1
|
Cheng SH, Yang YC, Chen CP, Hsieh HT, Lin YC, Cheng CY, Liao KS, Chu FY, Liu YR. Oncogenic human papillomavirus and anal microbiota in men who have sex with men and are living with HIV in Northern Taiwan. PLoS One 2024; 19:e0304045. [PMID: 39739827 DOI: 10.1371/journal.pone.0304045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 01/02/2025] Open
Abstract
Few studies have demonstrated the interplay between human immunodeficiency virus (HIV), anal human papillomavirus (HPV), and anal microbiota, especially in persons living with HIV who are men who have sex with men. We, therefore, explored these interrelationships in a cohort of persons living with HIV, mainly comprising men who have sex with men. HPV genotyping using a commercial genotyping kit and ThinPrep cytology interpreted by Bethesda systems was performed on samples from 291 patients. Samples were characterized by high-throughput sequencing of dual-index barcoded 16s rRNA (V3-4). Bacterial diversity was diminished in individuals living with HIV with CD4+ T cells <500 cells/μL and anal cytology yielding atypical squamous cells of undetermined significance or higher grades (ASCUS+) with detectable HPV 16/18 compared with those with CD4+ T cells ≥500 cells/μL with ASCUS+ and HPV 16/18 and those with normal anal cytology or inflammation without HPV 16/18. Enterobacteriaceae, Ruminococcus, and Bacilli were significantly abundant in persons living with HIV with CD4+ T cells <500 cells/μL with ASCUS+ and HPV 16/18. Bacterial diversity, composition, and homogeneity of dispersion were different in individuals living with HIV with low CD4+ T cells with ASCUS+ and HPV 16/18, and understanding the interaction among immunocompromised hosts, oncogenic HPVs, and microbiota is essential, and the contribution of these factors to anal precancerous lesions needs more in-depth exploration.
Collapse
Affiliation(s)
- Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ting Hsieh
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Sheng Liao
- Department of Pathology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Marín-Sánchez N, Paredes R, Borgognone A. Exploring potential associations between the human microbiota and reservoir of latent HIV. Retrovirology 2024; 21:21. [PMID: 39614246 PMCID: PMC11605983 DOI: 10.1186/s12977-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The rapid establishment and persistence of latent HIV-1 reservoirs is one of the main obstacles towards an HIV cure. While antiretroviral therapy supresses viral replication, it does not eradicate the latent reservoir of HIV-1-infected cells. Recent evidence suggests that the human microbiome, particularly the gut microbiome, may have the potential to modulate the HIV-1 reservoir. However, literature is limited and the exact mechanisms underlying the role of the microbiome in HIV immunity and potential regulation of the viral reservoir remain poorly understood. RESULTS Here, we review updated knowledge on the associations between the human microbiome and HIV reservoir across different anatomical sites, including the gut, the lungs and blood. We provide an overview of the predominant taxa associated with prominent microbiome changes in the context of HIV infection. Based on the current evidence, we summarize the main study findings, with specific focus on consistent bacterial and related byproduct associations. Specifically, we address the contribution of immune activation and inflammatory signatures on HIV-1 persistence. Furthermore, we discuss possible scenarios by which bacterial-associated inflammatory mediators, related metabolites and host immune signatures may modulate the HIV reservoir size. Finally, we speculate on potential implications of microbiome-based therapeutics for future HIV-1 cure strategies, highlighting challenges and limitations inherent in this research field. CONCLUSIONS Despite recent advances, this review underscores the need for further research to deepen the understanding of the complex interplay between the human microbiome and HIV reservoir. Further integrative multi-omics assessments and functional studies are crucial to test the outlined hypothesis and to identify potential therapeutic targets ultimately able to achieve an effective cure for HIV.
Collapse
Affiliation(s)
- Nel Marín-Sánchez
- IrsiCaixa, Badalona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Catalonia, Spain.
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain.
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
3
|
Aluthge N, Adams S, Davila CA, Gocchi Carrasco NR, Chiou KS, Abadie R, Bennett SJ, Dombrowski K, Major AM, Valentín-Acevedo A, West JT, Wood C, Fernando SC. Gut microbiota profiling in injection drug users with and without HIV-1 infection in Puerto Rico. Front Microbiol 2024; 15:1470037. [PMID: 39697649 PMCID: PMC11652967 DOI: 10.3389/fmicb.2024.1470037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The full extent of interactions between human immunodeficiency virus (HIV) infection, injection drug use, and the human microbiome is unclear. In this study, we examined the microbiomes of HIV-positive and HIV-negative individuals, both drug-injecting and non-injecting, to identify bacterial community changes in response to HIV and drug use. We utilized a well-established cohort of people who inject drugs in Puerto Rico, a region with historically high levels of injection drug use and an HIV incidence rate disproportionately associated with drug use. Methods Using amplicon-based 16S rDNA sequencing, we identified amplicon sequence variants (ASVs) that demonstrated significant variations in the composition of microbial communities based on HIV status and drug use. Results and discussion Our findings indicate that the HIV-positive group exhibited a higher abundance of ASVs belonging to the genera Prevotella, Alloprevotella, Sutterella, Megasphaera, Fusobacterium, and Mitsuokella. However, Bifidobacteria and Lactobacillus ASVs were more abundant in injectors than in non-injectors. We examined the effect of drug use on the gut microbiome in both HIV-infected and non-infected patients, and found that multiple drug use significantly affected the microbial community composition. Analysis of differential of bacterial taxa revealed an enrichment of Bifidobacterium spp., Faecalibacterium spp., and Lactobacillus spp. in the multiple drug-injecting group. However, in the non-injecting group, Parabacteroides spp., Prevotella spp., Paraprevotella spp., Sutterella spp., and Lachnoclostridium spp. The presence of multiple drug-injecting groups was observed to be more prevalent. Our findings provide detailed insight into ASV-level changes in the microbiome in response to HIV and drug use, suggesting that the effect of HIV status and drug injection may have different effects on microbiome composition and in modulating gut bacterial populations.
