five latent classes, with transmission clusters dominantly present in 2/5 classes, linked to MSM transmission living in the capital city and with the high prevalence of co-infection with HBV and/or other STIs.Presented findings imply that HIV epidemic in Serbia is still in the exponential growth phase, in particular, related to the MSM transmission, with estimated steep growth curve until 2030. The obtained results imply that an average new HIV patient in Serbia is a young man with concomitant sexually transmitted infection.
Collapse
Affiliation(s)
- Luka Jovanović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Šiljić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Valentina Ćirković
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Salemović
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivana Pešić-Pavlović
- Virology Laboratory, Microbiology Department, Clinical Centre of Serbia, Belgrade, Serbia
| | - Marija Todorović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Ranin
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Djordje Jevtović
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Maja Stanojević
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Tanaka TSO, Leite TF, Freitas SZ, Cesar GA, de Rezende GR, Lindenberg ADSC, Guimarães ML, Motta-Castro ARC. HIV-1 Molecular Epidemiology, Transmission Clusters and Transmitted Drug Resistance Mutations in Central Brazil. Front Microbiol 2019; 10:20. [PMID: 30804893 PMCID: PMC6371026 DOI: 10.3389/fmicb.2019.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
We aimed to characterize HIV-1 molecular epidemiology and transmission clusters among heterosexual (HET) and men who have sex with men (MSM) individuals, as well as transmitted drug resistance mutations (TDRM) in Central-Western Brazil. This cross-sectional survey was conducted among 190 antiretroviral naïve HIV-1 infected individuals. Proviral DNA was extracted, and nested PCR amplified partial polymerase gene (PR/RT). After sequencing, subtypes were assigned, and the sequences were analyzed for the occurrence of possible transmission networks. Calibrated Population Resistance (CPR) tool from Stanford HIV Database was used to investigate the presence of TDRM. Among 150 individuals whose samples were successfully sequenced, the most prevalent HIV-1 subtype was B, followed by recombinant forms. The occurrence of twenty transmission clusters composed by at least two sequences was verified, suggesting the existence of transmission clusters among individuals from the same or distinct sexual orientations. Intermediate level of TDRM (12%) was found in the study population, and almost half of the subjects with TDRM had more than one resistance mutation. No correlations between sexual orientation and the presence of TDRM, HIV-1 subtypes/recombinants forms were verified. Taken together, the necessity of the continuous monitoring of the TDRM to verify the importance of pre-genotyping and to delineate future strategies in primary antiretroviral therapy. Likewise, the knowledge of the HIV-1 transmission networks in Brazil would allow the implementation of effective HIV-1 prevention strategies in local settings.
Collapse
Affiliation(s)
- Tayana Serpa Ortiz Tanaka
- Programa de Pós-graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Thaysse Ferreira Leite
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Solange Zacalusni Freitas
- Universitary Hospital Maria Aparecida Pedrossian, HUMAP, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriela Alves Cesar
- Programa de Pós-graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Grazielli Rocha de Rezende
- Laboratory of Clinical Immunology, FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Monick Lindenmeyer Guimarães
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rita Coimbra Motta-Castro
- Programa de Pós-graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Laboratory of Clinical Immunology, FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Laboratory of Molecular Virology, Oswaldo Cruz Foundation, Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
14
|
Machnowska P, Meixenberger K, Schmidt D, Jessen H, Hillenbrand H, Gunsenheimer-Bartmeyer B, Hamouda O, Kücherer C, Bannert N. Prevalence and persistence of transmitted drug resistance mutations in the German HIV-1 Seroconverter Study Cohort. PLoS One 2019; 14:e0209605. [PMID: 30650082 PMCID: PMC6334938 DOI: 10.1371/journal.pone.0209605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
The prevalence of transmitted drug resistance (TDR) in antiretroviral therapy (ART)-naïve individuals remains stable in most developed countries despite a decrease in the prevalence of acquired drug resistance. This suggests that persistence and further transmission of HIV-1 that encodes transmitted drug resistance mutations (TDRMs) is occurring in ART-naïve individuals. In this study, we analysed the prevalence and persistence of TDRMs in the protease and reverse transcriptase-sequences of ART-naïve patients within the German HIV-1 Seroconverter Study Cohort who were infected between 1996 and 2017. The prevalence of TDRMs and baseline susceptibility to antiretroviral drugs were assessed using the Stanford HIVdb list and algorithm. Mean survival times of TDRMs were calculated by Kaplan-Meier analysis. The overall prevalence of TDR was 17.2% (95% CI 15.7–18.6, N = 466/2715). Transmitted NNRTI resistance was observed most frequently with 7.8% (95% CI 6.8–8.8), followed by NRTI resistance (5.0%, 95% CI 4.2–5.9) and PI resistance (2.8%, 95% CI 2.2–3.4). Total TDR (OR = 0.89, p = 0.034) and transmitted NRTI resistance (OR = 0.65, p = 0.000) decreased between 1996 and 2017 but has remained stable during the last decade. Viral susceptibility to NNRTIs (6.5%-6.9% for individual drugs) was mainly reduced, while <3% of the recommended NRTIs and PIs were affected. The longest mean survival times were calculated for the NNRTI mutations K103N (5.3 years, 95% CI 4.2–5.6) and E138A/G/K (8.0 years, 95% CI 5.8–10.2 / 7.9 years, 95% CI 5.4–10.3 / 6.7 years, 95% CI 6.7–6.7) and for the NRTI mutation M41L (6.4 years, 95% CI 6.0–6.7).The long persistence of single TDRMs indicates that onward transmission from ART-naïve individuals is the main cause for TDR in Germany. Transmitted NNRTI resistance was the most frequent TDR, showing simultaneously the highest impact on baseline ART susceptibility and on TDRMs with prolonged persistence. These results give cause for concern regarding the use of NNRTI in first-line regimens.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- * E-mail: (NB); (PM)
| | | | - Daniel Schmidt
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | | | | | | | - Osamah Hamouda
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Claudia Kücherer
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (NB); (PM)
| | | |
Collapse
|
15
|
Transmission dynamics among participants initiating antiretroviral therapy upon diagnosis of early acute HIV-1 infection in Thailand. AIDS 2018; 32:2373-2381. [PMID: 30096068 DOI: 10.1097/qad.0000000000001956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess transmission characteristics in a predominantly MSM cohort initiating antiretroviral therapy (ART) immediately following diagnosis of acute HIV-1infection (AHI). METHODS A longitudinal study (2009-2017) was performed in participants with AHI (n = 439) attending a single clinic in Bangkok. Plasma samples obtained prior to ART were used to obtain HIV-1 pol sequences and combined with clinical and epidemiologic data to assess transmission dynamics (cluster formation and size) using phylogenetic analysis. Clusters were estimated using maximum likelihood, genetic distance of 1.5% and visual inspection. The potential transmitter(s) in a cluster was determined using time to viral suppression and interview data. RESULTS The cohort was predominantly MSM (93%) and infected with HIV-1 CRF01_AE (87%). Medians (ranges) for age and viral load prior to ART were 26 (18-70) years and 5.9 (2.5-8.2) log10 HIV-1 RNA copies/ml. Median time from history of HIV-1 exposure to diagnosis was 19 (3-61) days. Viral suppression was observed in 388 of 412 (94%) participants at a median time of 12 weeks following ART. Twenty-six clusters with median cluster size of 2 (2-5) representing 62 of 439 (14%) participants were observed. Younger age was associated with cluster formation: median 28 versus 30 years for unique infections (P = 0.01). A potential transmitter was identified in 11 of 26 (42%) clusters. CONCLUSION Despite high rates of viral suppression following diagnosis and treatment of AHI within a cohort of young Thai MSM, HIV-1 transmission continued, reflecting the need to expand awareness and treatment access to the entire MSM population.
Collapse
|
16
|
Boender TS, Smit C, Sighem AV, Bezemer D, Ester CJ, Zaheri S, Wit FWNM, Reiss P. AIDS Therapy Evaluation in the Netherlands (ATHENA) national observational HIV cohort: cohort profile. BMJ Open 2018; 8:e022516. [PMID: 30249631 PMCID: PMC6169757 DOI: 10.1136/bmjopen-2018-022516] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In 1998, the AIDS Therapy Evaluation in the Netherlands (ATHENA) national observational HIV cohort was established to demonstrate the lifesaving effectiveness of triple combination antiretroviral therapy, including HIV-protease inhibitors, that had recently been made available for clinical use. Subsequently, the HIV Monitoring Foundation was established by the Dutch Ministry of Health, Welfare and Sport to continue ATHENA as an open cohort in order to continue the registration and monitoring of all HIV-positive people as an integral part of HIV care in all 26 HIV treatment centres in the Netherlands. PARTICIPANTS To date, a total of 25 036 participants have been enrolled in the cohort, with 263 600 person-years of follow-up. As of 1 January 2017, 19 035 HIV-1-positive participants were known to be in care: 18 824 adults (81% men and 19% women) and 211 children (47% boys and 53% girls). The remaining 6001 participants had either died (46%), were lost to care (29%) or had moved abroad (25%). FINDINGS TO DATE Today, with over 20 years of follow-up, the ATHENA cohort has provided extensive knowledge on HIV treatment, comorbidities and coinfections and created insight into the transmission dynamics of the HIV epidemic. FUTURE PLANS ATHENA continues to enrol and monitor HIV positive people entering HIV care in the Netherlands. Future research will continue to provide tangible input into HIV care and prevention policies in the Netherlands and internationally.
