1
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
2
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
3
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
4
|
|
5
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
6
|
Kandeel M, Al‐Taher A, Park BK, Kwon H, Al‐Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol 2020; 92:1665-1670. [PMID: 32330296 PMCID: PMC7264540 DOI: 10.1002/jmv.25928] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that causes infection with a potentially fatal outcome. Dendrimers are highly branched molecules that can be added to antiviral preparations to improve their delivery, as well as their intrinsic antiviral activity. Studies on identifying anti-MERS-CoV agents are few. Three types of polyanionic dendrimers comprising the terminal groups sodium carboxylate (generations 1.5, 2.5, 3.5, and 4.5), hydroxyl (generations 2, 3, 4, and 5), and succinamic acid (generations 2, 3, 4, and 5) and polycationic dendrimers containing primary amine (generations 2, 3, 4, and 5) were used to assess their antiviral activity with the MERS-CoV plaque inhibition assay. The hydroxyl polyanionic set showed a 17.36% to 29.75% decrease in MERS-CoV plaque formation. The most potent inhibition of MERS-CoV plaque formation was seen by G(1.5)-16COONa (40.5% inhibition), followed by G(5)-128SA (39.77% inhibition). In contrast, the cationic dendrimers were cytotoxic to Vero cells. Polyanionic dendrimers can be added to antiviral preparations to improve the delivery of antivirals, as well as the intrinsic antiviral activity.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Pharmacology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Abdulla Al‐Taher
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Byoung Kwon Park
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Hyung‐Joo Kwon
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Mohammed Al‐Nazawi
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
7
|
Rodriguez-Izquierdo I, Gasco S, Muñoz-Fernández MA. High Preventive Effect of G2-S16 Anionic Carbosilane Dendrimer against Sexually Transmitted HSV-2 Infection. Molecules 2020; 25:E2965. [PMID: 32605185 PMCID: PMC7412300 DOI: 10.3390/molecules25132965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Anionic carbosilane dendrimers such as G2-S16 are very effective in preventing HSV-2 infection both in vitro and in vivo. We present the main achievements obtained for the G2-S16 dendrimer in vivo, especially related to its efficacy against HSV-2 infection. Moreover, we discuss the mechanisms by which the G2-S16 dendrimer applied vaginally as a topical microbicide has been demonstrated to be safe and harmless for the vaginal microbiome balance, as both conditions present an essential step that has to be overcome during microbicide development. This review points to the marked protective effect of the G2-S16 dendrimer against sexually transmitted HSV-2 infection, supporting its role as a possible microbicide against HSV-2 infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Samanta Gasco
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
| | - Maria Angeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
| |
Collapse
|
8
|
Guerrero-Beltrán C, Garcia-Heredia I, Ceña-Diez R, Rodriguez-Izquierdo I, Serramía MJ, Martinez-Hernandez F, Lluesma-Gomez M, Martinez-Garcia M, Muñoz-Fernández MÁ. Cationic Dendrimer G2-S16 Inhibits Herpes Simplex Type 2 Infection and Protects Mice Vaginal Microbiome. Pharmaceutics 2020; 12:pharmaceutics12060515. [PMID: 32512836 PMCID: PMC7356682 DOI: 10.3390/pharmaceutics12060515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
The G2-S16 polyanionic carbosilane dendrimer is a promising microbicide that inhibits HSV-2 infection in vitro and in vivo in mice models. This G2-S16 dendrimer inhibits HSV-2 infection even in the presence of semen. Murine models, such as BALB/c female mice, are generally used to characterize host-pathogen interactions within the vaginal tract. However, the composition of endogenous vaginal flora remains largely undefined with modern microbiome analyses. It is important to note that the G2-S16 dendrimer does not change healthy mouse vaginal microbiome where Pseudomonas (10.2–79.1%) and Janthinobacterium (0.7–13%) are the more abundant genera. The HSV-2 vaginally infected female mice showed a significant microbiome alteration because an increase of Staphylococcus (up to 98.8%) and Escherichia (30.76%) levels were observed becoming these bacteria the predominant genera. BALB/c female mice vaginally-treated with the G2-S16 dendrimer and infected with the HSV-2 maintained a healthy vaginal microbiome similar to uninfected female mice. Summarizing, the G2-S16 polyanionic carbosilane dendrimer inhibits the HSV-2 infection in the presence of semen and prevents the alteration of mice female vaginal microbiome.
Collapse
Affiliation(s)
- Carlos Guerrero-Beltrán
- Immunology Section, Head Inmuno-Biology Molecular Laboratoy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (C.G.-B.); (R.C.-D.); (I.R.-I.); (M.J.S.)
| | - Inmaculada Garcia-Heredia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, C/San Vicente s/n, 03080 Alicante, Spain; (I.G.-H.); (F.M.-H.); (M.L.-G.)
| | - Rafael Ceña-Diez
- Immunology Section, Head Inmuno-Biology Molecular Laboratoy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (C.G.-B.); (R.C.-D.); (I.R.-I.); (M.J.S.)
| | - Ignacio Rodriguez-Izquierdo
- Immunology Section, Head Inmuno-Biology Molecular Laboratoy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (C.G.-B.); (R.C.-D.); (I.R.-I.); (M.J.S.)
| | - María Jesús Serramía
- Immunology Section, Head Inmuno-Biology Molecular Laboratoy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (C.G.-B.); (R.C.-D.); (I.R.-I.); (M.J.S.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Martinez-Hernandez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, C/San Vicente s/n, 03080 Alicante, Spain; (I.G.-H.); (F.M.-H.); (M.L.-G.)
| | - Mónica Lluesma-Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, C/San Vicente s/n, 03080 Alicante, Spain; (I.G.-H.); (F.M.-H.); (M.L.-G.)