Collapse
Affiliation(s)
- Nirosh Aluthge
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Seidu Adams
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Carmen A. Davila
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Kathy S. Chiou
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Roberto Abadie
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sydney J. Bennett
- Department of Biological Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Angel M. Major
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Aníbal Valentín-Acevedo
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
5
|
Huang Y, Chen Y, Ma L, Guo H, Chen H, Qiu B, Yao M, Huang W, Zhu L. The toxic effects of Helicobacter pylori and benzo(a)pyrene in inducing atrophic gastritis and gut microbiota dysbiosis in Mongolian gerbils. Food Sci Nutr 2024; 12:7568-7580. [PMID: 39479696 PMCID: PMC11521681 DOI: 10.1002/fsn3.4368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 11/02/2024] Open
Abstract
Food chemical and microbiological contamination are major global food safety issues. This study investigated the combined effects of the food-borne pathogen Helicobacter pylori (H. pylori) and the pollutant benzo(a)pyrene (Bap) on atrophic gastritis and gut microbiota in Mongolian gerbils. The results demonstrated that simultaneous administration of H. pylori and Bap caused more severe weight loss, DNA damage, and gastritis in Mongolian gerbils compared with those exposed to H. pylori or Bap alone. The combination also significantly increased the serum level of proinflammatory cytokines, including IL-1β (p < .05), IL-6 (p < .0001), and TNF-α (p < .05). Additionally, the H. pylori and Bap combination altered the composition of gut microbiota in Mongolian gerbils: the relative abundance of Lactobacillus and Ligilactobacillus at the genus level (p < .05) was significantly reduced while the relative abundance of Allobaculum and Erysipelotrichaceae enhanced (p < .0001, p < .05). Our study revealed that the synergy of H. pylori and Bap can boost the development of atrophic gastritis and lead to gut microbiota dysbiosis in Mongolian gerbils, which provides essential implications for preventing contaminated foods to sustain life and promote well-being.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical UniversityWenzhouChina
| | - Yunxiang Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Lingfei Ma
- Institute for Health PolicyHangzhou Medical CollegeHangzhouChina
| | - Honggang Guo
- Center of Laboratory AnimalHangzhou Medical CollegeHangzhouChina
| | - Hao Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Weixin Huang
- Shaoxing Tongchuang Biotechnology Co., LtdShaoxingChina
| | - Lian Zhu
- School of Basic Medical Sciences and Forensic MedicineHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
6
|
Belda E, Capeau J, Zucker JD, Chatelier EL, Pons N, Oñate FP, Quinquis B, Alili R, Fellahi S, Katlama C, Clément K, Fève B, Jaureguiberry S, Goujard C, Lambotte O, Doré J, Prifti E, Bastard JP. Major depletion of insulin sensitivity-associated taxa in the gut microbiome of persons living with HIV controlled by antiretroviral drugs. BMC Med Genomics 2024; 17:209. [PMID: 39138568 PMCID: PMC11320835 DOI: 10.1186/s12920-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Persons living with HIV (PWH) harbor an altered gut microbiome (higher abundance of Prevotella and lower abundance of Bacillota and Ruminococcus lineages) compared to non-infected individuals. Some of these alterations are linked to sexual preference and others to the HIV infection. The relationship between these lineages and metabolic alterations, often present in aging PWH, has been poorly investigated. METHODS In this study, we compared fecal metagenomes of 25 antiretroviral-treatment (ART)-controlled PWH to three independent control groups of 25 non-infected matched individuals by means of univariate analyses and machine learning methods. Moreover, we used two external datasets to validate predictive models of PWH classification. Next, we searched for associations between clinical and biological metabolic parameters with taxonomic and functional microbiome profiles. Finally, we compare the gut microbiome in 7 PWH after a 17-week ART switch to raltegravir/maraviroc. RESULTS Three major enterotypes (Prevotella, Bacteroides and Ruminococcaceae) were present in all groups. The first Prevotella enterotype was enriched in PWH, with several of characteristic lineages associated with poor metabolic profiles (low HDL and adiponectin, high insulin resistance (HOMA-IR)). Conversely butyrate-producing lineages were markedly depleted in PWH independently of sexual preference and were associated with a better metabolic profile (higher HDL and adiponectin and lower HOMA-IR). Accordingly with the worst metabolic status of PWH, butyrate production and amino-acid degradation modules were associated with high HDL and adiponectin and low HOMA-IR. Random Forest models trained to classify PWH vs. control on taxonomic abundances displayed high generalization performance on two external holdout datasets (ROC AUC of 80-82%). Finally, no significant alterations in microbiome composition were observed after switching to raltegravir/maraviroc. CONCLUSION High resolution metagenomic analyses revealed major differences in the gut microbiome of ART-controlled PWH when compared with three independent matched cohorts of controls. The observed marked insulin resistance could result both from enrichment in Prevotella lineages, and from the depletion in species producing butyrate and involved into amino-acid degradation, which depletion is linked with the HIV infection.
Collapse
Affiliation(s)
- Eugeni Belda
- IRD, Sorbonne Université, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Bondy, F-93143, France.
- Sorbonne Université, INSERM, Nutrition et Obesities, Systemic Approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Jacqueline Capeau
- INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, F-75012, France
| | - Jean-Daniel Zucker
- IRD, Sorbonne Université, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Bondy, F-93143, France
- Sorbonne Université, INSERM, Nutrition et Obesities, Systemic Approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | | | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | - Rohia Alili
- Sorbonne Université, INSERM, Nutrition et Obesities, Systemic Approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Soraya Fellahi
- INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, F-75012, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie, FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, F-93010 cedex, France
| | - Christine Katlama
- INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, AP-HP, Pitié Salpétrière Hospital, Department of Infectious Diseases, Sorbonne Université, Paris, F-75013, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition et Obesities, Systemic Approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bruno Fève
- INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, F-75012, France
| | - Stéphane Jaureguiberry
- AP-HP, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique et Service de Maladies Infectieuses et Transmissibles, Kremlin-Bicêtre, France
| | - Cécile Goujard
- AP-HP, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique et Service de Maladies Infectieuses et Transmissibles, Kremlin-Bicêtre, France
| | - Olivier Lambotte
- AP-HP, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique et Service de Maladies Infectieuses et Transmissibles, Kremlin-Bicêtre, France
- Université Paris Saclay, Inserm, CEA, UMR1184, Le Kremlin Bicêtre, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Edi Prifti
- IRD, Sorbonne Université, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Bondy, F-93143, France
- Sorbonne Université, INSERM, Nutrition et Obesities, Systemic Approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Philippe Bastard
- INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, F-75012, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie, FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, F-93010 cedex, France
| |
Collapse
|
7
|
Liu J, Ding C, Shi Y, Wang Y, Zhang X, Huang L, Fang Q, Shuai C, Gao Y, Wu J. Advances in Mechanism of HIV-1 Immune Reconstitution Failure: Understanding Lymphocyte Subpopulations and Interventions for Immunological Nonresponders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1609-1620. [PMID: 38768409 DOI: 10.4049/jimmunol.2300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.
