1
|
Pan Z, Wu N, Jin C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3080969. [PMID: 37927531 PMCID: PMC10625490 DOI: 10.1155/2023/3080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The intestinal microbiota is an "invisible organ" in the human body, with diverse components and complex interactions. Homeostasis of the intestinal microbiota plays a pivotal role in maintaining the normal physiological process and regulating immune homeostasis. By reviewing more than one hundred related studies concerning HIV infection and intestinal microbiota from 2011 to 2023, we found that human immunodeficiency virus (HIV) infection can induce intestinal microbiota dysbiosis, which not only worsens clinical symptoms but also promotes the occurrence of post-sequelae symptoms and comorbidities. In the early stage of HIV infection, the intestinal mucosal barrier is damaged and a persistent inflammatory response is induced. Mucosal barrier damage and immune injury play a pivotal role in promoting the post-sequelae symptoms caused by HIV infection. This review summarizes the relationship between dysbiosis of the intestinal microbiota and mucosal barrier damage during HIV infection and discusses the potential mechanisms of intestinal barrier damage induced by intestinal microbiota dysbiosis and inflammation. Exploring these molecular mechanisms might provide new ideas to improve the efficacy of HIV treatment and reduce the incidence of post-sequelae symptoms.
Collapse
Affiliation(s)
- Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhong Jin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Tincati C, Mondatore D, Bai F, d'Arminio Monforte A, Marchetti G. Do Combination Antiretroviral Therapy Regimens for HIV Infection Feature Diverse T-Cell Phenotypes and Inflammatory Profiles? Open Forum Infect Dis 2020; 7:ofaa340. [PMID: 33005694 PMCID: PMC7513927 DOI: 10.1093/ofid/ofaa340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Immune abnormalities featuring HIV infection persist despite the use of effective combination antiretroviral therapy (cART) and may be linked to the development of noninfectious comorbidities. The aim of the present narrative, nonsystematic literature review is to understand whether cART regimens account for qualitative differences in immune reconstitution. Many studies have reported differences in T-cell homeostasis, inflammation, coagulation, and microbial translocation parameters across cART classes and in the course of triple vs dual regimens, yet such evidence is conflicting and not consistent. Possible reasons for discrepant results in the literature are the paucity of randomized controlled clinical trials, the relatively short follow-up of observational studies, the lack of clinical validation of the numerous inflammatory biomarkers utilized, and the absence of research on the effects of cART in tissues. We are currently thus unable to establish if cART classes and regimens are truly accountable for the differences observed in immune/inflammation parameters in different clinical settings. Questions still remain as to whether an early introduction of cART, specifically in the acute stage of disease, or newer drugs and novel dual drug regimens are able to significantly impact the quality of immune reconstitution and the risk of disease progression in HIV-infected subjects.
Collapse
Affiliation(s)
- Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Debora Mondatore
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Delayed gastrointestinal-associated lymphoid tissue reconstitution in duodenum compared with rectum in HIV-infected patients initiating antiretroviral therapy. AIDS 2019; 33:2289-2298. [PMID: 31764094 DOI: 10.1097/qad.0000000000002361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed to characterize the impact of antiretroviral therapy (ART) initiation on gastrointestinal-associated lymphoid tissue at various sites along the gastrointestinal site. METHODOLOGY Peripheral blood and duodenal and rectal biopsies were obtained from 12 HIV to 33 treatment-naive HIV participants at baseline and after 9 months ART. Tissue was digested for immunophenotyping. Inflammatory, bacterial translocation and intestinal damage markers were measured in plasma. RESULTS Twenty-six HIV patients completed follow-up. The lowest reconstitution of CD4 T cells and the lowest CD4/CD8 ratio during ART compared with blood were observed in the duodenum with the rectum being either intermediate or approaching blood levels. Regulatory T cells were in higher proportions in the duodenum than the rectum and neither declined significantly during ART. Several correlations with biomarkers of microbial translocation were observed including increases in lipoteichoic acid levels, which reflects Gram-positive bacterial translocation, correlated with increases in %CD4 T cells in the duodenum (Rho 0.773, P = 0.033), and with decreases in duodenal regulatory T-cell populations (Rho -0.40, P = 0.045). CONCLUSION HIV-mediated immunological disruption is greater in the duodenum than rectum and blood before and during ART. Small intestine damage may represent a unique environment for T-cell depletion, which might be attenuated by interaction with Gram-positive bacteria.