Collapse
Affiliation(s)
| | - Colette Smit
- Stichting HIV Monitoring, Amsterdam, the Netherlands
| | | | | | | | - Sima Zaheri
- Stichting HIV Monitoring, Amsterdam, the Netherlands
| | - Ferdinand W N M Wit
- Stichting HIV Monitoring, Amsterdam, the Netherlands
- Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, the Netherlands
- Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Parveen N, Moodie EEM, Cox J, Lambert G, Otis J, Roger M, Brenner B. New Challenges in HIV Research: Combining Phylogenetic Cluster Size and Epidemiological Data. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/em-2017-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An exciting new direction in HIV research is centered on using molecular phylogenetics to understand the social and behavioral drivers of HIV transmission. SPOT was an intervention designed to offer HIV point of care testing to men who have sex with men at a community-based site in Montreal, Canada; at the time of testing, a research questionnaire was also deployed to collect data on socio-demographic and behavioral characteristics of participating men. The men taking part in SPOT could be viewed, from the research perspective, as having been recruited via a convenience sample. Among men who were found to be HIV positive, phylogenetic cluster size was measured using a large cohort of HIV-positive individuals in the province of Quebec. The cluster size is likely subject to under-estimation. In this paper, we use SPOT data to evaluate the association between HIV transmission cluster size and the number of sex partners for MSM, after adjusting for the SPOT sampling scheme and correcting for measurement error in cluster size by leveraging external data sources. The sampling weights for SPOT participants were calculated from another study of men who have sex with men in Montreal by fitting a weight-adjusted model, whereas measurement error was corrected using the simulation-extrapolation conditional on covariates approach.
Collapse
Affiliation(s)
- Nabila Parveen
- Epidemiology & Biostatistics , McGill University , Montreal , Quebec , Canada
| | - Erica E. M. Moodie
- Epidemiology & Biostatistics , McGill University , 1020 Pine Ave W , Montreal , Quebec , Canada
| | - Joseph Cox
- Epidemiology & Biostatistics , McGill University , Montreal , Quebec , Canada
| | - Gilles Lambert
- Institut national de sante publique du Quebec , Montreal , Quebec , Canada
| | - Joanne Otis
- Universite du Quebec a Montreal , Montreal , Quebec , Canada
| | - Michel Roger
- Department of Microbiology and Immunology , Université de Montréal , Montreal , Quebec , Canada
| | - Bluma Brenner
- McGill AIDS Centre , Lady Davis Institute for Medical Research , Montreal , Quebec , Canada
| |
Collapse
|
18
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
19
|
Molecular Epidemiology of the HIV Epidemic in Three German Metropolitan Regions - Cologne/Bonn, Munich and Hannover, 1999-2016. Sci Rep 2018; 8:6799. [PMID: 29717148 PMCID: PMC5931588 DOI: 10.1038/s41598-018-25004-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Using HIV sequence data to characterize clusters of HIV transmission may provide insight into the epidemic. Phylogenetic and network analyses were performed to infer putative relationships between HIV-1 partial pol sequences from 2,774 individuals receiving care in three German regions between 1999-2016. The regions have in common that they host some of the largest annual festivals in Europe (Carnival and Oktoberfest). Putative links with sequences (n = 150,396) from the Los Alamos HIV Sequence database were evaluated. A total of 595/2,774 (21.4%) sequences linked with at least one other sequence, forming 184 transmission clusters. Clustering individuals were significantly more likely to be younger, male, and report sex with men as their main risk factor (p < 0.001 each). Most clusters (77.2%) consisted exclusively of men; 41 (28.9%) of these included men reporting sex with women. Thirty-two clusters (17.4%) contained sequences from more than one region; clustering men were significantly more likely to be in a position bridging regional HIV epidemics than clustering women (p = 0.027). We found 236 clusters linking 547 sequences from our sample with sequences from the Los Alamos database (n = 1407; 31% from other German centres). These results highlight the pitfalls of focusing HIV prevention efforts on specific risk groups or specific locales.
Collapse
|
20
|
Phylogenetic analysis of the Belgian HIV-1 epidemic reveals that local transmission is almost exclusively driven by men having sex with men despite presence of large African migrant communities. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29522828 DOI: 10.1016/j.meegid.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To improve insight in the drivers of local HIV-1 transmission in Belgium, phylogenetic, demographic, epidemiological and laboratory data from patients newly diagnosed between 2013 and 2015 were combined and analyzed. Characteristics of clustered patients, paired patients and patients on isolated branches in the phylogenetic tree were compared. The results revealed an overall high level of clustering despite the short time frame of sampling, with 47.6% of all patients having at least one close genetic counterpart and 36.6% belonging to a cluster of 3 or more individuals. Compared to patients on isolated branches, patients in clusters more frequently reported being infected in Belgium (95.1% vs. 47.6%; p < 0.001), were more frequently men having sex with men (MSM) (77.9% vs. 42.8%; p < 0.001), of Belgian origin (68.2% vs. 32.9%; p < 0.001), male gender (92.6% vs. 65.8%; p < 0.001), infected with subtype B or F (87.8% vs. 43.4%; p < 0.001) and diagnosed early after infection (55.4% vs. 29.0%; p < 0.001). Strikingly, Sub-Saharan Africans (SSA), overall representing 27.1% of the population were significantly less frequently found in clusters than on individual branches (6.0% vs. 41.8%; p < 0.001). Of the SSA that participated in clustered transmission, 66.7% were MSM and this contrasts sharply with the overall 12.0% of SSA reporting MSM. Transmission clusters with SSA were more frequently non-B clusters than transmission clusters without SSA (44.4% versus 18.2%). MSM-driven clusters with patients of mixed origin may account, at least in part, for the increasing spread of non-B subtypes to the native MSM population, a cross-over that has been particularly successful for subtype F and CRF02_AG. The main conclusions from this study are that clustered transmission in Belgium remains almost exclusively MSM-driven with very limited contribution of SSA. There were no indications for local ongoing clustered transmission of HIV-1 among SSA.
Collapse
|
21
|
Brenner BG, Ibanescu RI, Oliveira M, Roger M, Hardy I, Routy JP, Kyeyune F, Quiñones-Mateu ME, Wainberg MA. HIV-1 strains belonging to large phylogenetic clusters show accelerated escape from integrase inhibitors in cell culture compared with viral isolates from singleton/small clusters. J Antimicrob Chemother 2018; 72:2171-2183. [PMID: 28472323 PMCID: PMC7263826 DOI: 10.1093/jac/dkx118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives: Viral phylogenetics revealed two patterns of HIV-1 spread among
MSM in Quebec. While most HIV-1 strains (n = 2011) were
associated with singleton/small clusters (cluster size 1–4), 30 viral lineages formed
large networks (cluster size 20–140), contributing to 42% of diagnoses between 2011 and
2015. Herein, tissue culture selections ascertained if large cluster lineages possessed
higher replicative fitness than singleton/small cluster isolates, allowing for viral
escape from integrase inhibitors. Methods: Primary HIV-1 isolates from large 20+ cluster
(n = 11) or singleton/small cluster
(n = 6) networks were passagedin
vitro in escalating concentrations of dolutegravir, elvitegravir and lamivudine
for 24–36 weeks. Sanger and deep sequencing assessed genotypic changes under selective
drug pressure. Results: Large cluster HIV-1 isolates selected for resistance to
dolutegravir, elvitegravir and lamivudine faster than HIV-1 strains forming small
clusters. With dolutegravir, large cluster HIV-1 variants acquired solitary R263K
(n = 7), S153Y
(n = 1) or H51Y
(n = 1) mutations as the dominant quasi-species within
8–12 weeks as compared with small cluster lineages where R263K
(n = 1/6), S153Y (1/6) or WT species (4/6) were
observed after 24 weeks. Interestingly, dolutegravir-associated mutations compromised
viral replicative fitness, precluding escalations in concentrations beyond 5–10 nM. With
elvitegravir, large cluster variants more rapidly acquired first mutations (T66I, A92G,
N155H or S147G) by week 8 followed by sequential accumulation of multiple mutations
leading to viral escape (>10 μM) by week 24. Conclusions: Further studies are needed to understand virological features of
large cluster viruses that may favour their transmissibility, replicative competence and
potential to escape selective antiretroviral drug pressure.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michel Roger
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Isabelle Hardy
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | | | - Fred Kyeyune
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Miguel E Quiñones-Mateu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Brenner BG, Ibanescu RI, Hardy I, Roger M. Genotypic and Phylogenetic Insights on Prevention of the Spread of HIV-1 and Drug Resistance in "Real-World" Settings. Viruses 2017; 10:v10010010. [PMID: 29283390 PMCID: PMC5795423 DOI: 10.3390/v10010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/15/2022] Open
Abstract
HIV continues to spread among vulnerable heterosexual (HET), Men-having-Sex with Men (MSM) and intravenous drug user (IDU) populations, influenced by a complex array of biological, behavioral and societal factors. Phylogenetics analyses of large sequence datasets from national drug resistance testing programs reveal the evolutionary interrelationships of viral strains implicated in the dynamic spread of HIV in different regional settings. Viral phylogenetics can be combined with demographic and behavioral information to gain insights on epidemiological processes shaping transmission networks at the population-level. Drug resistance testing programs also reveal emergent mutational pathways leading to resistance to the 23 antiretroviral drugs used in HIV-1 management in low-, middle- and high-income settings. This article describes how genotypic and phylogenetic information from Quebec and elsewhere provide critical information on HIV transmission and resistance, Cumulative findings can be used to optimize public health strategies to tackle the challenges of HIV in “real-world” settings.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
| | - Isabelle Hardy
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada.