Collapse
Affiliation(s)
- Jiamin Liu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Shi
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yiyu Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qin Fang
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
8
|
Schinas G, Schinas I, Ntampanlis G, Polyzou E, Gogos C, Akinosoglou K. Bone Disease in HIV: Need for Early Diagnosis and Prevention. Life (Basel) 2024; 14:522. [PMID: 38672792 PMCID: PMC11051575 DOI: 10.3390/life14040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The transformation of HIV into a manageable chronic condition has unveiled new clinical challenges associated with aging-related pathologies, including bone disease. This review explores the intricate relationship between HIV, antiretroviral therapy (ART), and bone disease, highlighting the necessity of early diagnosis and preventative strategies to mitigate the increased risk of osteopenia, osteoporosis, and fractures in people living with HIV (PLWHIV). It synthesizes the current literature to elucidate the multifactorial etiology of bone pathology in this population, that includes direct viral effects, chronic immune activation, ART-associated risks, and the impact of traditional risk factors for bone loss. Through a critical examination of modern diagnostic methods, lifestyle modifications, evidence-based preventive actions, and pharmacological treatments, the necessity for comprehensive management is highlighted, along with recommendations for integrated healthcare approaches vital for achieving optimal patient outcomes. By advocating for a proactive, patient-centered, and multidisciplinary strategy, this review proposes a plan to integrate bone health into standard HIV care through active risk identification, vigilant screening, effective preventive measures, tailored treatments, and informed decision-making, in an effort to ultimately enhance the quality of life for PLWHIV.
Collapse
Affiliation(s)
- Georgios Schinas
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.N.); (E.P.); (C.G.)
| | - Ioannis Schinas
- School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios Ntampanlis
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.N.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.N.); (E.P.); (C.G.)
| | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.N.); (E.P.); (C.G.)
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.N.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
9
|
Rocafort M, Gootenberg DB, Luévano JM, Paer JM, Hayward MR, Bramante JT, Ghebremichael MS, Xu J, Rogers ZH, Munoz AR, Okello S, Kim JH, Sentongo R, Wagubi R, Lankowski A, Maruapula S, Zhao G, Handley SA, Mosepele M, Siedner MJ, Kwon DS. HIV-associated gut microbial alterations are dependent on host and geographic context. Nat Commun 2024; 15:1055. [PMID: 38316748 PMCID: PMC10844288 DOI: 10.1038/s41467-023-44566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
HIV-associated changes in intestinal microbiota are believed to be important drivers of disease progression. However, the majority of studies have focused on populations in high-income countries rather than in developing regions where HIV burden is greatest. To better understand the impact of HIV on fecal microbiota globally, we compare the fecal microbial community of individuals in the U.S., Uganda, and Botswana. We identify significant bacterial taxa alterations with both treated and untreated HIV infection with a high degree of uniqueness in each cohort. HIV-associated taxa alterations are also significantly different between populations that report men who have sex with men (MSM) behavior and non-MSM populations. Additionally, while we find that HIV infection is consistently associated with higher soluble markers of immune activation, most specific bacterial taxa associated with these markers in each region are not shared and none are shared across all three geographic locations in our study. Our findings demonstrate that HIV-associated changes in fecal microbiota are overall distinct among geographical locations and sexual behavior groups, although a small number of taxa shared between pairs of geographic locations warrant further investigation, highlighting the importance of considering host context to fully assess the impact of the gut microbiome on human health and disease.
Collapse
Affiliation(s)
- Muntsa Rocafort
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David B Gootenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Jesús M Luévano
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Jeffrey M Paer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | | | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Zoe H Rogers
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | - Samson Okello
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - June-Ho Kim
- Harvard Medical School, Boston, MA, 02114, USA
| | - Ruth Sentongo
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - Robert Wagubi
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - Alex Lankowski
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Segametsi Maruapula
- Department of Family & Consumer Sciences, University of Botswana, 0022, Gaborone, Botswana
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mosepele Mosepele
- Faculty of Medicine, University of Botswana, 0022, Gaborone, Botswana
| | - Mark J Siedner
- Harvard Medical School, Boston, MA, 02114, USA
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
- Harvard Medical School, Boston, MA, 02114, USA.
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Nguyen AN, Plotkin AL, Odumade OA, De Armas L, Pahwa S, Morrocchi E, Cotugno N, Rossi P, Foster C, Domínguez-Rodríguez S, Tagarro A, Syphurs C, Diray-Arce J, Fatou B, Ozonoff A, Levy O, Palma P, Smolen KK. Effective early antiretroviral therapy in perinatal-HIV infection reduces subsequent plasma inflammatory profile. Pediatr Res 2023; 94:1667-1674. [PMID: 37308683 DOI: 10.1038/s41390-023-02669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The long-term immunologic effects of antiretroviral therapy (ART) in children with perinatally-acquired HIV (PHIV) have not been fully elucidated. Here, we investigated how the timing of ART initiation affects the long-term immune profile of children living with PHIV by measuring immunomodulatory plasma cytokines, chemokines, and adenosine deaminases (ADAs). METHODS 40 PHIV participants initiated ART during infancy. 39 participant samples were available; 30 initiated ART ≤6 months (early-ART treatment); 9 initiated ART >6 months and <2 years (late-ART treatment). We compared plasma cytokine and chemokine concentrations and ADA enzymatic activities between early-ART and late-ART treatment 12.5 years later and measured correlation with clinical covariates. RESULTS Plasma concentrations of 10 cytokines and chemokines (IFNγ, IL-12p70, IL-13, IL-17A, IL-IRA, IL-5, IL-6, and IL-9 as well as CCL7, CXCL10), ADA1, and ADA total were significantly higher in late-ART compared to early-ART treatment. Furthermore, ADA1 was significantly positively correlated with IFNγ, IL-17A, and IL-12p70. Meanwhile, total ADA was positively correlated with IFNγ, IL-13, IL-17A, IL-1RA, IL-6, and IL-12p70 as well as CCL7. CONCLUSIONS Elevation of several pro-inflammatory plasma analytes in late-ART despite 12.5 years of virologic suppression compared to early-ART treatment suggests that early treatment dampens the long-term plasma inflammatory profile in PHIV participants. IMPACT This study examines differences in the plasma cytokine, chemokine, and ADA profiles 12.5 years after treatment between early (≤6months) and late (>6 months and <2 years) antiretroviral therapy (ART) treatment initiation in a cohort of European and UK study participants living with PHIV. Several cytokines and chemokines (e.g., IFNγ, IL-12p70, IL-6, and CXCL10) as well as ADA-1 are elevated in late-ART treatment in comparison to early-ART treatment. Our results suggest that effective ART treatment initiated within 6 months of life in PHIV participants dampens a long-term inflammatory plasma profile as compared to late-ART treatment.