Collapse
|
4
|
Weber MD, Andrews E, Prince HA, Sykes C, Rosen EP, Bay C, Shaheen NJ, Madanick RD, Dellon ES, Paris KD, Nelson JAE, Gay CL, Kashuba ADM. Virological and immunological responses to raltegravir and dolutegravir in the gut-associated lymphoid tissue of HIV-infected men and women. Antivir Ther 2018; 23:495-504. [PMID: 29714167 PMCID: PMC7376574 DOI: 10.3851/imp3236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Raltegravir (RTG) and dolutegravir (DTG) have different pharmacokinetic patterns in the gastrointestinal tract. To determine if this results in pharmacodynamic differences, we compared HIV RNA, HIV DNA and immunological markers in gut-associated lymphoid tissue (GALT) of HIV-infected participants receiving RTG or DTG with tenofovir+emtricitabine (TDF/FTC). METHODS GALT specimens from the terminal ileum, splenic flexure and rectum were obtained by colonoscopy at a single time point in 20 adults treated with RTG (n=10) or DTG (n=10) with HIV RNA <50 copies/ml. Flow cytometry, drug concentrations, and HIV RNA and DNA were analysed in tissue. CD4/8+ T-cells were tested for γδ TCR, and markers of T-cell activation and exhaustion. Data are reported as median (Q1-Q3). RESULTS A total of 15 men and 5 women were enrolled. There was no difference in time since HIV diagnosis for those on RTG (9.5 [4-22] years) and DTG (17 [1-24] years; P=0.6), although time on RTG (5.4 [2.3-6.7] years) was greater than DTG (1.0 [0.1-1.5] years; P<0.001). Concentrations of RTG and DTG in rectal tissue were similar to previous reports: median tissue:plasma ratio was 11.25 for RTG and 0.44 for DTG. RNA:DNA ratios were 1.14 (0.18-5.10) for the RTG group and 0.90 (0.30-18.87) for the DTG group (P=0.95). No differences (P≥0.1) between CD4+ and CD8+ T-cell markers were found. CONCLUSIONS RTG produced higher tissue exposures than DTG, but no significant differences in GALT HIV RNA, DNA or most immunological markers were observed. ClinicalTrials.gov NCT02218320.
Collapse
MESH Headings
- Adult
- Anti-HIV Agents/therapeutic use
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Colon, Transverse/drug effects
- Colon, Transverse/pathology
- Colon, Transverse/virology
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Emtricitabine/therapeutic use
- Female
- Gene Expression
- HIV Infections/drug therapy
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/immunology
- Heterocyclic Compounds, 3-Ring/therapeutic use
- Humans
- Ileum/drug effects
- Ileum/pathology
- Ileum/virology
- Immunity, Innate/drug effects
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/pathology
- Lymphoid Tissue/virology
- Male
- Middle Aged
- Oxazines
- Piperazines
- Pyridones
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Raltegravir Potassium/therapeutic use
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Rectum/drug effects
- Rectum/pathology
- Rectum/virology
- Tenofovir/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Michael D Weber
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Elizabeth Andrews
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Heather A Prince
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Elias P Rosen
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Camden Bay
- University of North Carolina Department of Biostatistics, Chapel Hill, NC, USA
| | - Nicholas J Shaheen
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| | - Ryan D Madanick
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| | - Evan S Dellon
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| | - Kristina De Paris
- University of North Carolina Department of Microbiology and Immunology, Chapel Hill, NC, USA
| | - Julie AE Nelson
- University of North Carolina Department of Microbiology and Immunology, Chapel Hill, NC, USA
| | - Cynthia L Gay
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| | - Angela DM Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
- University of North Carolina Department of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The review examines the changing causes and the investigation of infectious and noninfectious diarrhoea in individuals with HIV. RECENT FINDINGS Despite the excellent prognosis conferred by combination antiretroviral therapy, diarrhoea is still common in HIV-positive individuals and is associated with reduced quality of life and survival. There is increasing interest in the importance of Th17 and Th22 T cells in the maintenance of mucosal immunity within the gut, and in the role of the gut microbiome in gut homeostasis. Bacterial causes of HIV-associated diarrhoea continue to be important in resource-poor settings. In other settings, sexually transmitted enteric infections such as lymphogranuloma venereum and shigellosis are increasingly reported in men who have sex with men. HIV increases the risk of such infections and the presence of antimicrobial resistance. Parasitic causes of diarrhoea are more common in individuals with uncontrolled HIV and low CD4 counts. Noninfectious causes of diarrhoea include all classes of antiretroviral therapy, which is under-recognised as a cause of poor treatment adherence. Pancreatic dysfunction is remediable and the diagnostic workup of HIV-related diarrhoea should include faecal elastase measurements. New antimotility agents such as crofelemer may be useful in managing secretory diarrhoea symptoms. SUMMARY Clinicians looking after patients with HIV should ask about diarrhoeal symptoms, which are under-reported and may have a remediable infectious or noninfectious cause.