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, C/San Vicente s/n, 03080 Alicante, Spain; (I.G.-H.); (F.M.-H.); (M.L.-G.)
- Correspondence: (M.M.-G.); or (M.Á.M.-F.); Tel.:+34-965-903-853 (M.M.-G.); +34-914-62-4684 (M.Á.M.-F.)
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Head Inmuno-Biology Molecular Laboratoy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (C.G.-B.); (R.C.-D.); (I.R.-I.); (M.J.S.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.-G.); or (M.Á.M.-F.); Tel.:+34-965-903-853 (M.M.-G.); +34-914-62-4684 (M.Á.M.-F.)
| |
Collapse
|
9
|
Gutiérrez-Ulloa C, Peña-González CE, Barrios-Gumiel A, Ceña-Díez R, Serramía-Lobera MJ, Muñoz-Fernández MÁ, Javier de la Mata F, Sánchez-Nieves J, Gómez R. New synthetic procedure for the antiviral sulfonate carbosilane dendrimer G2-S16 and its fluorescein-labelled derivative for biological studies. RSC Adv 2020; 10:20083-20088. [PMID: 35520432 PMCID: PMC9054215 DOI: 10.1039/d0ra03448g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023] Open
Abstract
The anionic carbosilane (CBS) dendrimer with sulfonate groups G2-S16 is a promising compound for the preparation of a microbicide gel to prevent HIV infection. However, until now its synthesis required aggressive conditions. Hence, a reliable synthetic procedure is very important to face GMP conditions and clinical trials. In this study, G2-S16 has been prepared by a new approach that involves the addition of an amine-terminated dendrimer to ethenesulfonyl fluoride (C2H3SO3F, ESF) and then transformation to the sulfonate dendrimer by treatment with a base. This strategy also makes feasible the synthesis of a labelled sulfonate dendrimer (G2-S16-FITC) to be used as a molecular probe for in vivo experiments. Interestingly, G2-S16-FITC enters into human peripheral blood mononuclear cells (PBMCs). Ethenesulfonyl fluoride (ESF) is a useful reagent to prepare sulfonate carbosilane dendrimers with antiviral properties and labelled dendrimers for biological studies.![]()
Collapse
Affiliation(s)
- Carlos Gutiérrez-Ulloa
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| | - Cornelia E. Peña-González
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| | - Andrea Barrios-Gumiel
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| | - Rafael Ceña-Díez
- Networking Research Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
- Spain
- Immunology Section
- Head Immuno-Biology Molecular Laboratory
| | - M. Jesús Serramía-Lobera
- Immunology Section
- Head Immuno-Biology Molecular Laboratory
- Gregorio Marañón University General Hospital (HGUGM)
- Gregorio Marañón Health Research Institute (IiSGM)
- Spanish HIV HGM BioBank
| | - M. Ángeles Muñoz-Fernández
- Networking Research Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
- Spain
- Immunology Section
- Head Immuno-Biology Molecular Laboratory
| | - F. Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| | - Javier Sánchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica
- Universidad de Alcalá (UAH)
- Campus Universitario
- Madrid
- Spain
| |
Collapse
|
10
|
Combination of G2-S16 dendrimer/dapivirine antiretroviral as a new HIV-1 microbicide. Future Med Chem 2019; 11:3005-3013. [PMID: 31710246 DOI: 10.4155/fmc-2018-0539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To research the synergistic activity of G2-S16 dendrimer and dapivirine (DPV) antiretroviral as microbicide candidate to prevent HIV-1 infection. Materials & methods: We assess the toxicity of DPV on cell lines by MTT assay, the anti-HIV-1 activity of G2-S16 and DPV alone or combined at several fixed ratios. Finally, their ability to inhibit the bacterial growth in vitro was assayed. The analysis of combinatorial effects and the effective concentrations were performed with CalcuSyn software. Conclusion: Our results represent the first proof-of-concept study of G2-S16/DPV combination to develop a safe microbicide.