Collapse
Affiliation(s)
- Athena N Nguyen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Alec L Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, USA
| | - Lesley De Armas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elena Morrocchi
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Caroline Foster
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, UK
| | - Sara Domínguez-Rodríguez
- Fundación de Investigación Biomédica Hospital 12 de Octubre. Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre. Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Sofía. Fundación para la Investigación Biomédica e Innovación del Hospital Infanta Sofía y del Henares (FIIB HUIS HHEN). Universidad Europea de Madrid, Madrid, Spain
| | - Caitlin Syphurs
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Kinga K Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Xia C, Zhang X, Harypursat V, Ouyang J, Chen Y. The role of pyroptosis in incomplete immune reconstitution among people living with HIV:Potential therapeutic targets. Pharmacol Res 2023; 197:106969. [PMID: 37866704 DOI: 10.1016/j.phrs.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Globally, HIV infection causes significant morbidity and mortality, and is a major public health problem. Despite the fact that widespread use of antiretroviral therapy (ART) has substantially altered the natural history of HIV infection from originally being a universally lethal disease to now being a chronic medical condition for those taking appropriate treatment, approximately 10-40% of people living with HIV (PLWH) who take effective ART and maintain long-term viral suppression fail to achieve normalization of CD4 + T-cell counts. This phenomenon is referred to as incomplete immune reconstitution or immunological non-response. Although the precise mechanisms underlying this outcome have not been elucidated, recent evidence indicates that excessive pyroptosis may play a crucial role in the development of incomplete immune reconstitution. Pyroptosis is characterized by the formation of pores in the cell membrane, cell rupture, and secretion of intracellular contents and pro-inflammatory cytokines, including IL-1β and IL-18. This excessive inflammation-induced programmed cell death leads to a massive loss of CD4 + T-cells, and inflammatory consequences that may promote and sustain incomplete immune reconstitution. Herein, we review the possible pathways activated in HIV infection by inflammasomes that act as switches of pyroptosis, and the role of pyroptosis in HIV, as well as the relevance of CD4 + T-cells in incomplete immune reconstitution. We also highlight the possible mechanisms of pyroptosis involved in incomplete immune reconstitution, thus paving the way for the development of potential targets for the treatment of incomplete immune reconstitution.
Collapse
Affiliation(s)
- Chao Xia
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Department of Pharmacy, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
12
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Lacunza E, Fink V, Salas ME, Canzoneri R, Naipauer J, Williams S, Coso O, Sued O, Cahn P, Mesri EA, Abba MC. Oral and anal microbiome from HIV-exposed individuals: role of host-associated factors in taxa composition and metabolic pathways. NPJ Biofilms Microbiomes 2023; 9:48. [PMID: 37438354 DOI: 10.1038/s41522-023-00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julián Naipauer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sion Williams
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Coso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Sued
- Pan American Health Organization, Washington, USA
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Enrique A Mesri
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
14
|
Zhou D, Liu X, Lan L, Yu W, Qiu R, Wu J, Teng C, Huang L, Yu C, Zeng Y. Protective effects of Liupao tea against high-fat diet/cold exposure-induced irritable bowel syndrome in rats. Heliyon 2023; 9:e16613. [PMID: 37303551 PMCID: PMC10248097 DOI: 10.1016/j.heliyon.2023.e16613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Liupao tea as a type of dark tea can relieve irritable bowel syndrome by regulating gut microbiota, but the mechanism has not been fully explained. An ultra-high performance liquid chromatography along with quadrupole time of flight tandem mass spectrometry was used to analyze the phytochemicals in Liupao tea. Then, we explored the effects of Liupao tea against IBS. From the results of chemical analysis, we identified catechins, polyphenols, amino acids, caffeine, polysaccharides and other components in Liupao tea. The open-field test, gastrointestinal function-related indexes, histochemical assays, measurements of cytokine and aquaporin 3 (AQP3), and determination of serum metabolites were utilized to monitor the physiological consequences of Liupao tea administration in rats with irritable bowel syndrome. The results showed that Liupao tea had a significant protective effect on irritable bowel syndrome. Liupao tea increased locomotive velocity while reducing interleukin-6, interleukin-1β, and tumor necrosis factor-α levels, as well as gastrointestinal injury. Moreover, Liupao tea increased the AQP3 levels of renal tissues but reduced the AQP3 levels of gastrointestinal tissues. Liupao tea reduced the Firmicutes/Bacteroides ratio and significantly reconstructed the microbial pattern. Liupao tea relieved irritable bowel syndrome by repairing gastrointestinal dysfunction, regulating the secretion of pro-inflammatory cytokines, modulating water metabolism, and restoring microbial homeostasis.
Collapse
Affiliation(s)
- Danshui Zhou
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaotong Liu
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lunli Lan
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Wenxin Yu
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ruijin Qiu
- Wuzhou Institute of Agricultural Sciences, Wuzhou, Guangxi, China
| | - Jianhua Wu
- Wuzhou Institute of Agricultural Sciences, Wuzhou, Guangxi, China
| | - Cuiqin Teng
- Wuzhou Institute of Agricultural Sciences, Wuzhou, Guangxi, China
| | - Liyun Huang
- Wuzhou Institute of Agricultural Sciences, Wuzhou, Guangxi, China
| | - Cuiping Yu
- Wuzhou Institute of Agricultural Sciences, Wuzhou, Guangxi, China
| | - Yu Zeng
- School of Traditional Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Soares Correia R, França M. An Immunological Non-responder Human Immunodeficiency Virus/Hepatitis C Virus Coinfected Patient: Considerations About a Clinical Case. Cureus 2023; 15:e37063. [PMID: 37153299 PMCID: PMC10155756 DOI: 10.7759/cureus.37063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections are two chronic viral infections that share the same mode of transmission, making HIV/HCV coinfection frequent. Highly active antiretroviral therapy (HAART) was a turning point in HIV treatment and has been shown to successfully restore immune function and reduce the frequency of opportunistic infections. Despite a virological response to HAART, a proportion of patients fail to achieve substantial immune recovery, as measured by peripheral CD4 cell counts. Herein, we present the case of a patient with HIV/HCV coinfection who did not achieve successful immune function restoration despite HIV suppression and HCV treatment. Our goal is to promote discussion. Despite considerable advances in the understanding of the impact of HCV on HIV disease progression, there are many individual variables that influence a patient's immune function. In addition, we consider hypogammaglobulinemia as a possible contributor. Further understanding and improvement of immune reconstitution in patients infected with HIV remain an important field of scientific research.