| | - Michel Roger
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
23
|
Abstract
: Pre-exposure prophylaxis (PrEP) is a potent and underutilized HIV prevention tool. In this paper we review the state of knowledge regarding PrEP implementation for men who have sex with men and transgender persons in early adopting countries. We focus on implementation of PrEP in demonstration projects and clinical care, and describe the status of PrEP availability and uptake. We report on approaches to identifying appropriate PrEP candidates in real-world settings and on best practices for clinical monitoring. This includes the exclusion of undiagnosed HIV infection prior to PrEP initiation and longitudinal measurement of renal function, in light of safety data. Since adherence is the primary factor moderating the effectiveness of PrEP, we discuss effective adherence support interventions. Additionally, we review the evidence for risk compensation with PrEP use and opportunities to provide PrEP as part of comprehensive and inclusive preventive health programs. We summarize cost-effectiveness studies, including their variable conclusions because of differing underlying assumptions, and discuss the importance of budgetary impact for public health programs and health care insurers. Further, we emphasize a need for greater engagement of health care providers in PrEP to increase access. We conclude with recommendations for ways to improve future efforts at implementing PrEP.
Collapse
|
24
|
Pérez-Losada M, Castel AD, Lewis B, Kharfen M, Cartwright CP, Huang B, Maxwell T, Greenberg AE, Crandall KA. Characterization of HIV diversity, phylodynamics and drug resistance in Washington, DC. PLoS One 2017; 12:e0185644. [PMID: 28961263 PMCID: PMC5621693 DOI: 10.1371/journal.pone.0185644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/16/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Washington DC has a high burden of HIV with a 2.0% HIV prevalence. The city is a national and international hub potentially containing a broad diversity of HIV variants; yet few sequences from DC are available on GenBank to assess the evolutionary history of HIV in the US capital. Towards this general goal, here we analyze extensive sequence data and investigate HIV diversity, phylodynamics, and drug resistant mutations (DRM) in DC. METHODS Molecular HIV-1 sequences were collected from participants infected through 2015 as part of the DC Cohort, a longitudinal observational study of HIV+ patients receiving care at 13 DC clinics. Sequences were paired with Cohort demographic, risk, and clinical data and analyzed using maximum likelihood, Bayesian and coalescent approaches of phylogenetic, network and population genetic inference. We analyzed 601 sequences from 223 participants for int (~864 bp) and 2,810 sequences from 1,659 participants for PR/RT (~1497 bp). RESULTS Ninety-nine and 94% of the int and PR/RT sequences, respectively, were identified as subtype B, with 14 non-B subtypes also detected. Phylodynamic analyses of US born infected individuals showed that HIV population size varied little over time with no significant decline in diversity. Phylogenetic analyses grouped 13.5% of the int sequences into 14 clusters of 2 or 3 sequences, and 39.0% of the PR/RT sequences into 203 clusters of 2-32 sequences. Network analyses grouped 3.6% of the int sequences into 4 clusters of 2 sequences, and 10.6% of the PR/RT sequences into 76 clusters of 2-7 sequences. All network clusters were detected in our phylogenetic analyses. Higher proportions of clustered sequences were found in zip codes where HIV prevalence is highest (r = 0.607; P<0.00001). We detected a high prevalence of DRM for both int (17.1%) and PR/RT (39.1%), but only 8 int and 12 PR/RT amino acids were identified as under adaptive selection. We observed a significant (P<0.0001) association between main risk factors (men who have sex with men and heterosexuals) and genotypes in the five well-supported clusters with sufficient sample size for testing. DISCUSSION Pairing molecular data with clinical and demographic data provided novel insights into HIV population dynamics in Washington, DC. Identification of populations and geographic locations where clustering occurs can inform and complement active surveillance efforts to interrupt HIV transmission.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
- CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Amanda D. Castel
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Brittany Lewis
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Michael Kharfen
- District of Columbia Department of Health, Washington, DC, United States of America
| | | | - Bruce Huang
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | - Taylor Maxwell
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | - Alan E. Greenberg
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | | |
Collapse
|
25
|
Dearlove BL, Xiang F, Frost SDW. Biased phylodynamic inferences from analysing clusters of viral sequences. Virus Evol 2017; 3:vex020. [PMID: 28852573 PMCID: PMC5570026 DOI: 10.1093/ve/vex020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources.
Collapse
Affiliation(s)
- Bethany L Dearlove
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Fei Xiang
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
26
|
Rutstein SE, Ananworanich J, Fidler S, Johnson C, Sanders EJ, Sued O, Saez-Cirion A, Pilcher CD, Fraser C, Cohen MS, Vitoria M, Doherty M, Tucker JD. Clinical and public health implications of acute and early HIV detection and treatment: a scoping review. J Int AIDS Soc 2017; 20:21579. [PMID: 28691435 PMCID: PMC5515019 DOI: 10.7448/ias.20.1.21579] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/29/2017] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The unchanged global HIV incidence may be related to ignoring acute HIV infection (AHI). This scoping review examines diagnostic, clinical, and public health implications of identifying and treating persons with AHI. METHODS We searched PubMed, in addition to hand-review of key journals identifying research pertaining to AHI detection and treatment. We focused on the relative contribution of AHI to transmission and the diagnostic, clinical, and public health implications. We prioritized research from low- and middle-income countries (LMICs) published in the last fifteen years. RESULTS AND DISCUSSION Extensive AHI research and limited routine AHI detection and treatment have begun in LMIC. Diagnostic challenges include ease-of-use, suitability for application and distribution in LMIC, and throughput for high-volume testing. Risk score algorithms have been used in LMIC to screen for AHI among individuals with behavioural and clinical characteristics more often associated with AHI. However, algorithms have not been implemented outside research settings. From a clinical perspective, there are substantial immunological and virological benefits to identifying and treating persons with AHI - evading the irreversible damage to host immune systems and seeding of viral reservoirs that occurs during untreated acute infection. The therapeutic benefits require rapid initiation of antiretrovirals, a logistical challenge in the absence of point-of-care testing. From a public health perspective, AHI diagnosis and treatment is critical to: decrease transmission via viral load reduction and behavioural interventions; improve pre-exposure prophylaxis outcomes by avoiding treatment initiation for HIV-seronegative persons with AHI; and, enhance partner services via notification for persons recently exposed or likely transmitting. CONCLUSIONS There are undeniable clinical and public health benefits to AHI detection and treatment, but also substantial diagnostic and logistical barriers to implementation and scale-up. Effective early ART initiation may be critical for HIV eradication efforts, but widespread use in LMIC requires simple and accurate diagnostic tools. Implementation research is critical to facilitate sustainable integration of AHI detection and treatment into existing health systems and will be essential for prospective evaluation of testing algorithms, point-of-care diagnostics, and efficacious and effective first-line regimens.
Collapse
Affiliation(s)
- Sarah E. Rutstein
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Cheryl Johnson
- HIV Department, World Health Organization, Geneva, Switzerland
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Eduard J. Sanders
- Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Asier Saez-Cirion
- Institut Pasteur, HIV Inflammation and Persistance Unit, Paris, France
| | | | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marco Vitoria
- HIV Department, World Health Organization, Geneva, Switzerland
| | - Meg Doherty
- HIV Department, World Health Organization, Geneva, Switzerland
| | - Joseph D. Tucker
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Project-China, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Inferring HIV-1 Transmission Dynamics in Germany From Recently Transmitted Viruses. J Acquir Immune Defic Syndr 2017; 73:356-363. [PMID: 27400403 DOI: 10.1097/qai.0000000000001122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although HIV continues to spread globally, novel intervention strategies such as treatment as prevention (TasP) may bring the epidemic to a halt. However, their effective implementation requires a profound understanding of the underlying transmission dynamics. METHODS We analyzed parameters of the German HIV epidemic based on phylogenetic clustering of viral sequences from recently infected seroconverters with known infection dates. Viral baseline and follow-up pol sequences (n = 1943) from 1159 drug-naïve individuals were selected from a nationwide long-term observational study initiated in 1997. Putative transmission clusters were computed based on a maximum likelihood phylogeny. Using individual follow-up sequences, we optimized our clustering threshold to maximize the likelihood of co-clustering individuals connected by direct transmission. RESULTS The sizes of putative transmission clusters scaled inversely with their abundance and their distribution exhibited a heavy tail. Clusters based on the optimal clustering threshold were significantly more likely to contain members of the same or bordering German federal states. Interinfection times between co-clustered individuals were significantly shorter (26 weeks; interquartile range: 13-83) than in a null model. CONCLUSIONS Viral intraindividual evolution may be used to select criteria that maximize co-clustering of transmission pairs in the absence of strong adaptive selection pressure. Interinfection times of co-clustered individuals may then be an indicator of the typical time to onward transmission. Our analysis suggests that onward transmission may have occurred early after infection, when individuals are typically unaware of their serological status. The latter argues that TasP should be combined with HIV testing campaigns to reduce the possibility of transmission before TasP initiation.