Collapse
|
11
|
Rodríguez-Izquierdo I, Natalia C, García F, Los Ángeles Muñoz-Fernandez MD. G2-S16 sulfonate dendrimer as new therapy for treatment failure in HIV-1 entry inhibitors. Nanomedicine (Lond) 2019; 14:1095-1107. [PMID: 31066644 DOI: 10.2217/nnm-2018-0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Polyanionic carbosilane dendrimers have been shown to be safe and block human immunodeficiency virus type 1 (HIV-1) infection in a multifunctional manner. The aim of this study is to evaluate the appearance of HIV-1 resistance mutations after treatment with polyanionic carbosilane dendrimers. Materials & methods: A resistance mutation assay was performed on MT2 cells, viral quantity was measured by ELISA HIVp24gag and titration was carried out on TZM.bl. Next generation sequencing for HIV-1 Env was performed on G1-S4 or G2-S16 dendrimers supernatants. Results: Data showed the appearance of mutation resistance to G1-S4 treatment, inducing three significant mutations. G2-S16 did not generate any mutations and, furthermore, inhibited G1-S4-resistant viruses. Conclusion: G1-S4 treatment generates significant mutations in HIV-1NL4.3. G2-S16 does not generate resistance-associated mutation, suggesting that G2-S16 is safe as a HIV-entry inhibitor.
Collapse
Affiliation(s)
- Ignacio Rodríguez-Izquierdo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain
| | - Chueca Natalia
- Servicio de Microbiología Hospital Universitario San Cecilio, Instituto de Investigación Sanitaria IBS, Granada Spain
| | - Federico García
- Servicio de Microbiología Hospital Universitario San Cecilio, Instituto de Investigación Sanitaria IBS, Granada Spain
| | - María de Los Ángeles Muñoz-Fernandez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
12
|
Ceña-Diez R, Martin-Moreno A, de la Mata FJ, Gómez-Ramirez R, Muñoz E, Ardoy M, Muñoz-Fernández MÁ. G1-S4 or G2-S16 carbosilane dendrimer in combination with Platycodin D as a promising vaginal microbicide candidate with contraceptive activity. Int J Nanomedicine 2019; 14:2371-2381. [PMID: 31040662 PMCID: PMC6452809 DOI: 10.2147/ijn.s188495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose HIV-1 and herpes simplex virus type-2 (HSV-2) represent two of the most relevant sexually transmitted diseases (STDs) worldwide. Moreover, each year there are >200 million pregnancies worldwide, and more than half are unintended. Continued high rates of unintended pregnancies and spread of HIV-1 and HSV-2 require new approaches to address these problems. G1-S4 and G2-S16 dendrimers emerge as potential candidates for the development of a topical microbicide due to their safety and effectivity against HIV-1 and HSV-2 infection, both in vitro and in vivo. Our goal is to develop a dual topical microbicide to prevent the transmission of STDs and unintended pregnancies. Platycodin D (PD) was selected for its great spermicidal activity, topical application, and biocompatibility. Materials and methods Toxicology and inhibitory profile of G1-S4/PD and G2-S16/PD were evaluated in vitro and in vivo. Spermicidal activity was assessed by a computer-assisted sperm analysis system (CASA). Results G1-S4/PD and G2-S16/PD presented >95% of HIV-1 inhibition in TZM-bl cells and peripheral blood mononuclear cells. CASA assessment determined that 0.25 mM of PD with therapeutic concentrations of G1-S4 or G2-S16 was able to induce 100% immobilization of the sperm in 30 seconds. To evaluate the toxicity in vivo, a vaginal toxicity assay was performed in BALB/c mice. No significant changes or damage to the vaginal epithelium after 7 consecutive days of application were observed. Conclusion Our data indicate that G1-S4/PD and G2-S16/PD combinations are promising candidates to be developed for vaginal microbicides with contraceptive activity.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain, .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain,
| | - Alba Martin-Moreno
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain,
| | - F Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain, .,Organic and Inorganic Chemistry Department, Alcalá University, Alcalá de Henares, Spain
| | - Rafael Gómez-Ramirez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain, .,Organic and Inorganic Chemistry Department, Alcalá University, Alcalá de Henares, Spain
| | - Eduardo Muñoz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédicas de Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - Manuel Ardoy
- Human Reproduction Unit, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain, .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain,
| |
Collapse
|
13
|
Kandi MR, Mohammadnejad J, Shafiee Ardestani M, Zabihollahi R, Soleymani S, Aghasadeghi MR, Baesi K. Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Mol Biol Rep 2018; 46:143-149. [PMID: 30414104 DOI: 10.1007/s11033-018-4455-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
The development of new combinations to empower better protection against HIV infection is particularly important. Anionic polymers can block HIV infection. In the current study, first generation (G1) and second generation (G2) novel water-soluble anionic citrate-PEG-citrate dendrimers were synthesized and characterized with Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and dynamic light scattering (DLS) methods. After the biocompatibility of the G2 dendrimer was determined, its antiviral activity was evaluated. This function may contribute to the peripheral groups of this dendrimer (carboxylate group). In order to measure the inhibitory effect of G2 on HIV infection, both pre-treatment (treated with G2 dendrimer before HIV infection) and co-treatment (simultaneously treated with G2 dendrimer and HIV infection) were used in vitro. The results showed the good synthesis of the G2 dendrimer, and the dendrimer showed antiviral properties (ICC50:0.4 mM) and low toxicity (CC50:0.6 mM) at high concentrations. A strong inhibitory effect was found when the co-treatment approach was used. This study achieved promising results which encourage the use of G2 dendrimers as anti-HIV agents.