Collapse
|
16
|
Gut microbiota alterations after switching from a protease inhibitor or efavirenz to raltegravir in a randomized, controlled study. AIDS 2023; 37:323-332. [PMID: 36541643 DOI: 10.1097/qad.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To study gut microbiota before and 24 weeks after a single antiretroviral agent switch. DESIGN HIV-positive patients with efavirenz (EFV) or a protease inhibitor (PI)-based antiretroviral therapy (ART) were randomized to switch EFV or PI to raltegravir (RAL group, n = 19) or to continue unchanged ART (EFV/PI group, n = 22). Age and weight-matched HIV-negative participants (n = 10) were included for comparison. METHODS Microbiota was analyzed using 16S rRNA sequencing. Serum intestinal fatty acid-binding protein (I-FABP) and serum lipopolysaccharide-binding protein (LBP) were measured as gut permeability markers. Three-day food diaries were collected. RESULTS At week 24, microbiota diversity (Chao1 index) was higher in RAL than the EFV/PI group (P = 0.014), and RAL group did not differ from HIV-negative participants. In subgroup analysis switching from EFV (P = 0.043), but not from a PI to RAL increased Chao1. At week 24, RAL and EFV/PI group differed in the relative abundance of Prevotella 9 (higher in RAL, P = 0.01), Phascolarctobacterium and Bacteroides (lower in RAL, P = 0.01 and P = 0.03). Dietary intakes did not change during the study and do not explain microbiota differences. Also, I-FABP and LBP remained unchanged. CONCLUSION Here we demonstrate that a single ART agent switch caused microbiota alterations, most importantly, an increase in diversity with EFV to RAL switch. Previously, we reported weight gain, yet reduced inflammation in this cohort. The observed microbiota differences between RAL and EFV/PI groups may be associated with reduced inflammation and/or increase in weight. Further studies are needed to evaluate inflammatory and metabolic capacity of microbiota with ART switches.
Collapse
|
17
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
18
|
Ouyang J, Yan J, Zhou X, Isnard S, Harypursat V, Cui H, Routy JP, Chen Y. Relevance of biomarkers indicating gut damage and microbial translocation in people living with HIV. Front Immunol 2023; 14:1173956. [PMID: 37153621 PMCID: PMC10160480 DOI: 10.3389/fimmu.2023.1173956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The intestinal barrier has the daunting task of allowing nutrient absorption while limiting the entry of microbial products into the systemic circulation. HIV infection disrupts the intestinal barrier and increases intestinal permeability, leading to microbial product translocation. Convergent evidence has shown that gut damage and an enhanced level of microbial translocation contribute to the enhanced immune activation, the risk of non-AIDS comorbidity, and mortality in people living with HIV (PLWH). Gut biopsy procedures are invasive, and are not appropriate or feasible in large populations, even though they are the gold standard for intestinal barrier investigation. Thus, validated biomarkers that measure the degree of intestinal barrier damage and microbial translocation are needed in PLWH. Hematological biomarkers represent an objective indication of specific medical conditions and/or their severity, and should be able to be measured accurately and reproducibly via easily available and standardized blood tests. Several plasma biomarkers of intestinal damage, i.e., intestinal fatty acid-binding protein (I-FABP), zonulin, and regenerating islet-derived protein-3α (REG3α), and biomarkers of microbial translocation, such as lipopolysaccharide (LPS) and (1,3)-β-D-Glucan (BDG) have been used as markers of risk for developing non-AIDS comorbidities in cross sectional analyses and clinical trials, including those aiming at repair of gut damage. In this review, we critically discuss the value of different biomarkers for the estimation of gut permeability levels, paving the way towards developing validated diagnostic and therapeutic strategies to repair gut epithelial damage and to improve overall disease outcomes in PLWH.
Collapse
Affiliation(s)
- Jing Ouyang
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, BC, Canada
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|
19
|
Martinez SS, Stebliankin V, Hernandez J, Martin H, Tamargo J, Rodriguez JB, Teeman C, Johnson A, Seminario L, Campa A, Narasimhan G, Baum MK. Multiomic analysis reveals microbiome-related relationships between cocaine use and metabolites. AIDS 2022; 36:2089-2099. [PMID: 36382433 PMCID: PMC9673179 DOI: 10.1097/qad.0000000000003363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Over 19 million individuals globally have a cocaine use disorder, a significant public health crisis. Cocaine has also been associated with a pro-inflammatory state and recently with imbalances in the intestinal microbiota as compared to nonuse. The objective of this pilot study was to characterize the gut microbiota and plasma metabolites in people with HIV (PWH) who use cocaine compared with those who do not. DESIGN Cross-sectional study. METHODS A pilot study in PWH was conducted on 25 cocaine users and 25 cocaine nonusers from the Miami Adult Studies on HIV cohort. Stool samples and blood plasma were collected. Bacterial composition was characterized using 16S rRNA sequencing. Metabolomics in plasma were determined using gas and liquid chromatography/mass spectrometry. RESULTS The relative abundances of the Lachnopspira genus, Oscillospira genus, Bifidobacterium adolescentis species, and Euryarchaeota phylum were significantly higher in the cocaine- using PWH compared to cocaine-nonusing PWH. Cocaine-use was associated with higher levels of several metabolites: products of dopamine catabolism (3-methoxytyrosine and 3-methoxytyramine sulfate), phenylacetate, benzoate, butyrate, and butyrylglycine. CONCLUSIONS Cocaine use was associated with higher abundances of taxa and metabolites known to be associated with pathogenic states that include gastrointestinal conditions. Understanding key intestinal bacterial functional pathways that are altered due to cocaine use in PWH will provide a better understanding of the relationships between the host intestinal microbiome and potentially provide novel treatments to improve health.