Collapse
|
28
|
Abstract
Understanding HIV-1 transmission dynamics is relevant to both screening and intervention strategies of HIV-1 infection. Commonly, HIV-1 transmission chains are determined based on sequence similarity assessed either directly from a sequence alignment or by inferring a phylogenetic tree. This review is aimed at both nonexperts interested in understanding and interpreting studies of HIV-1 transmission, and experts interested in finding the most appropriate cluster definition for a specific dataset and research question. We start by introducing the concepts and methodologies of how HIV-1 transmission clusters usually have been defined. We then present the results of a systematic review of 105 HIV-1 molecular epidemiology studies summarizing the most common methods and definitions in the literature. Finally, we offer our perspectives on how HIV-1 transmission clusters can be defined and provide some guidance based on examples from real life datasets.
Collapse
|
29
|
Abstract
OBJECTIVE HIV-1 epidemics among MSM remain unchecked despite advances in treatment and prevention paradigms. This study combined viral phylogenetic and behavioural risk data to better understand underlying factors governing the temporal growth of the HIV epidemic among MSM in Quebec (2002-2015). METHODS Phylogenetic analysis of pol sequences was used to deduce HIV-1 transmission dynamics (cluster size, size distribution and growth rate) in first genotypes of treatment-naïve MSM (2002-2015, n = 3901). Low sequence diversity of first genotypes (0-0.44% mixed base calls) was used as an indication of early-stage infection. Behavioural risk data were obtained from the Montreal rapid testing site and primary HIV-1-infection cohorts. RESULTS Phylogenetic analyses uncovered high proportion of clustering of new MSM infections. Overall, 27, 45, 48, 53 and 57% of first genotypes within one (singleton, n = 1359), 2-4 (n = 692), 5-9 (n = 367), 10-19 (n = 405) and 20+ (n = 1277) cluster size groups were early infections (<0.44% diversity). Thirty viruses within large 20+ clusters disproportionately fuelled the epidemic, representing 13, 25 and 42% of infections, first genotyped in 2004-2007 (n = 1314), 2008-2011 (n = 1356) and 2012-2015 (n = 1033), respectively. Of note, 35, 21 and 14% of MSM belonging to 20+, 2-19 and one (singleton) cluster groups were under 30 years of age, respectively. Half of persons seen at the rapid testing site (2009-2011, n = 1781) were untested in the prior year. Poor testing propensity was associated with fewer reported partnerships. CONCLUSION Addressing the heterogeneity in transmission dynamics among HIV-1-infected MSM populations may help guide testing, treatment and prevention strategies.
Collapse
|
30
|
Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB, Ragonnet-Cronin M, Wertheim JO, Redd AD, German D, Laeyendecker O. Identifying Transmission Clusters with Cluster Picker and HIV-TRACE. AIDS Res Hum Retroviruses 2017; 33:211-218. [PMID: 27824249 DOI: 10.1089/aid.2016.0205] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We compared the behavior of two approaches (Cluster Picker and HIV-TRACE) at varying genetic distances to identify transmission clusters. We used three HIV gp41 sequence datasets originating from the Rakai Community Cohort Study: (1) next-generation sequence (NGS) data from nine linked couples; (2) NGS data from longitudinal sampling of 14 individuals; and (3) Sanger consensus sequences from a cross-sectional dataset (n = 1,022) containing 91 epidemiologically linked heterosexual couples. We calculated the optimal genetic distance threshold to separate linked versus unlinked NGS datasets using a receiver operating curve analysis. We evaluated the number, size, and composition of clusters detected by Cluster Picker and HIV-TRACE at six genetic distance thresholds (1%-5.3%) on all three datasets. We further tested the effect of using all NGS, versus only a single variant for each patient/time point, for datasets (1) and (2). The optimal gp41 genetic distance threshold to distinguish linked and unlinked couples and individuals was 5.3% and 4%, respectively. HIV-TRACE tended to detect larger and fewer clusters, whereas Cluster Picker detected more clusters containing only two sequences. For NGS datasets (1) and (2), HIV-TRACE and Cluster Picker detected all linked pairs at 3% and 4% genetic distances, respectively. However, at 5.3% genetic distance, 20% of couples in dataset (3) did not cluster using either program, and for >1/3 of couples cluster assignment were discordant. We suggest caution in choosing thresholds for clustering analyses in a generalized epidemic.
Collapse
Affiliation(s)
| | | | | | - Mary K. Grabowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Emma B. Hodcroft
- Institute for Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Manon Ragonnet-Cronin
- Institute for Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joel O. Wertheim
- Department of Medicine, University of California, San Diego, California
| | - Andrew D. Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Danielle German
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
31
|
Parczewski M, Leszczyszyn-Pynka M, Witak-Jędra M, Szetela B, Gąsiorowski J, Knysz B, Bociąga-Jasik M, Skwara P, Grzeszczuk A, Jankowska M, Barałkiewicz G, Mozer-Lisewska I, Łojewski W, Kozieł K, Grąbczewska E, Jabłonowska E, Urbańska A. Expanding HIV-1 subtype B transmission networks among men who have sex with men in Poland. PLoS One 2017; 12:e0172473. [PMID: 28234955 PMCID: PMC5325290 DOI: 10.1371/journal.pone.0172473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/05/2017] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Reconstruction of HIV transmission links allows to trace the spread and dynamics of infection and guide epidemiological interventions. The aim of this study was to characterize transmission networks among subtype B infected patients from Poland. MATERIAL AND METHODS Maximum likelihood phylogenenetic trees were inferred from 966 HIV-1 subtype B protease/reverse transcriptase sequences from patients followed up in nine Polish HIV centers. Monophyletic clusters were identified using 3% within-cluster distance and 0.9 bootstrap values. Interregional links for the clusters were investigated and time from infection to onward transmission estimated using Bayesian dated MCMC phylogeny. RESULTS Three hundred twenty one (33.2%) sequences formed 109 clusters, including ten clusters of ≥5 sequences (n = 81, 8.4%). Transmission networks were more common among MSM (234 sequences, 68.6%) compared to other infection routes (injection drug use: 28 (8.2%) and heterosexual transmissions: 59 (17.3%) cases, respectively [OR:3.5 (95%CI:2.6-4.6),p<0.001]. Frequency of clustering increased from 26.92% in 2009 to 50.6% in 2014 [OR:1.18 (95%CI:1.06-1.31),p = 0.0026; slope +2.8%/year] with median time to onward transmission within clusters of 1.38 (IQR:0.59-2.52) years. In multivariate models clustering was associated with both MSM transmission route [OR:2.24 (95%CI:1.38-3.65),p<0.001] and asymptomatic stage of HIV infection [OR:1.93 (95%CI:1.4-2.64),p<0.0001]. Additionally, interregional networks were linked to MSM transmissions [OR:4.7 (95%CI:2.55-8.96),p<0.001]. CONCLUSIONS Reconstruction of the HIV-1 subtype B transmission patterns reveals increasing degree of clustering and existence of interregional networks among Polish MSM. Dated phylogeny confirms the association between onward transmission and recent infections. High transmission dynamics among Polish MSM emphasizes the necessity for active testing and early treatment in this group.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Leszczyszyn-Pynka
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Jacek Gąsiorowski
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Brygida Knysz
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Skwara
- Department of Infectious Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Białystok, Poland
| | - Maria Jankowska
- Department of Infectious Diseases, Medical University in Gdańsk, Gdańsk, Poland
| | | | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Władysław Łojewski
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Katarzyna Kozieł
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Edyta Grąbczewska
- Department of Infectious Diseases and Hepatology Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
32
|
Chaillon A, Essat A, Frange P, Smith DM, Delaugerre C, Barin F, Ghosn J, Pialoux G, Robineau O, Rouzioux C, Goujard C, Meyer L, Chaix ML. Spatiotemporal dynamics of HIV-1 transmission in France (1999-2014) and impact of targeted prevention strategies. Retrovirology 2017; 14:15. [PMID: 28222757 PMCID: PMC5322782 DOI: 10.1186/s12977-017-0339-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Characterizing HIV-1 transmission networks can be important in understanding the evolutionary patterns and geospatial spread of the epidemic. We reconstructed the broad molecular epidemiology of HIV from individuals with primary HIV-1 infection (PHI) enrolled in France in the ANRS PRIMO C06 cohort over 15 years. Results Sociodemographic, geographic, clinical, biological and pol sequence data from 1356 patients were collected between 1999 and 2014. Network analysis was performed to infer genetic relationships, i.e. clusters of transmission, between HIV-1 sequences. Bayesian coalescent-based methods were used to examine the temporal and spatial dynamics of identified clusters from different regions in France. We also evaluated the use of network information to target prevention efforts. Participants were mostly Caucasian (85.9%) and men (86.7%) who reported sex with men (MSM, 71.4%). Overall, 387 individuals (28.5%) were involved in clusters: 156 patients (11.5%) in 78 dyads and 231 participants (17%) in 42 larger clusters (median size: 4, range 3–41). Compared to individuals with single PHI (n = 969), those in clusters were more frequently men (95.9 vs 83%, p < 0.01), MSM (85.8 vs 65.6%, p < 0.01) and infected with CRF02_AG (20.4 vs 13.4%, p < 0.01). Reconstruction of viral migrations across time suggests that Paris area was the major hub of dissemination of both subtype B and CRF02_AG epidemics. By targeting clustering individuals belonging to the identified active transmission network before 2010, 60 of the 143 onward transmissions could have been prevented. Conclusion These analyses support the hypothesis of a recent and rapid rise of CRF02_AG within the French HIV-1 epidemic among MSM. Combined with a short turnaround time for sample processing, targeting prevention efforts based on phylogenetic monitoring may be an efficient way to deliver prevention interventions but would require near real time targeted interventions on the identified index cases and their partners. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0339-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoine Chaillon
- University of California, San Diego, 9500 Gilman Drive, Stein Clinical Research Building #325, La Jolla, CA, 92093-0697, USA.