Collapse
Affiliation(s)
- Mohammad Reza Kandi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Zabihollahi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran
| | | | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran.
| |
Collapse
|
14
|
Guerrero-Beltrán C, Ceña-Diez R, Sepúlveda-Crespo D, De la Mata J, Gómez R, Leal M, Muñoz-Fernández MA, Jiménez JL. Carbosilane dendrons with fatty acids at the core as a new potential microbicide against HSV-2/HIV-1 co-infection. NANOSCALE 2017; 9:17263-17273. [PMID: 29090302 DOI: 10.1039/c7nr05859d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1) represent the two most frequent sexually transmitted infections (STI) worldwide. Epidemiological studies suggest that HSV-2 increases the risk of HIV-1 acquisition approximately 3-fold mainly due to the clinical and immunological manifestations. In the absence of vaccines against both STI, the development of new preventive strategies has become essential for further studies. We performed the screening of six novel polyanionic carbosilane dendrons to elucidate their potential activity against HSV-2/HIV-1 co-infection and their mechanism of action. These new nanoparticles are carbosilane branched dendrons from first to third generation, with palmitic or hexanoic fatty acids as the core and capped with sulfonate groups, named G1d-STE2Hx, G2d-STE4Hx, G3d-STE8Hx, G1d-STE2Pm, G2d-STE4Pm and G3d-STE8Pm. G3d-STE8Hx and G3d-STE8Pm carbosilane branched dendrons showed high viability. These dendrons also showed a great broad-spectrum antiviral activity, as well as a suitable efficacy against HIV-1 even if the mucosal disruption occurs as a consequence of HSV-2 infection. Our results exert high inhibition against HSV-2 and HIV-1 by blocking the entry of both viruses with the median effective concentration EC50 values in the nanomolar range. Additionally, G3d-STE8Hx and G3d-STE8Pm retained their anti-HSV-2/HIV-1 activity at different pH values. G3d-STE8Hx and G3d-STE8Pm dendrons may be potential candidates as dual-acting microbicides against HSV-2/HIV-1 co-infection.
Collapse
Affiliation(s)
- C Guerrero-Beltrán
- Immunology Section, Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Moreno S, Sepúlveda-Crespo D, de la Mata FJ, Gómez R, Muñoz-Fernández MÁ. New anionic carbosilane dendrons functionalized with a DO3A ligand at the focal point for the prevention of HIV-1 infection. Antiviral Res 2017; 146:54-64. [PMID: 28827122 DOI: 10.1016/j.antiviral.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Abstract
Novel third-generation polyanionic carbosilane dendrons with sulfonate or carboxylate end-groups and functionalized with a DO3A ligand at the focal point, and their corresponding copper complexes, have been prepared as antiviral compounds to prevent HIV-1 infection. The topology enables the compound to have an excellent chelating agent, DO3A, while keeping anionic peripheral groups for a therapeutic action. In this study, the cytotoxicity and anti-HIV-1 abilities of carboxylate- (5) or sulfonate-terminated (6) dendrons containing DO3A and their copper complexes (7 or 8) were evaluated. All compounds showed low cytotoxicity and demonstrated potent and broad-spectrum anti-HIV-1 activity in vitro. We also assessed the mode of antiviral action on the inhibition of HIV-1 through a panel of different in vitro antiviral assays. Our results show that copper-free dendron 6 protects the epithelial monolayer from short-term cell disruption. Copper-free dendrons 5 and 6 exert anti-HIV-1 activity at an early stage of the HIV-1 lifecycle by binding to the envelope glycoproteins of HIV-1 and by interacting with the CD4 cell receptor and blocking the binding of gp120 to CD4, and consequently HIV-1 entry. These findings show that copper-free dendrons 5 and 6 have a high potency against HIV-1 infection, confirming their non-specific ability and suggesting that these compounds deserve further study as potential candidate microbicides to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Silvia Moreno
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain
| | - Daniel Sepúlveda-Crespo
- CIBER-BBN, Madrid, Spain; Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish HIV HGM Biobank, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - F Javier de la Mata
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain.