Collapse
Affiliation(s)
| | - Vitalii Stebliankin
- Florida International University, Bioinformatics Research Group (BioRG), Miami, FL, USA
| | - Jacqueline Hernandez
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Haley Martin
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Javier Tamargo
- Florida International University, R. Stempel College of Public Health and Social Work
| | | | - Colby Teeman
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Angelique Johnson
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Leslie Seminario
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Adriana Campa
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Giri Narasimhan
- Florida International University, Bioinformatics Research Group (BioRG), Miami, FL, USA
| | - Marianna K Baum
- Florida International University, R. Stempel College of Public Health and Social Work
| |
Collapse
|
20
|
Lu X, Zhang K, Wang T, Zhang X, Zhang J, Wei H, Gao P, Wang J, Zhang H, Zhang Z. Gut Microbiome Alterations in Men Who Have Sex with Men-a Preliminary Report. Curr HIV Res 2022; 20:CHR-EPUB-126224. [PMID: 36089779 DOI: 10.2174/1570162x20666220908105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies have found that HIV is mainly transmitted through the mucosal surface, and the entrance of early progression of the disease is the rectal and colonic mucosa. So, this paper aimed to explore and analyze the structural differences of gut microbiome between men who have sex with men (MSM) and those who haven't sex with men (Non-MSM), expecting finding novel biological factors that potentially impact transmission and/or disease in MSM population. METHODS We collected a total of 33 stool samples, 16 were MSM and 17 were Non-MSM. The 16S rRNA gene amplification sequencing was used to detect the alteration and structure of the gut microbiome community in two groups. RESULTS The difference in β diversity of gut microbiome of two groups of subjects was statistically significant (P<0.001), indicating that the difference in the structure of the gut microbiome of two groups was statistically significant. Compared with the phylum and genus level of Non-MSM group, the relative abundances of Actinobacteria, Proteobacteria, genera Collinsella, Prevotella, Bifidobacterium and Ralstonia in MSM group were higher (P<0.001, P<0.05, LDA score(log10)>2), and the relative abundance of Bacteroidetes, genera Erysipelotrichaceae incertae sedis, Bilophila, Holdemania, Clostridium XIVb and Bacteroidaceae in MSM group was lower (P<0.01, LDA score(log10)>2). CONCLUSIONS There are some differences in the structure of gut microbiome between MSM group and Non-MSM group. It indicates the differences in behavior and characteristics between MSM and Non-MSM population may be related to the difference in the structure of gut microbiome.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Kexin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tianli Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xueqing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health,c, Hefei, China
| | - Jianghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hongyuan Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Pan Gao
- Qingwei Public Health Service Center of Luyang, Hefei, China
| | - Jun Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hongbo Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
de Lara-Sánchez SS, Sánchez-Pérez AM. Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2022; 89:1173-1191. [DOI: 10.3233/jad-220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In recent years, the existence of the gut-brain axis and the impact of intestinal microbiota on brain function has received much attention. Accumulated evidence has prompted the postulation of the infectious hypothesis underlying or facilitating neurodegenerative diseases, such as Alzheimer’s disease. Under this hypothesis, intervention with probiotics could be useful at a preventive and therapeutic level. Objective: The objective of this systematic review is to reveal a benefit of improved cognitive function following the use of probiotics in individuals with mild cognitive impairment. Methods: We searched bibliographic databases and analyzed in detail the evidence and methodological quality of five recent randomized, double-blind, placebo-controlled clinical trials using the Cochrane Tool and the SIGN checklist. Results: Overall, and with satisfactory methodological quality, the studies evaluated support the use of probiotics as a weapon to slow the progression of cognitive decline in subjects with mild cognitive impairment. The literature review also indicates that maximum benefit of probiotics is found in subjects with incipient cognitive dysfunction and has no effect in those with advanced disease or absence of disease. Conclusion: These results support the intervention with probiotics, especially as a preventive approach. However, caution is required in the interpretation of the results as microbiota has not been evaluated in all studies, and further large-scale research with a prolonged study period is necessary to ensure the translatability of the results into real practice.
Collapse
Affiliation(s)
| | - Ana María Sánchez-Pérez
- Faculty of Health Sciences, University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
- Institute of Advances Materials (INAM), University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
| |
Collapse
|
22
|
Gosalbes MJ, Jimenéz-Hernandéz N, Moreno E, Artacho A, Pons X, Ruíz-Pérez S, Navia B, Estrada V, Manzano M, Talavera-Rodriguez A, Madrid N, Vallejo A, Luna L, Pérez-Molina JA, Moreno S, Serrano-Villar S. Interactions among the mycobiome, bacteriome, inflammation, and diet in people living with HIV. Gut Microbes 2022; 14:2089002. [PMID: 35748016 PMCID: PMC9235884 DOI: 10.1080/19490976.2022.2089002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the intestinal microbiome seems a major driver of persistent immune defects in people with HIV (PWH), little is known about its fungal component, the mycobiome. We assessed the inter-kingdom mycobiome-bacteriome interactions, the impact of diet, and the association with the innate and adaptive immunity in PWH on antiretroviral therapy. We included 24 PWH individuals and 12 healthy controls. We sequenced the Internal Transcribed Spacer 2 amplicons, determined amplicon sequence variants, measured biomarkers of the innate and adaptive immunity in blood and relations with diet. Compared to healthy controls, PWH subjects exhibited a distinct and richer mycobiome and an enrichment for Debaryomyces hansenii, Candida albicans, and Candida parapsilosis. In PWH, Candida and Pichia species were strongly correlated with several bacterial genera, including Faecalibacterium genus. Regarding the links between the mycobiome and systemic immunology, we found a positive correlation between Candida species and the levels of proinflammatory cytokines (sTNF-R2 and IL-17), interleukin 22 (a cytokine implicated in the regulation of mucosal immunity), and CD8+ T cell counts. This suggests an important role of the yeasts in systemic innate and adaptive immune responses. Finally, we identified inter-kingdom interactions implicated in fiber degradation, short-chain fatty acid production, and lipid metabolism, and an effect of vegetable and fiber intake on the mycobiome. Therefore, despite the great differences in abundance and diversity between the bacterial and fungal communities of the gut, we defined the changes associated with HIV, determined several different inter-kingdom associations, and found links between the mycobiome, nutrient metabolism, and systemic immunity.