| | - Asma Essat
- INSERM CESP U1018, University Paris Sud, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Le Kremlin-Bicêtre, France
| | - Pierre Frange
- EA7327, Université Paris Descartes, Paris, France.,Laboratoire de Microbiologie Clinique, Hôpital Necker - Enfants Malades, APHP, Paris, France
| | - Davey M Smith
- University of California, San Diego, 9500 Gilman Drive, Stein Clinical Research Building #325, La Jolla, CA, 92093-0697, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Constance Delaugerre
- INSERM U941, Laboratoire de Virologie, Université Paris Diderot, Hôpital Saint-Louis, AP-HP, CNR VIH associé Primo infection, Paris, France
| | - Francis Barin
- INSERM U966 and National Reference Center for HIV, CHU Bretonneau and Université François Rabelais, Tours, France
| | - Jade Ghosn
- EA7327, Université Paris Descartes, Paris, France.,UF de Thérapeutique en Immuno-Infectiologie, Hôpital Hôtel Dieu, APHP, Paris, France
| | - Gilles Pialoux
- Service des Maladies Infectieuses et Tropicales, Hôpital Tenon, APHP, Paris, France
| | - Olivier Robineau
- Service Universitaire des Maladies infectieuses et du Voyageur, Centre Hospitalier de Tourcoing, Tourcoing, France
| | | | - Cécile Goujard
- INSERM CESP U1018, University Paris Sud, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Le Kremlin-Bicêtre, France.,Service de Médecine interne et Immunologie clinique, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Laurence Meyer
- INSERM CESP U1018, University Paris Sud, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Le Kremlin-Bicêtre, France
| | - Marie-Laure Chaix
- INSERM U941, Laboratoire de Virologie, Université Paris Diderot, Hôpital Saint-Louis, AP-HP, CNR VIH associé Primo infection, Paris, France
| | | |
Collapse
|
33
|
Wertheim JO, Kosakovsky Pond SL, Forgione LA, Mehta SR, Murrell B, Shah S, Smith DM, Scheffler K, Torian LV. Social and Genetic Networks of HIV-1 Transmission in New York City. PLoS Pathog 2017; 13:e1006000. [PMID: 28068413 PMCID: PMC5221827 DOI: 10.1371/journal.ppat.1006000] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Background Sexually transmitted infections spread across contact networks. Partner elicitation and notification are commonly used public health tools to identify, notify, and offer testing to persons linked in these contact networks. For HIV-1, a rapidly evolving pathogen with low per-contact transmission rates, viral genetic sequences are an additional source of data that can be used to infer or refine transmission networks. Methods and Findings The New York City Department of Health and Mental Hygiene interviews individuals newly diagnosed with HIV and elicits names of sexual and injection drug using partners. By law, the Department of Health also receives HIV sequences when these individuals enter healthcare and their physicians order resistance testing. Our study used both HIV sequence and partner naming data from 1342 HIV-infected persons in New York City between 2006 and 2012 to infer and compare sexual/drug-use named partner and genetic transmission networks. Using these networks, we determined a range of genetic distance thresholds suitable for identifying potential transmission partners. In 48% of cases, named partners were infected with genetically closely related viruses, compatible with but not necessarily representing or implying, direct transmission. Partner pairs linked through the genetic similarity of their HIV sequences were also linked by naming in 53% of cases. Persons who reported high-risk heterosexual contact were more likely to name at least one partner with a genetically similar virus than those reporting their risk as injection drug use or men who have sex with men. Conclusions We analyzed an unprecedentedly large and detailed partner tracing and HIV sequence dataset and determined an empirically justified range of genetic distance thresholds for identifying potential transmission partners. We conclude that genetic linkage provides more reliable evidence for identifying potential transmission partners than partner naming, highlighting the importance and complementarity of both epidemiological and molecular genetic surveillance for characterizing regional HIV-1 epidemics. Understanding the path over which viruses such as HIV have been transmitted may be crucial for directing public health resources and guiding policy decisions. Contact tracing of named sexual and injection drug-use partners of people recently diagnosed with HIV is an indispensible tool for reconstructing this transmission network. Viral genetic sequence data—routinely collected by public health agencies—can also be used to infer the dynamics of HIV transmission. We analyzed partner naming and viral genetic sequence data in 1342 people living with HIV in New York City reported to the New York City Department of Health and Mental Hygiene between 2006 and 2012. Genetically linked partners were more likely to be named partners than named partners were to be genetically linked. This finding indicates that genetic sequence data are better than partner naming data for reconstructing this viral transmission network. Importantly, the success rate in naming a genetically linked partner varied by transmission risk category (e.g., men who have sex with men, heterosexuals, and injection drug users). This study validates the use viral genetic sequences in reconstructing these viral transmission networks in a public health surveillance setting.
Collapse
Affiliation(s)
- Joel O. Wertheim
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| | - Sergei L. Kosakovsky Pond
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Lisa A. Forgione
- New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Sanjay R. Mehta
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Ben Murrell
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Sharmila Shah
- New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs Healthcare System San Diego, San Diego, California, United States of America
| | - Konrad Scheffler
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lucia V. Torian
- New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| |
Collapse
|
34
|
Mehta SR, Murrell B, Anderson CM, Kosakovsky Pond SL, Wertheim JO, Young JA, Freitas L, Richman DD, Mathews WC, Scheffler K, Little SJ, Smith DM. Using HIV Sequence and Epidemiologic Data to Assess the Effect of Self-referral Testing for Acute HIV Infection on Incident Diagnoses in San Diego, California. Clin Infect Dis 2016; 63:101-107. [PMID: 27174704 DOI: 10.1093/cid/ciw161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Because recently infected individuals disproportionately contribute to the spread of human immunodeficiency virus (HIV), we evaluated the impact of a primary HIV screening program (the Early Test) implemented in San Diego. METHODS The Early Test program used combined nucleic acid and serology testing to screen for primary infection targeting local high-risk individuals. Epidemiologic, HIV sequence, and geographic data were obtained from the San Diego County Department of Public Health and the Early Test program. Poisson regression analysis was performed to determine whether the Early Test program was temporally and geographically associated with changes in incident HIV diagnoses. Transmission chains were inferred by phylogenetic analysis of sequence data. RESULTS Over time, a decrease in incident HIV diagnoses was observed proportional to the number primary HIV infections diagnosed in each San Diego region (P < .001). Molecular network analyses also showed that transmission chains were more likely to terminate in regions where the program was marketed (P = .002). Although, individuals in these zip codes had infection diagnosed earlier (P = .08), they were not treated earlier (P = .83). CONCLUSIONS These findings suggests that early HIV diagnoses by this primary infection screening program probably contributed to the observed decrease in new HIV diagnoses in San Diego, and they support the expansion and evaluation of similar programs.