| | - Ma Ángeles Muñoz-Fernández
- CIBER-BBN, Madrid, Spain; Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish HIV HGM Biobank, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| |
Collapse
|
16
|
Ceña-Diez R, García-Broncano P, Javier de la Mata F, Gómez R, Resino S, Muñoz-Fernández M. G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women. NANOSCALE 2017; 9:9732-9742. [PMID: 28675217 DOI: 10.1039/c7nr03034g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unprotected heterosexual intercourse is the first route for sustaining the global spread of human immunodeficiency virus type 1 (HIV-1), being responsible for 80% of new HIV-1 infections in the world. The presence of inflammation in the female reproductive tract and the presence of semen increases the risk of heterosexual HIV-1 transmission. This state-of-the-art research based on an innovative nanotechnology design was focused on a toxicological study of the limitation of the activity of the novel H2O-soluble anionic carbosilane dendrimer G2-S16 in the adult cervical and foreskin epithelia. The G2-S16 dendrimer did not cause any irritation or inflammation in the vaginal epithelium, proving that this dendrimer is a safe nanocompound for vaginal application to control viral transmission. It was shown that no significant differences were found in mortality, sublethal or teratogenic effects when the zebra fish embryos were treated with G2-S16. In short, G2-S16 seems to be an ideal candidate for the development of a topical microbicide against HIV-1 infection and the next step is try in clinical trials, because of its great in vivo biocompatibility, as well as its ability to halt HIV-1 infection in the presence of semen.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Section Immunology and Laboratorio Inmuno Biología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection. Eur J Pharmacol 2017; 811:155-163. [PMID: 28577966 DOI: 10.1016/j.ejphar.2017.05.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
Amyloid fibrils, which are present in semen, were considered to be a cause of topical vaginal gel ineffectiveness in vivo after microbicides failed as HIV-1 prophylaxis. Therefore, it was necessary to determine whether a dendrimer was suitable for further evaluation in an in vitro model of semen-enhanced viral infection (SEVI). We demonstrated that SEVI in TZM.bl cell cultures increased the infectivity of R5-HIV-1NL(AD8), pTHRO.c and pCH058.c isolates, causing higher IC50 values for two polyanionic carbosilane dendrimers, G2-STE16 and G3-S16. However, both dendrimers maintained protection rates of 90% at non-toxic concentrations. When dendrimers were combined with Tenofovir/Maraviroc (TDF/MVC), the anti-HIV-1 effect remained at a minimum IC50 increase between 1- and 7-fold in the presence of amyloid fibrils. In peripheral blood mononuclear cells (PBMC), IC50 values were slightly influenced by the presence of semen. In brief, dendrimers combined with antiretrovirals showed a synergistic effect. This result plays a crucial role in new microbicide formulations, as it overcomes the negative effects of amyloid fibrils.
Collapse
|
18
|
Brako F, Mahalingam S, Rami-Abraham B, Craig DQM, Edirisinghe M. Application of nanotechnology for the development of microbicides. NANOTECHNOLOGY 2017; 28:052001. [PMID: 28032619 DOI: 10.1088/1361-6528/28/5/052001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
19
|
Sepúlveda-Crespo D, Jiménez JL, Gómez R, De La Mata FJ, Majano PL, Muñoz-Fernández MÁ, Gastaminza P. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:49-58. [PMID: 27562210 DOI: 10.1016/j.nano.2016.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major biomedical problem worldwide. Although new direct antiviral agents (DAAs) have been developed for the treatment of chronic HCV infection, the potential emergence of resistant virus variants and the difficulties to implement their administration worldwide make the development of novel antiviral agents an urgent need. Moreover, no effective vaccine is available against HCV and transmission of the virus still occurs particularly when prophylactic measures are not taken. We used a cell-based system to screen a battery of polyanionic carbosilane dendrimers (PCDs) to identify compounds with antiviral activity against HCV and show that they inhibit effective virus adsorption of major HCV genotypes. Interestingly, one of the PCDs irreversibly destabilized infectious virions. This compound displays additive effect in combination with a clinically relevant DAA, sofosbuvir. Our results support further characterization of these molecules as nanotools for the control of hepatitis C virus spread.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier De La Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro L Majano
- Molecular Biology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
20
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
21
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
22
|
Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and Perspectives on HIV-1 microbicide development. Virology 2016; 497:69-80. [PMID: 27429040 DOI: 10.1016/j.virol.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
The majority of HIV-1 infections occur via sexual intercourse. Women are the most affected by the epidemic, particularly in developing countries, due to their socio-economic dependence on men and the fact that they are often victims of gender based sexual violence. Despite significant efforts that resulted in the reduction of infection rates in some countries, there is still need for effective prevention methods against the virus. One of these methods for preventing sexual transmission in women is the use of microbicides. In this review we provide a summary of the progress made toward the discovery of affordable and effective HIV-1 microbicides and suggest future directions. We show that there is a wide range of compounds that have been proposed as potential microbicides. Although most of them have so far failed to show protection in humans, there are many promising ones currently in pre-clinical studies and in clinical trials.
Collapse
Affiliation(s)
- Kabamba B Alexandre
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa.