Collapse
Affiliation(s)
- María José Gosalbes
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain,CONTACT María José Gosalbes Genomics and Health Area, FISABIO-Salud Pública46020Valencia, Spain
| | - Nuria Jimenéz-Hernandéz
- CIBER de Epidemiología y Salud Pública, Madrid, Spain,Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Elena Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Artacho
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Xavier Pons
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Beatriz Navia
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Vicente Estrada
- CIBER de Enfermedades Infecciosas, Madrid, Spain,HIV Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Talavera-Rodriguez
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - José A. Pérez-Molina
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain,CIBER de Enfermedades Infecciosas, Madrid, Spain,Sergio Serrano-Villar Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
23
|
Brauckmann V, Nambiar S, Potthoff A, Höxtermann S, Wach J, Kayser A, Tiemann C, Schuppe AK, Brockmeyer NH, Skaletz-Rorowski A. Influence of dietary supplementation of short-chain fatty acid sodium propionate in people living with HIV (PLHIV). J Eur Acad Dermatol Venereol 2022; 36:881-889. [PMID: 35176190 DOI: 10.1111/jdv.18006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-AIDS associated chronic diseases in HIV+ patients have been on the rise since the advent of antiretroviral therapy. Especially cardiovascular diseases and disruption in the gastrointestinal tract have limited health-related quality of life (QoL). Several of those complications have been associated with chronic systemic inflammation. Short chain fatty-acids (SCFA), with propionate as one of the major compounds, have been described as an important link between gut microbiota and the immune system, defining the pro- and the anti-inflammatory milieu through direct and indirect regulation of T-cell homeostasis. The effects of dietary supplementation of sodium propionate (SP) in people living with HIV (PLHIV) have not yet been investigated prior to this study. OBJECTIVES To investigate the impact of SP uptake among PLHIV and its relevance to improve QoL, the study aimed to investigate metabolic, immunological, microbiome and patient-reported QoL related changes post SP-supplementation with follow up. METHODS: A prospective, non-randomized, controlled, monocentric interventional study was conducted in WIR, Center for Sexual Health and Medicine, in Bochum, Germany. 32 HIV+ patients with unaltered ART-regimen in the last three months were included. Participants were given SP for a duration of 12 weeks in the form of daily oral supplementation and were additionally followed-up for another 12 weeks. RESULTS The supplementation of SP was well tolerated. We found an improvement in lipid profiles and long-term blood glucose levels. A decrease in pro-inflammatory cytokines and a depletion of effector T-Cells was observed. Regulatory T-Cells and IL-10 decreased. Furthermore, changes in taxonomic composition of the microbiome during follow-up were observed and improvement of items of self-reported life-quality assessment. CONCLUSION: Taken together, the beneficial impact of SP in PLHIV reflects its potential in improving metabolic parameters and modulating pro-inflammatory immune responses. Thus possibly reducing the risk of cardiovascular disorders and facilitating long-term improvement of the gut flora.
Collapse
Affiliation(s)
- Vesta Brauckmann
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Nambiar
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Potthoff
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Höxtermann
- Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - J Wach
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Public Health Department Bochum, Bochum, Germany
| | - A Kayser
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Aidshilfe Bochum (Aids Service Organization Bochum) e.V, Bochum, Germany
| | - C Tiemann
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - A K Schuppe
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - N H Brockmeyer
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Skaletz-Rorowski
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| |
Collapse
|
24
|
Kortekangas E, Fan YM, Chaima D, Lehto KM, Malamba-Banda C, Matchado A, Chingwanda C, Liu Z, Ashorn U, Cheung YB, Dewey KG, Maleta K, Ashorn P. Associations between Gut Microbiota and Intestinal Inflammation, Permeability and Damage in Young Malawian Children. J Trop Pediatr 2022; 68:6527323. [PMID: 35149871 PMCID: PMC8846364 DOI: 10.1093/tropej/fmac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is common in low- and middle-income countries and associated with childhood undernutrition. The composition of gut microbiota has been implicated in the pathogenesis of EED. Our aim was to assess the associations between gut microbiota and EED biomarkers in rural Malawian children. We hypothesized that there would be an inverse association between microbiota maturity and diversity and fecal concentrations of EED biomarkers. METHODS We used data from fecal samples collected at 6, 18 and 30 months from 611 children who were followed up during a nutrition intervention trial. The primary time point for analysis was 18 months. Microbiota data were obtained through 16S rRNA sequencing and variables included microbiota maturity and diversity, phylogenetic dissimilarity and relative abundances of individual taxa. EED biomarkers included calprotectin (marker of inflammation), alpha-1 antitrypsin (intestinal permeability) and REG1B (intestinal damage). RESULTS There was an inverse association between microbiota maturity and diversity and fecal concentrations of all 3 EED biomarkers at 18 months (p≤0.001). The results were similar at 30 months, while at 6 months inverse associations were found only with calprotectin and alpha-1 antitrypsin concentrations. At 18 months, EED biomarkers were not associated with phylogenetic dissimilarity, but at 6 and 30 months several associations were observed. Individual taxa predicting EED biomarker concentrations at 18 months included several Bifidobacterium and Enterobacteriaceae taxa as well as potentially displaced oral taxa. CONCLUSIONS Our findings support the hypothesis of an inverse association between microbiota maturity and diversity and EED in rural Malawian children.
Collapse
Affiliation(s)
- Emma Kortekangas
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland,Correspondence: Emma Kortekangas, Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Global Health, Tampere University, Arvo Ylpön katu 34, Arvo building, Tampere 33014, Finland. Tel: +358-3-355-111. Fax +358-3-213-4473. E-mail <>
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - David Chaima
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kirsi-Maarit Lehto
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Chikondi Malamba-Banda
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Andrew Matchado
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi,Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Chilungamo Chingwanda
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Zhifei Liu
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Ulla Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yin Bun Cheung
- Program in Health Services & Systems Research and Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kathryn G Dewey
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Kenneth Maleta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Per Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland,Department of Pediatrics, Tampere University Hospital, Tampere 33520, Finland
| |
Collapse
|
25
|
Reno TA, Tarnus L, Tracy R, Landay AL, Sereti I, Apetrei C, Pandrea I. The Youngbloods. Get Together. Hypercoagulation, Complement, and NET Formation in HIV/SIV Pathogenesis. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.795373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been reported to be associated with disease progression in persons with HIV (PWH) since the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy (ART), despite complete viral suppression and increases their susceptibility to serious non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss. Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections (CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized by elevated coagulation biomarkers, including D-dimer and tissue factor, which can accurately identify patients at risk for thromboembolic events and death. Coagulation biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ damage. Meanwhile, the complement system is also involved in the pathogenesis of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs) formation that contribute to the elimination of viral particles and infected CD4+ T-cells. However, as SIV infection progresses, generation of NETs can become excessive, fueling IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events, contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting new pathways that can fuel IA/INFL such as hypercoagulation, complement activation and excessive formation of NETs might be beneficial for PWH and should be considered and evaluated.