Collapse
Affiliation(s)
- Sanjay R Mehta
- Department of Medicine, University of California, San Diego.,Department of Medicine, San Diego Veterans Affairs Medical Center
| | - Ben Murrell
- Department of Medicine, University of California, San Diego
| | | | | | | | - Jason A Young
- Department of Medicine, University of California, San Diego
| | - Lorri Freitas
- Epidemiology and Immunization Services Branch, County Department of Public Health, San Diego
| | - Douglas D Richman
- Department of Medicine, University of California, San Diego.,Department of Medicine, San Diego Veterans Affairs Medical Center
| | | | | | - Susan J Little
- Department of Medicine, University of California, San Diego
| | - Davey M Smith
- Department of Medicine, University of California, San Diego.,Department of Medicine, San Diego Veterans Affairs Medical Center
| |
Collapse
|
35
|
[Human immunodeficiency virus: position of Blood Working Group of the Federal Ministry of Health]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 58:1351-70. [PMID: 26487384 DOI: 10.1007/s00103-015-2255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Human Immunodeficiency Virus (HIV). Transfus Med Hemother 2016; 43:203-22. [PMID: 27403093 PMCID: PMC4924471 DOI: 10.1159/000445852] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
|
37
|
Phylogenetic Investigation of a Statewide HIV-1 Epidemic Reveals Ongoing and Active Transmission Networks Among Men Who Have Sex With Men. J Acquir Immune Defic Syndr 2016; 70:428-35. [PMID: 26258569 DOI: 10.1097/qai.0000000000000786] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Molecular epidemiological evaluation of HIV-1 transmission networks can elucidate behavioral components of transmission that can be targets for intervention. METHODS We combined phylogenetic and statistical approaches using pol sequences from patients diagnosed between 2004 and 2011 at a large HIV center in Rhode Island, following 75% of the state's HIV population. Phylogenetic trees were constructed using maximum likelihood, and putative transmission clusters were evaluated using latent class analyses to determine association of cluster size with underlying demographic/behavioral characteristics. A logistic growth model was used to assess intracluster dynamics over time and predict "active" clusters that were more likely to harbor undiagnosed infections. RESULTS Of the 1166 HIV-1 subtype B sequences, 31% were distributed among 114 statistically supported, monophyletic clusters (range: 2-15 sequences/cluster). Sequences from men who have sex with men (MSM) formed 52% of clusters. Latent class analyses demonstrated that sequences from recently diagnosed (2008-2011) MSM with primary HIV infection (PHI) and other sexually transmitted infections (STIs) were more likely to form larger clusters (odds ratio: 1.62-11.25, P < 0.01). MSM in clusters were more likely to have anonymous partners and meet partners at sex clubs and pornographic stores. Four large clusters with 38 sequences (100% male, 89% MSM) had a high probability of harboring undiagnosed infections and included younger MSM with PHI and STIs. CONCLUSIONS In this first large-scale molecular epidemiological investigation of HIV-1 transmission in New England, sexual networks among recently diagnosed MSM with PHI and concomitant STIs contributed to the ongoing transmission. Characterization of transmission dynamics revealed actively growing clusters, which may be targets for intervention.
Collapse
|
38
|
Esbjörnsson J, Mild M, Audelin A, Fonager J, Skar H, Bruun Jørgensen L, Liitsola K, Björkman P, Bratt G, Gisslén M, Sönnerborg A, Nielsen C, Medstrand P, Albert J. HIV-1 transmission between MSM and heterosexuals, and increasing proportions of circulating recombinant forms in the Nordic Countries. Virus Evol 2016; 2:vew010. [PMID: 27774303 PMCID: PMC4989887 DOI: 10.1093/ve/vew010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increased knowledge about HIV-1 transmission dynamics in different transmission groups and geographical regions is fundamental for assessing and designing prevention efforts against HIV-1 spread. Since the first reported cases of HIV infection during the early 1980s, the HIV-1 epidemic in the Nordic countries has been dominated by HIV-1 subtype B and MSM transmission. HIV-1 pol sequences and clinical data of 51 per cent of all newly diagnosed HIV-1 infections in Sweden, Denmark, and Finland in the period 2000-2012 (N = 3,802) were analysed together with a large reference sequence dataset (N = 4,537) by trend analysis and phylogenetics. Analysis of the eight dominating subtypes and CRFs in the Nordic countries (A, B, C, D, G, CRF01_AE, CRF02_AG, and CRF06_cpx) showed that the subtype B proportion decreased while the CRF proportion increased over the study period. A majority (57 per cent) of the Nordic sequences formed transmission clusters, with evidence of mixing both geographically and between transmission groups. Detailed analyses showed multiple occasions of transmissions from MSM to heterosexuals and that active transmission clusters more often involved single than multiple Nordic countries. The strongest geographical link was between Denmark and Sweden. Finally, Denmark had a larger proportion of heterosexual domestic spread of HIV-1 subtype B (75 per cent) compared with Sweden (49 per cent) and Finland (57 per cent). We describe different HIV-1 transmission patterns between countries and transmission groups in a large geographical region. Our results may have implications for public health interventions in targeting HIV-1 transmission networks and identifying where to introduce such interventions.
Collapse
Affiliation(s)
- Joakim Esbjörnsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- REGA Institute, Katholieke Universiteit, Leuven, Belgium
| | - Mattias Mild
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Anne Audelin
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Helena Skar
- Department of Science and Technology, Linköping University, Campus Norrköping, Norrköping, Sweden
| | - Louise Bruun Jørgensen
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Kirsi Liitsola
- Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Per Björkman
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Göran Bratt
- Department of Clinical Science and Education, Venhälsan, Stockholm South General Hospital, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Sönnerborg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Claus Nielsen
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - SPREAD/ESAR Programme
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- REGA Institute, Katholieke Universiteit, Leuven, Belgium
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Technology, Linköping University, Campus Norrköping, Norrköping, Sweden
- Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Clinical Science and Education, Venhälsan, Stockholm South General Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jan Albert
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Novitsky V, Kühnert D, Moyo S, Widenfelt E, Okui L, Essex M. Phylodynamic analysis of HIV sub-epidemics in Mochudi, Botswana. Epidemics 2015; 13:44-55. [PMID: 26616041 PMCID: PMC4664890 DOI: 10.1016/j.epidem.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022] Open
Abstract
Southern Africa continues to be the epicenter of the HIV/AIDS epidemic. This HIV-1 subtype C epidemic has a predominantly heterosexual mode of virus transmission and high (>15%) HIV prevalence among adults. The epidemiological dynamics of the HIV-1C epidemic in southern Africa are still poorly understood. Here, we aim at a better understanding of HIV transmission dynamics by analyzing HIV-1 subtype C sequences from Mochudi, a peri-urban village in Botswana. HIV-1C env gene sequences (gp120 V1C5) were obtained through enhanced household-based HIV testing and counseling in Mochudi. More than 1200 sequences were generated and phylogenetically distinct sub-epidemics within Mochudi identified. The Bayesian birth-death skyline plot was used to estimate the effective reproductive number, R, and the timing of virus transmission, to classify sub-epidemics as "acute" (those with recent viral transmissions) or "historic" (those without recent viral transmissions). We identified two of the 15 sub-epidemics as "acute." The median estimates of R among the clusters ranged from 0.72 to 1.77. The majority of HIV lineages, 11 out of 15 clusters with 5+ members, appear to have been introduced to Mochudi between 1996 and 2002. The median peak duration of viral transmissions was 7.1 years (range 2.9-9.7 years). The median life span of identified HIV sub-epidemics, i.e., the time between the inferred epidemic origin and its most recent sample, was 13.1 years (range 10.2-22.1 years). Most viral transmissions within the sub-epidemics occurred between 1997 and 2007. The time period during which infected people are infectious appears to have decreased since the introduction of the national ART program in Botswana. Real-time HIV genotyping and breaking down local HIV epidemics into phylogenetically distinct sub-epidemics may help to reveal the structure and dynamics of HIV transmission networks in communities, and aid in the design of targeted interventions for members of the acute sub-epidemics that likely fuel local HIV/AIDS epidemics.
Collapse
Affiliation(s)
| | - Denise Kühnert
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Erik Widenfelt
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lillian Okui
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - M Essex
- Harvard School of Public Health, Boston, MA, USA; Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| |
Collapse
|
40
|
Delgado E, Cuevas MT, Domínguez F, Vega Y, Cabello M, Fernández-García A, Pérez-Losada M, Castro MÁ, Montero V, Sánchez M, Mariño A, Álvarez H, Ordóñez P, Ocampo A, Miralles C, Pérez-Castro S, López-Álvarez MJ, Rodríguez R, Trigo M, Diz-Arén J, Hinojosa C, Bachiller P, Hernáez-Crespo S, Cisterna R, Garduño E, Pérez-Álvarez L, Thomson MM. Phylogeny and Phylogeography of a Recent HIV-1 Subtype F Outbreak among Men Who Have Sex with Men in Spain Deriving from a Cluster with a Wide Geographic Circulation in Western Europe. PLoS One 2015; 10:e0143325. [PMID: 26599410 PMCID: PMC4658047 DOI: 10.1371/journal.pone.0143325] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
We recently reported the rapid expansion of an HIV-1 subtype F cluster among men who have sex with men (MSM) in the region of Galicia, Northwest Spain. Here we update this outbreak, analyze near full-length genomes, determine phylogenetic relationships, and estimate its origin. For this study, we used sequences of HIV-1 protease-reverse transcriptase and env V3 region, and for 17 samples, near full-length genome sequences were obtained. Phylogenetic analyses were performed via maximum likelihood. Locations and times of most recent common ancestors were estimated using Bayesian inference. Among samples analyzed by us, 100 HIV-1 F1 subsubtype infections of monophyletic origin were diagnosed in Spain, including 88 in Galicia and 12 in four other regions. Most viruses (n = 90) grouped in a subcluster (Galician subcluster), while 7 from Valladolid (Central Spain) grouped in another subcluster. At least 94 individuals were sexually-infected males and at least 71 were MSM. Seventeen near full-length genomes were uniformly of F1 subsubtype. Through similarity searches and phylogenetic analyses, we identified 18 viruses from four other Western European countries [Switzerland (n = 8), Belgium (n = 5), France (n = 3), and United Kingdom (n = 2)] and one from Brazil, from samples collected in 2005–2011, which branched within the subtype F cluster, outside of both Spanish subclusters, most of them corresponding to recently infected individuals. The most probable geographic origin and age of the Galician subcluster was Ferrol, Northwest Galicia, around 2007, while the Western European cluster probably emerged in Switzerland around 2002. In conclusion, a recently expanded HIV-1 subtype F cluster, the largest non-subtype B cluster reported in Western Europe, continues to spread among MSM in Spain; this cluster is part of a larger cluster with a wide geographic circulation in diverse Western European countries.