| | - Hazel T Mufhandu
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - Grace M London
- Department of Health Free State District Health Services and Health Programs, South Africa
| | - E Chakauya
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - M Khati
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa; University of Cape Town and Groote Schuur Hospital, Department of Medicine, Cape Town, South Africa
| |
Collapse
|
23
|
Ceña-Diez R, García-Broncano P, de la Mata FJ, Gómez R, Muñoz-Fernández MÁ. Efficacy of HIV antiviral polyanionic carbosilane dendrimer G2-S16 in the presence of semen. Int J Nanomedicine 2016; 11:2443-50. [PMID: 27313457 PMCID: PMC4892848 DOI: 10.2147/ijn.s104292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of a safe and effective microbicide to prevent the sexual transmission of human immunodeficiency virus (HIV)-1 is urgently needed. Unfortunately, the majority of microbicides, such as poly(L-lysine)-dendrimers, anionic polymers, or antiretrovirals, have proved inactive or even increased the risk of HIV infection in clinical trials, most probably due to the fact that these compounds failed to prevent semen-exposed HIV infection. We showed that G2-S16 dendrimer exerts anti-HIV-1 activity at an early stage of viral replication, blocking the gp120/CD4/CCR5 interaction and providing a barrier to infection for long periods, confirming its multifactorial and nonspecific ability. Previously, we demonstrated that topical administration of G2-S16 prevents HIV transmission in humanized BLT mice without irritation or vaginal lesions. Here, we demonstrated that G2-S16 is active against mock- and semen-exposed HIV-1 and could be a promising microbicide against HIV infection.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Hospital General Universitario Gregorio Marañon, Majadahonda, Spain; Instituto de Investigación Sanitaria Gregorio Marañon, Majadahonda, Spain; Spanish HIV HGM Biobank, Majadahonda, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Majadahonda, Spain
| | - Pilar García-Broncano
- Hospital General Universitario Gregorio Marañon, Majadahonda, Spain; Instituto de Investigación Sanitaria Gregorio Marañon, Majadahonda, Spain; Spanish HIV HGM Biobank, Majadahonda, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Majadahonda, Spain; Laboratory of Viral Infection and Immunity, National Center of Microbiology, Health Institute of Carlos III, Majadahonda, Spain
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Majadahonda, Spain; Department of Organic Chemistry and Inorganic Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Majadahonda, Spain; Department of Organic Chemistry and Inorganic Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Hospital General Universitario Gregorio Marañon, Majadahonda, Spain; Instituto de Investigación Sanitaria Gregorio Marañon, Majadahonda, Spain; Spanish HIV HGM Biobank, Majadahonda, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Majadahonda, Spain
| |
Collapse
|
24
|
Ceña-Diez R, Vacas-Córdoba E, García-Broncano P, de la Mata FJ, Gómez R, Maly M, Muñoz-Fernández MÁ. Prevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action. Int J Nanomedicine 2016; 11:2147-62. [PMID: 27274240 PMCID: PMC4876947 DOI: 10.2147/ijn.s95301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Topical microbicides to stop sexually transmitted diseases, such as herpes simplex virus type 2 (HSV-2), are urgently needed. The emerging field of nanotechnology offers novel suitable tools for addressing this challenge. Our objective was to study, in vitro and in vivo, antiherpetic effect and antiviral mechanisms of several polyanionic carbosilane dendrimers with anti-HIV-1 activity to establish new potential microbicide candidates against sexually transmitted diseases. Plaque reduction assay on Vero cells proved that G2-S16, G1-S4, and G3-S16 are the dendrimers with the highest inhibitory response against HSV-2 infection. We also demonstrated that our dendrimers inhibit viral infection at the first steps of HSV-2 lifecycle: binding/entry-mediated events. G1-S4 and G3-S16 bind directly on the HSV-2, inactivating it, whereas G2-S16 adheres to host cell-surface proteins. Molecular modeling showed that G1-S4 binds better at binding sites on gB surface than G2-S16. Significantly better binding properties of G1-S4 than G2-S16 were found in an important position for affecting transition of gB trimer from G1-S4 prefusion to final postfusion state and in several positions where G1-S4 could interfere with gB/gH-gL interaction. We demonstrated that these polyanionic carbosilan dendrimers have a synergistic activity with acyclovir and tenofovir against HSV-2, in vitro. Topical vaginal or rectal administration of G1-S4 or G2-S16 prevents HSV-2 transmission in BALB/c mice in values close to 100%. This research represents the first demonstration that transmission of HSV-2 can be blocked by vaginal/rectal application of G1-S4 or G2-S16, providing a step forward to prevent HSV-2 transmission in humans.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pilar García-Broncano
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Viral and Immune Infection Unit Center, Institute of Health Carlos III, Majadahonda Campus, Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain
| | - F J de la Mata
- Organic and Inorganic Chemistry Department, Alcala University, University Campus Alcala de Heneras, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Organic and Inorganic Chemistry Department, Alcala University, University Campus Alcala de Heneras, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marek Maly
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
| | - M Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
25
|
Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine 2016; 11:1281-94. [PMID: 27103798 PMCID: PMC4827595 DOI: 10.2147/ijn.s96352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marek Maly
- Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czech Republic; Laboratory of Applied Mathematics and Physics (LaMFI), University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Francisco J De la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marjorie Pion
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
26
|
Peña-González CE, García-Broncano P, Ottaviani MF, Cangiotti M, Fattori A, Hierro-Oliva M, González-Martín ML, Pérez-Serrano J, Gómez R, Muñoz-Fernández MÁ, Sánchez-Nieves J, de la Mata FJ. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity. Chemistry 2016; 22:2987-99. [PMID: 26875938 DOI: 10.1002/chem.201504262] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/23/2022]
Abstract
Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water-soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place-exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta-potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher in the case of dendronized AuNPs than in dendrons.