Collapse
|
6
|
Thompson CG, Gay CL, Kashuba AD. HIV Persistence in Gut-Associated Lymphoid Tissues: Pharmacological Challenges and Opportunities. AIDS Res Hum Retroviruses 2017; 33:513-523. [PMID: 28398774 PMCID: PMC5467125 DOI: 10.1089/aid.2016.0253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An increasing amount of evidence suggests that HIV replication persists in gut-associated lymphoid tissues (GALT), despite treatment with combination antiretroviral therapy (cART). Residual replication in this compartment may propagate infection at other sites in the body and contribute to sustained immune dysregulation and delayed immune recovery. Therefore, it is important to focus efforts on eliminating residual replication at this site. There are several challenges to accomplishing this goal, including low antiretroviral (ARV) exposure at specific tissue locations within GALT, which might be overcome by using the tools of clinical pharmacology. Here, we summarize the evidence for GALT as a site of residual HIV replication, highlight the consequences of persistent infection in tissues, identify current pharmacologic knowledge of drug exposure in GALT, define the challenges that hinder eradication from this site, and propose several avenues for pharmacologic intervention.
Collapse
Affiliation(s)
- Corbin G. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Cynthia L. Gay
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Levast B, Barblu L, Coutu M, Prévost J, Brassard N, Peres A, Stegen C, Madrenas J, Kaufmann DE, Finzi A. HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes. PLoS One 2017; 12:e0174550. [PMID: 28346521 PMCID: PMC5367833 DOI: 10.1371/journal.pone.0174550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 11/26/2022] Open
Abstract
The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy.
Collapse
Affiliation(s)
- Benoît Levast
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Lucie Barblu
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Mathieu Coutu
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Brassard
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Adam Peres
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Camille Stegen
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Joaquín Madrenas
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL, McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 2016; 9:24-37. [PMID: 25921339 PMCID: PMC4626441 DOI: 10.1038/mi.2015.33] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c(+) and CD1c(neg)) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c(+) mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percentage of CD83(+)CD1c(+) mDCs negatively correlated with frequencies of interferon-γ-producing colon CD4(+) and CD8(+) T cells. CD40 expression on CD1c(+) mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and Prevotella stercorea but negatively associated with a number of low prevalence mucosal species, including Rumminococcus bromii. CD1c(+) mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that, during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation.
Collapse
Affiliation(s)
- S M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - E J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C V Kotter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - G L Austin
- Department of Gastroenterology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - S Gianella
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - B Siewe
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - D M Smith
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - A L Landay
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - M C McManus
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - D N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - M D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1166-75. [PMID: 26376928 PMCID: PMC4622110 DOI: 10.1128/cvi.00510-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/28/2022]
Abstract
Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors.
Collapse
|
10
|
Falcon-Neyra L, Benmarzouk-Hidalgo OJ, Madrid L, Noguera-Julian A, Fortuny C, Neth O, López-Cortés L. No differences of immune activation and microbial translocation among HIV-infected children receiving combined antiretroviral therapy or protease inhibitor monotherapy. Medicine (Baltimore) 2015; 94:e521. [PMID: 25789946 PMCID: PMC4602495 DOI: 10.1097/md.0000000000000521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This is a cross-sectional study of 15 aviremic chronic HIV-infected children revealing no differences in immune activation (IA; HLA-DRCD38 CD4 and CD8 T cells, and sCD14) and microbial translocation (MT; lipopolysaccharides (LPS) and 16S rDNA) among HIV-infected patients under combined antiretroviral treatment (cART; n = 10) or ritonavir-boosted protease inhibitor monotherapy (mtPI/rtv; n = 5). In both cases, IA and MT were lower in healthy control children (n = 32). This observational study suggests that ritonavir boosted protease inhibitor monotherapy (mtPI/rtv) is not associated with an increased state of IA or MT as compared with children receiving cART.
Collapse
Affiliation(s)
- Lola Falcon-Neyra
- From the Unidad de Enfermedades Infecciosas e Inmunopatologias, Hospital Infantil Virgen del Rocio, Instituto de Biomedicina de Sevilla (LF-N, LM, ON); Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla (OJB-H, LL-C); ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; and Unitat d'Infectologia, Servei de Pediatria, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain (LM, AN-J, CF)
| | | | | | | | | | | | | |
Collapse
|
11
|
Brandl K, Schnabl B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease? Expert Rev Gastroenterol Hepatol 2015; 9:1069-76. [PMID: 26088524 PMCID: PMC4828034 DOI: 10.1586/17474124.2015.1057122] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in the intestinal microbiota composition contribute to the pathogenesis of many disorders including gastrointestinal and liver diseases. Recent studies have broadened our understanding of the "gut-liver" axis. Dietary changes, other environmental and genetic factors can lead to alterations in the microbiota. Dysbiosis can further disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In this article, the authors dissect the different steps involved in disease pathogenesis to further refine approaches for the medical management of liver diseases. The authors will specifically discuss the role of dysbiosis in inducing intestinal inflammation and increasing intestinal permeability.
Collapse
Affiliation(s)
- Katharina Brandl
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093-0675, 858-822-6853,
| | - Bernd Schnabl
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA,Department of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0063, University of California San Diego, 858-534-9484,
| |
Collapse
|