Collapse
Affiliation(s)
- Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco Domínguez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Yolanda Vega
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marina Cabello
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aurora Fernández-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marcos Pérez-Losada
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Vairão, Portugal
| | - María Ángeles Castro
- Department of Internal Medicine, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Mariño
- Infectious Diseases Unit, Department of Internal Medicine, Complejo Hospitalario Universitario Arquitecto Marcide, Ferrol, A Coruña, Spain
| | - Hortensia Álvarez
- Infectious Diseases Unit, Department of Internal Medicine, Complejo Hospitalario Universitario Arquitecto Marcide, Ferrol, A Coruña, Spain
| | - Patricia Ordóñez
- Department of Microbiology, Complejo Hospitalario Universitario Arquitecto Marcide, Ferrol, A Coruña, Spain
| | - Antonio Ocampo
- Department of Internal Medicine, Complejo Hospitalario Universitario de Vigo, Vigo, Pontevedra, Spain
| | - Celia Miralles
- Department of Internal Medicine, Complejo Hospitalario Universitario de Vigo, Vigo, Pontevedra, Spain
| | - Sonia Pérez-Castro
- Department of Microbiology, Complejo Hospitalario Universitario de Vigo, Vigo, Pontevedra, Spain
| | | | - Raúl Rodríguez
- Department of Internal Medicine, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Matilde Trigo
- Department of Microbiology, Complejo Hospitalario Provincial de Pontevedra, Pontevedra, Spain
| | - Julio Diz-Arén
- Department of Internal Medicine, Complejo Hospitalario Provincial de Pontevedra, Pontevedra, Spain
| | - Carmen Hinojosa
- Department of Internal Medicine, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Pablo Bachiller
- Department of Internal Medicine, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Silvia Hernáez-Crespo
- Department of Clinical Microbiology and Infection Control, Hospital Universitario de Basurto, Bilbao, Vizcaya, Spain
| | - Ramón Cisterna
- Department of Clinical Microbiology and Infection Control, Hospital Universitario de Basurto, Bilbao, Vizcaya, Spain
| | - Eugenio Garduño
- Department of Microbiology, Hospital Infanta Cristina, Badajoz, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Bezemer D, Cori A, Ratmann O, van Sighem A, Hermanides HS, Dutilh BE, Gras L, Rodrigues Faria N, van den Hengel R, Duits AJ, Reiss P, de Wolf F, Fraser C. Dispersion of the HIV-1 Epidemic in Men Who Have Sex with Men in the Netherlands: A Combined Mathematical Model and Phylogenetic Analysis. PLoS Med 2015; 12:e1001898; discussion e1001898. [PMID: 26529093 PMCID: PMC4631366 DOI: 10.1371/journal.pmed.1001898] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The HIV-1 subtype B epidemic amongst men who have sex with men (MSM) is resurgent in many countries despite the widespread use of effective combination antiretroviral therapy (cART). In this combined mathematical and phylogenetic study of observational data, we aimed to find out the extent to which the resurgent epidemic is the result of newly introduced strains or of growth of already circulating strains. METHODS AND FINDINGS As of November 2011, the ATHENA observational HIV cohort of all patients in care in the Netherlands since 1996 included HIV-1 subtype B polymerase sequences from 5,852 patients. Patients who were diagnosed between 1981 and 1995 were included in the cohort if they were still alive in 1996. The ten most similar sequences to each ATHENA sequence were selected from the Los Alamos HIV Sequence Database, and a phylogenetic tree was created of a total of 8,320 sequences. Large transmission clusters that included ≥10 ATHENA sequences were selected, with a local support value ≥ 0.9 and median pairwise patristic distance below the fifth percentile of distances in the whole tree. Time-varying reproduction numbers of the large MSM-majority clusters were estimated through mathematical modeling. We identified 106 large transmission clusters, including 3,061 (52%) ATHENA and 652 Los Alamos sequences. Half of the HIV sequences from MSM registered in the cohort in the Netherlands (2,128 of 4,288) were included in 91 large MSM-majority clusters. Strikingly, at least 54 (59%) of these 91 MSM-majority clusters were already circulating before 1996, when cART was introduced, and have persisted to the present. Overall, 1,226 (35%) of the 3,460 diagnoses among MSM since 1996 were found in these 54 long-standing clusters. The reproduction numbers of all large MSM-majority clusters were around the epidemic threshold value of one over the whole study period. A tendency towards higher numbers was visible in recent years, especially in the more recently introduced clusters. The mean age of MSM at diagnosis increased by 0.45 years/year within clusters, but new clusters appeared with lower mean age. Major strengths of this study are the high proportion of HIV-positive MSM with a sequence in this study and the combined application of phylogenetic and modeling approaches. Main limitations are the assumption that the sampled population is representative of the overall HIV-positive population and the assumption that the diagnosis interval distribution is similar between clusters. CONCLUSIONS The resurgent HIV epidemic amongst MSM in the Netherlands is driven by several large, persistent, self-sustaining, and, in many cases, growing sub-epidemics shifting towards new generations of MSM. Many of the sub-epidemics have been present since the early epidemic, to which new sub-epidemics are being added.
Collapse
Affiliation(s)
- Daniela Bezemer
- HIV Monitoring Foundation, Amsterdam, the Netherlands
- * E-mail:
| | - Anne Cori
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Ratmann
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | | | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Luuk Gras
- HIV Monitoring Foundation, Amsterdam, the Netherlands
| | | | | | | | - Peter Reiss
- HIV Monitoring Foundation, Amsterdam, the Netherlands
- Department of Global Health, Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Frank de Wolf
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
42
|
Rutstein SE, Sellers CJ, Ananworanich J, Cohen MS. The HIV treatment cascade in acutely infected people: informing global guidelines. Curr Opin HIV AIDS 2015; 10:395-402. [PMID: 26371460 PMCID: PMC4739850 DOI: 10.1097/coh.0000000000000193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Acute and early HIV (AHI) is a pivotal time during HIV infection, yet there remain major shortfalls in diagnosis, linkage to care, and antiretroviral therapy (ART) initiation during AHI. We introduce an AHI-specific cascade, review recent evidence pertaining to the unique challenges of AHI, and discuss strategies for improving individual and public health outcomes. RECENT FINDINGS Presentation during AHI is common. Expanding use of fourth-generation testing and pooled nucleic acid amplification testing has led to improved AHI detection in resource-wealthy settings. Technologies capable of AHI diagnosis are rare in resource-limited settings; further development of point-of-care devices and utilization of targeted screening is needed. Rapid ART initiation during AHI limits reservoir seeding, preserves immunity, and prevents transmission. Reporting of AHI cascade outcomes is limited, but new evidence suggests that impressive rates of diagnosis, linkage to care, rapid ART initiation, and viral suppression can be achieved. SUMMARY With advancements in AHI diagnostics and strong evidence for the therapeutic and prevention benefits of ART initiated during AHI, improving AHI cascade outcomes is both crucial and feasible. HIV guidelines should recommend diagnostic algorithms capable of detecting AHI and prescribe rapid, universal ART initiation during AHI.
Collapse
Affiliation(s)
- Sarah E. Rutstein
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher J. Sellers
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Slot E, Janssen MP, Marijt-van der Kreek T, Zaaijer HL, van de Laar TJ. Two decades of risk factors and transfusion-transmissible infections in Dutch blood donors. Transfusion 2015; 56:203-14. [PMID: 26355711 DOI: 10.1111/trf.13298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Risk behavior-based donor selection procedures are widely used to mitigate the risk of transfusion-transmissible infections (TTIs), but their effectiveness is disputed in countries with low residual risks of TTIs. STUDY DESIGN AND METHODS In 1995 to 2014, Dutch blood donors infected with hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV), or syphilis were interviewed by trained medical counselors to identify risk factors associated with TTIs. Trends in the prevalence and incidence of TTIs were analyzed using binomial regression models. RESULTS A total of 972 new donors and 381 repeat donors had TTIs. New donors had higher rates of TTIs compared to repeat donors. Although the HBV and HCV prevalence gradually decreased over time, the incidence of all five TTIs remained stable during the past two decades. In new donors the TTIs had the following risk profiles: "blood-blood contact" for HCV, "unprotected sex" for HIV and syphilis, and "country of birth" for HBV and HTLV. In infected repeat donors, sexual risk factors predominated for all TTIs. At posttest counseling, 28% of infected repeat donors admitted to risk factors leading to permanent donor exclusion if revealed during the donor selection procedure (predominantly male-to-male sex and recent diagnosis of syphilis). CONCLUSION The prevalence and incidence of TTIs among Dutch blood donors are six- to 60-fold lower than in the general Dutch population, illustrating the effectiveness of donor selection procedures. However, at least a quarter of infected donors appeared noncompliant to the donor health questionnaire (DHQ), suggesting that DHQs, or the way donor questioning is implemented, can be improved.