Collapse
Affiliation(s)
- Cornelia E Peña-González
- Dpto. de Química Orgánica y Química Inorgánica, Edificio de Farmacia, Universidad de Alcalá, Campus Universitario, Alcalá de Henares (Madrid), Spain
| | - Pilar García-Broncano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Campus Majadahonda, Madrid, Spain.,Laboratorio de InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain
| | - M Francesca Ottaviani
- Department of Earth, Life and Environment Sciences, University of Urbino, Urbino, 61029, Italy
| | - Michela Cangiotti
- Department of Earth, Life and Environment Sciences, University of Urbino, Urbino, 61029, Italy
| | - Alberto Fattori
- Department of Earth, Life and Environment Sciences, University of Urbino, Urbino, 61029, Italy
| | - Margarita Hierro-Oliva
- Departamento de Física Aplicada, Facultad de Ciencias, Campus Universitario, Universidad de Extremadura, Badajoz, Spain.,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - M Luisa González-Martín
- Departamento de Física Aplicada, Facultad de Ciencias, Campus Universitario, Universidad de Extremadura, Badajoz, Spain.,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Edificio de Farmacia, Campus Universitario, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica, Edificio de Farmacia, Universidad de Alcalá, Campus Universitario, Alcalá de Henares (Madrid), Spain.,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Laboratorio de InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain.,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Sánchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Edificio de Farmacia, Universidad de Alcalá, Campus Universitario, Alcalá de Henares (Madrid), Spain. .,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Edificio de Farmacia, Universidad de Alcalá, Campus Universitario, Alcalá de Henares (Madrid), Spain. .,Networking Research Center for Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Ceña-Díez R, Sepúlveda-Crespo D, Maly M, Muñoz-Fernández MA. Dendrimeric based microbicides against sexual transmitted infections associated to heparan sulfate. RSC Adv 2016. [DOI: 10.1039/c6ra06969j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell surface heparan sulfate (HS) represents a common link that many sexually transmitted infections (STIs) require for infection.
Collapse
Affiliation(s)
- Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Marek Maly
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- Switzerland
- Faculty of Science
- J. E. Purkinje University
| | - Mª Angeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| |
Collapse
|
28
|
Lozano-Cruz T, Ortega P, Batanero B, Copa-Patiño JL, Soliveri J, de la Mata FJ, Gómez R. Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Trans 2015; 44:19294-304. [PMID: 26489707 DOI: 10.1039/c5dt02230d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of novel water-soluble ammonium-terminated carbosilane dendrons containing a ferrocene unit at the focal point were synthesized, in order to combine the unique redox activity of ferrocene and the precisely designed structure of the dendrons with the aim to evaluate them as a new class of potential organometallic-based antibacterial compounds. The synthetic route is based on the initial amination of ferrocenecarboxaldehyde with carbosilane dendrons that contain allyl groups on the surface followed by reduction of the in situ prepared imine product, and the subsequent functionalization of the periphery with terminal amine groups by hydrosilylation reactions. Systems quaternized with HCl are soluble and stable in water or other protic solvents. The obtained compounds were spectrally and electrochemically (cyclic voltammetry) characterized, and diffusion-ordered spectroscopy experiments were conducted to determine the size of the dendritic wedges in solution. The antibacterial activity of these compounds was evaluated using Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), which shows that the first and second generations of cationic dendrons are broad spectrum antibacterial agents, i.e. selective and effective in both bacterial strains.
Collapse
Affiliation(s)
- Tania Lozano-Cruz
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Briz V, Sepúlveda-Crespo D, Diniz AR, Borrego P, Rodes B, de la Mata FJ, Gómez R, Taveira N, Muñoz-Fernández MÁ. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. NANOSCALE 2015; 7:14669-14683. [PMID: 26274532 DOI: 10.1039/c5nr03644e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.
Collapse
Affiliation(s)
- Verónica Briz
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Antimisiaris SG, Mourtas S. Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev 2015; 92:123-45. [PMID: 25858666 DOI: 10.1016/j.addr.2015.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
A review of the recent outcomes regarding technologies to prevent vaginal transmission of HIV, mainly by using antiretroviral (ARV) drugs formulated as microbicides. An introduction about the HIV transmission mechanisms by the vaginal route is included, together with the recent challenges faced for development of successful microbicide products. The outcomes of clinical evaluations are mentioned, and the different formulation strategies studied to-date, with the requirements, advantages, disadvantages and limitations of each dosage-form type, are presented. Finally, the recent attempts to apply various types of nanotechnologies in order to develop advanced microbicide-products and overcome existing limitations, are discussed.
Collapse
|
31
|
Moreno S, Ortega P, de la Mata FJ, Ottaviani MF, Cangiotti M, Fattori A, Muñoz-Fernández MÁ, Gómez R. Bifunctional Chelating Agents Based on Ionic Carbosilane Dendrons with DO3A at the Focal Point and Their Complexation Behavior with Copper(II). Inorg Chem 2015; 54:8943-56. [DOI: 10.1021/acs.inorgchem.5b01047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Silvia Moreno
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Paula Ortega
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Francisco Javier de la Mata
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Maria Francesca. Ottaviani
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - Michela Cangiotti
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - Alberto Fattori
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - María Ángeles Muñoz-Fernández
- Laboratorio
de Inmunobiologia Molecular, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Rafael Gómez
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| |
Collapse
|
32
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sepúlveda-Crespo D, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1481-98. [DOI: 10.1016/j.nano.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/20/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022]
|
34
|
Sepúlveda-Crespo D, Sánchez-Rodríguez J, Serramía MJ, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine (Lond) 2015; 10:899-914. [PMID: 25867856 DOI: 10.2217/nnm.14.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To research the synergistic activity by triple combinations of carbosilane dendrimers with tenofovir and maraviroc as topical microbicide. METHODS Cytotoxicity, anti-HIV-1 activity, vaginal irritation and histological analysis of triple combinations were determined. Analysis of combined effects and the median effective concentration were performed using CalcuSyn software. RESULTS Combinations showed a greater broad-spectrum anti-HIV-1 activity than the single-drug, and preserved this activity in acid environment or seminal fluid. The strongest combinations were G2-STE16/G2-S24P/tenofovir, G2-STE16/G2-S16/maraviroc and G2-STE16/tenofovir/maraviroc at 2:2:1, 10:10:1 10:5:1 ratios, respectively. They demonstrated strong synergistic activity profile due to the weighted average combination indices varied between 0.06 and 0.38. No irritation was detected in female BALB/c mice. CONCLUSION The three-drug combination increases their antiviral potency and act synergistically as potential microbicide.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Spanish HIV-HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
HIV-1 antiviral behavior of anionic PPI metallo-dendrimers with EDA core. Eur J Med Chem 2015; 98:139-48. [DOI: 10.1016/j.ejmech.2015.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/21/2022]
|
36
|
Sepúlveda-Crespo D, Serramía MJ, Tager AM, Vrbanac V, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Prevention vaginally of HIV-1 transmission in humanized BLT mice and mode of antiviral action of polyanionic carbosilane dendrimer G2-S16. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1299-308. [PMID: 25959924 DOI: 10.1016/j.nano.2015.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED The development of a safe, effective, and low-priced topical microbicide to prevent HIV-1 sexual transmission is urgently needed. The emerging field of nanotechnology plays an important role in addressing this challenge. We demonstrate that topical vaginal administration of 3% G2-S16 prevents HIV-1JR-CSF transmission in humanized (h)-BLT mice in 84% with no presence of HIV-1 RNA and vaginal lesions. Second-generation polyanionic carbosilane dendrimer G2-S16 with silica core and 16 sulfonate end-groups exerts anti-HIV-1 activity at an early stage of viral replication, blocking the gp120/CD4 interaction, acting on the virus, and inhibiting the cell-to-cell HIV-1 transmission, confirming its multifactorial and non-specific ability. This study represents the first demonstration that transmission of HIV-1 can be efficiently blocked by vaginally applied G2-S16 in h-BLT mice. These findings provide a step forward in the development of G2-S16-based vaginal microbicides to prevent vaginal HIV-1 transmission in humans. FROM THE CLINICAL EDITOR HIV infections remain a significant problem worldwide and the major route of transmission is through sexual activity. In this article, the authors developed an antiviral agent containing polyanionic carbosilane dendrimer with silica core and 16 sulfonate end-groups. When applied vaginally, this was shown to exert anti-HIV protection. These positive findings may offer hope in the fight against the spread of HIV epidemic.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital Gregorio Marañón, IISGM, Spanish HIV-HGM Biobank, CIBER-BBN, Madrid, Spain; Plataforma-Laboratorio, Hospital Gregorio Marañón, IISGM, CIBER-BBN, Madrid, Spain
| | - María Jesús Serramía
- Laboratorio InmunoBiología Molecular, Hospital Gregorio Marañón, IISGM, Spanish HIV-HGM Biobank, CIBER-BBN, Madrid, Spain; Plataforma-Laboratorio, Hospital Gregorio Marañón, IISGM, CIBER-BBN, Madrid, Spain
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Vladimir Vrbanac
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, CIBER-BBN, Madrid, Spain
| | | | - José Luis Jiménez
- Plataforma-Laboratorio, Hospital Gregorio Marañón, IISGM, CIBER-BBN, Madrid, Spain.
| | - M Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital Gregorio Marañón, IISGM, Spanish HIV-HGM Biobank, CIBER-BBN, Madrid, Spain; Plataforma-Laboratorio, Hospital Gregorio Marañón, IISGM, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
37
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
38
|
Vacas-Córdoba E, Galán M, de la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides. Int J Nanomedicine 2014; 9:3591-600. [PMID: 25114528 PMCID: PMC4122581 DOI: 10.2147/ijn.s62673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16) and naphthyl sulfonated (G2-NF16) ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as potential microbicides to block the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| | - Marta Galán
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Francisco J de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Marjorie Pion
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| |
Collapse
|
39
|
Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:921-38. [DOI: 10.1016/j.nano.2014.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
|
40
|
Galán M, Sánchez Rodríguez J, Jiménez JL, Relloso M, Maly M, de la Mata FJ, Muñoz-Fernández MA, Gómez R. Synthesis of new anionic carbosilane dendrimers via thiol–ene chemistry and their antiviral behaviour. Org Biomol Chem 2014; 12:3222-37. [DOI: 10.1039/c4ob00162a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Sepúlveda-Crespo D, Lorente R, Leal M, Gómez R, De la Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:609-18. [PMID: 24135563 DOI: 10.1016/j.nano.2013.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. FROM THE CLINICAL EDITOR This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Raquel Lorente
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco J De la Mata
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - M Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|