Collapse
Affiliation(s)
- Ed Slot
- Department of Blood-Borne Infections, Division Research, Sanquin Blood Supply Foundation, Amsterdam
| | - Mart P Janssen
- Department of Transfusion Technology Assessment, Division Research, Blood Supply Foundation, Amsterdam, the Netherlands.,Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, the Netherlands
| | | | - Hans L Zaaijer
- Department of Blood-Borne Infections, Division Research, Sanquin Blood Supply Foundation, Amsterdam.,Department of Clinical Virology (CINIMA), Academic Medical Centre/University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs J van de Laar
- Department of Blood-Borne Infections, Division Research, Sanquin Blood Supply Foundation, Amsterdam.,Department of Virology, Division Diagnostics, Sanquin Blood Supply Foundation, Amsterdam
| |
Collapse
|
44
|
Liu SH, Erion G, Novitsky V, De Gruttola V. Viral Genetic Linkage Analysis in the Presence of Missing Data. PLoS One 2015; 10:e0135469. [PMID: 26301919 DOI: 10.1371/journal.pone.0135469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
Analyses of viral genetic linkage can provide insight into HIV transmission dynamics and the impact of prevention interventions. For example, such analyses have the potential to determine whether recently-infected individuals have acquired viruses circulating within or outside a given community. In addition, they have the potential to identify characteristics of chronically infected individuals that make their viruses likely to cluster with others circulating within a community. Such clustering can be related to the potential of such individuals to contribute to the spread of the virus, either directly through transmission to their partners or indirectly through further spread of HIV from those partners. Assessment of the extent to which individual (incident or prevalent) viruses are clustered within a community will be biased if only a subset of subjects are observed, especially if that subset is not representative of the entire HIV infected population. To address this concern, we develop a multiple imputation framework in which missing sequences are imputed based on a model for the diversification of viral genomes. The imputation method decreases the bias in clustering that arises from informative missingness. Data from a household survey conducted in a village in Botswana are used to illustrate these methods. We demonstrate that the multiple imputation approach reduces bias in the overall proportion of clustering due to the presence of missing observations.
Collapse
Affiliation(s)
- Shelley H Liu
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Gabriel Erion
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Victor De Gruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering. J Clin Microbiol 2015; 53:2581-92. [PMID: 26041893 DOI: 10.1128/jcm.00756-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838-3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective-the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)-and has the potential to enable the scale up of public health HIV prevention interventions.
Collapse
|
46
|
Chin BS, Shin HS, Kim G, Wagner GA, Gianella S, Smith DM. Short Communication: Increase of HIV-1 K103N Transmitted Drug Resistance and Its Association with Efavirenz Use in South Korea. AIDS Res Hum Retroviruses 2015; 31:603-7. [PMID: 25826122 DOI: 10.1089/aid.2014.0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies reported a relatively low prevalence of transmitted drug resistance (TDR) in South Korea (<5%). A genotypic resistance test was performed on 131 treatment-naive HIV-1-infected individuals from February 2013 to February 2014. Eleven individuals (8.4%) presented TDR, of whom eight had K103N, revealing a significant increase in K103N TDR compared to previous studies (p<0.001). Using phylogenetic analysis, we identified three distinct clustering pairs with genetic relativeness and a total of five independent strains among the eight K103N cases. Our findings suggest that multiple sources of K103N occurred, most likely as a consequence of increased efavirenz use in South Korea.
Collapse
Affiliation(s)
- Bum Sik Chin
- Center for Infectious Diseases, National Medical Center, Seoul, Republic of Korea
| | - Hyoung-Shik Shin
- Center for Infectious Diseases, National Medical Center, Seoul, Republic of Korea
| | - Gayeon Kim
- Center for Infectious Diseases, National Medical Center, Seoul, Republic of Korea
| | - Gabriel A. Wagner
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
47
|
Novitsky V, Moyo S, Lei Q, DeGruttola V, Essex M. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering. AIDS Res Hum Retroviruses 2015; 31:531-42. [PMID: 25560745 DOI: 10.1089/aid.2014.0211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | | | - Quanhong Lei
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Victor DeGruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - M. Essex
- Harvard School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| |
Collapse
|
48
|
Tamalet C, Ravaux I, Moreau J, Brégigeon S, Tourres C, Richet H, Abat C, Colson P. Emergence of clusters of CRF02_AG and B human immunodeficiency viral strains among men having sex with men exhibiting HIV primary infection in southeastern France. J Med Virol 2015; 87:1327-33. [PMID: 25873310 DOI: 10.1002/jmv.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/05/2022]
Abstract
The number of new HIV diagnoses is increasing in the western world and transmission clusters have been recently identified among men having sex with men despite Highly Active Antiretroviral Therapy efficacy. The objective of this study was to assess temporal trends, epidemiological, clinical and virological characteristics of primary HIV infections. A retrospective analysis of 79 patients presenting primary HIV infections from 2005 to 2012 was performed in Marseille University Hospitals, southeastern France. Clinical, epidemiological and immunovirological data including phylogeny based on the polymerase gene were collected. 65 males and 14 females were enrolled. The main transmission route was homosexual contact (60.8%). Patients were mostly infected with subtype B (73.4%) and CRF02_AG (21.5%) HIV-1 strains. An increase in the annual number of HIV seroconversions among new HIV diagnoses from 5% in 2005 to 11.2% in 2012 (P = 0.06) and of the proportion of CRF02_AG HIV strains among primary HIV infections in 2011-2012 as compared to 2005-2010 (P = 0.055) was observed. Phylogenetic analysis revealed four transmission clusters including three transmission clusters among men having sex with men: two large clusters of nine CRF02_AG, six B HIV strains; and one small cluster of three B HIV strains. Clusters involved more frequently men (P = 0.01) belonging to caucasian ethicity (P = 0.05), with a higher HIV RNA load at inclusion (P = 0.03). These data highlight the importance of improving epidemiological surveillance and of implementing suitable prevention strategies to control the spread of HIV transmission among men having sex with men.
Collapse
Affiliation(s)
- Catherine Tamalet
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Isabelle Ravaux
- Mediterranean Institute for Infectious Diseases, Conception Hospital, Infectious Diseases Department, Marseille, France
| | - Jacques Moreau
- Mediterranean Institute for Infectious Diseases, Nord Hospital, Tropical and Infectious Diseases Department, Marseille, France
| | - Sylvie Brégigeon
- Immunohematology Unit, Sainte-Marguerite Hospital, INSERM U912 (SESSTIM), Marseille, France
| | - Christian Tourres
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Hervé Richet
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Cedric Abat
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Philippe Colson
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| |
Collapse
|
49
|
Novitsky V, Moyo S, Lei Q, DeGruttola V, Essex M. Impact of sampling density on the extent of HIV clustering. AIDS Res Hum Retroviruses 2014; 30:1226-35. [PMID: 25275430 PMCID: PMC4250956 DOI: 10.1089/aid.2014.0173] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with broad confidence intervals. HIV clustering increased linearly at sampling density >10%, and was accompanied by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local concentrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ≥10%. Pairwise distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal genotyping density of 10% and sampling density of 50-70% are suggested for HIV-1 V1C5 cluster analysis.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | | | - Quanhong Lei
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Victor DeGruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Myron Essex
- Harvard School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| |
Collapse
|
50
|
Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis. AIDS 2014; 28:2751-62. [PMID: 25493601 DOI: 10.1097/qad.0000000000000494] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Our aim was to review the global disparities of transmitted HIV drug resistance (TDR) in antiretroviral-naive MSM, people who inject drugs (PWID) and heterosexual populations in both high-income and low/middle-income countries. DESIGN/METHODS We undertook a systematic review of the peer-reviewed English literature on TDR (1999-2013). Random-effects meta-analyses were performed to pool TDR prevalence and compare the odds of TDR across at-risk groups. RESULTS A total of 212 studies were included in this review. Areas with greatest TDR prevalence were North America (MSM: 13.7%, PWID: 9.1%, heterosexuals: 10.5%); followed by western Europe (MSM: 11.0%, PWID: 5.7%, heterosexuals: 6.9%) and South America (MSM: 8.3%, PWID: 13.5%, heterosexuals: 7.5%). Our data indicated disproportionately high TDR burdens in MSM in Oceania (Australia 15.5%), eastern Europe/central Asia (10.2%) and east Asia (7.8%). TDR epidemics have stabilized in high-income countries, with a higher prevalence (range 10.9-12.6%) in MSM than in PWID (5.2-8.3%) and heterosexuals (6.4-9.0%) over 1999-2013. In low/middle-income countries, TDR prevalence in all at-risk groups in 2009-2013 almost doubled than that in 2004-2008 (MSM: 7.8 vs. 4.2%, P = 0.011; heterosexuals: 4.1 vs. 2.6%, P < 0.001; PWID: 4.8 vs. 2.4%, P = 0.265, respectively). The risk of TDR infection was significantly greater in MSM than that in heterosexuals and PWID. We observed increasing trends of resistance to non-nucleoside reverse transcriptase and protease inhibitors among MSM. CONCLUSION TDR prevalence is stabilizing in high-income countries, but increasing in low/middle-income countries. This is likely due to the low, but increasing, coverage of antiretroviral therapy in these settings. Transmission of TDR is most prevalent among MSM worldwide.
Collapse
|