Collapse
|
26
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
27
|
Ding X, Zhou J, Chai Y, Yan Z, Liu X, Dong Y, Mei X, Jiang Y, Lei H. A metagenomic study of the gut microbiome in PTB'S disease. Microbes Infect 2021; 24:104893. [PMID: 34710620 DOI: 10.1016/j.micinf.2021.104893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is an abundant link between the gut microbiota and human health and it plays a critical role in the clinic. It is recognized that microbial dysregulation contributes to the pathogenesis of tuberculosis (TB), but the underlying mechanisms remain unclear. In this study, we investigated the association of gut microbiome composition with TB as well as its possible roles in the development of this disease. METHODS Fecal samples were collected from 10 TB patients and 20 healthy control samples. DNA extracted from fecal samples was subjected to 16S rDNA gene sequencing analysis on the Illumina MiSeq platform. RESULTS Compared with healthy control samples, the gut microbiome of patients with TB was characterized by the decreased Alpha diversity. Perhaps, the decrease of microbial diversity which results in microbial dysregulation is the reason for clinical patients with more symptoms. The PTB group showed the most unique microbiota by higher abundance of Bifidobacteriaceae, Bifidobacteriales, Coriobacteriaceae, Coriobacteriales, Actinobacteria, Caulobacteraceae, Phyllobacteriaceae, Rhizobiales, Burkholderiaceae, Burkholderiaceae. Inflammatory status in PTB patients may be associated with the increased abundance of Clostridia and decreased abundance of Prevotella. We found that the abundance of Solobacterium and Actinobacteria was higher in the patients. There were 4 significant differences (p<0.05) in the two groups which belonged to four metabolic categories, including endocytosis, phosphotransferase system (PTS), toluene degradation, and amoebiasis. CONCLUSION We applied the approach of metagenomic sequencing to characterize the features of gut microbiota in PTB patients. The present study provided a detailed analysis of the characterization of the gut microbiota in patients based on the clinic. According to the metagenome analysis, our results indicated that the gut microbiota in PTB patients was significantly different from healthy control samples as characterized by the bacteria and metabolic pathway. The richness of the gut microbiota in patients was revealed. It was hypothesized that the above-mentioned changes of the gut microbiota could exert an impact on the development of PTB through the downstream regulation of the immune status of the host by way of the gut-lung axis.
Collapse
Affiliation(s)
- Xiudong Ding
- 8th Medical Center of PLA General Hospital, China
| | | | - Yinghui Chai
- 8th Medical Center of PLA General Hospital, China
| | - Zengkui Yan
- 8th Medical Center of PLA General Hospital, China
| | - Xin Liu
- 8th Medical Center of PLA General Hospital, China
| | - Yueming Dong
- 8th Medical Center of PLA General Hospital, China
| | - Xue Mei
- 8th Medical Center of PLA General Hospital, China
| | - Ying Jiang
- 8th Medical Center of PLA General Hospital, China.
| | - Hong Lei
- 8th Medical Center of PLA General Hospital, China.
| |
Collapse
|
28
|
Ishizaka A, Koga M, Mizutani T, Parbie PK, Prawisuda D, Yusa N, Sedohara A, Kikuchi T, Ikeuchi K, Adachi E, Koibuchi T, Furukawa Y, Tojo A, Imoto S, Suzuki Y, Tsutsumi T, Kiyono H, Matano T, Yotsuyanagi H. Unique Gut Microbiome in HIV Patients on Antiretroviral Therapy (ART) Suggests Association with Chronic Inflammation. Microbiol Spectr 2021; 9:e0070821. [PMID: 34378948 PMCID: PMC8552706 DOI: 10.1128/spectrum.00708-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation is a hallmark of human immunodeficiency virus (HIV) infection and a risk factor for the development and progression of age-related comorbidities. Although HIV-associated gut dysbiosis has been suggested to be involved in sustained chronic inflammation, there remains a limited understanding of the association between gut dysbiosis and chronic inflammation during HIV infection. Here, we investigated compositional changes in the gut microbiome and its role in chronic inflammation in patients infected with HIV. We observed that the gut microbiomes of patients with low CD4 counts had reduced alpha diversity compared to those in uninfected controls. Following CD4 recovery, alpha diversity was restored, but intergroup dissimilarity of bacterial composition remained unchanged between patients and uninfected controls. Patients with HIV had higher abundance of the classes Negativicutes, Bacilli, and Coriobacteriia, as well as depletion of the class Clostridia. These relative abundances positively correlated with inflammatory cytokines and negatively correlated with anti-inflammatory cytokines. We found that gut dysbiosis accompanying HIV infection was characterized by a depletion of obligate anaerobic Clostridia and enrichment of facultative anaerobic bacteria, reflecting increased intestinal oxygen levels and intestinal permeability. Furthermore, it is likely that HIV-associated dysbiosis shifts the immunological balance toward inflammatory Th1 responses and encourages proinflammatory cytokine production. Our results suggest that gut dysbiosis contributes to sustaining chronic inflammation in patients with HIV infection despite effective antiretroviral therapy and that correcting gut dysbiosis will be effective in improving long-term outcomes in patients. IMPORTANCE Chronic inflammation is a hallmark of HIV infection and is associated with the development and progression of age-related comorbidities. Although the gastrointestinal tract is a major site of HIV replication and CD4+ T-cell depletion, the role of HIV-associated imbalance of gut microbiome in chronic inflammation is unclear. Here, we aimed to understand the causal relationship between abnormalities in the gut microbiome and chronic inflammation in patients with HIV. Our results suggest HIV-associated gut dysbiosis presents a more aerobic environment than that of healthy individuals, despite prolonged viral suppression. This dysbiosis likely results from a sustained increase in intestinal permeability, which supports sustained bacterial translocation in HIV patients, despite effective therapy. Additionally, we observed that several bacterial taxa enriched in HIV patients were associated with increased expression of inflammatory cytokines. Collectively, these results suggest that gut dysbiosis plays an important role in chronic inflammation in HIV patients.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Diki Prawisuda
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nozomi Yusa
- Department of Applied Genomics, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tadashi Kikuchi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Ikeuchi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Koibuchi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Department of Applied Genomics, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Laboratory Medicine, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Data Science, Health Intelligence Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of AIDS Vaccine Development, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Sperk M, Ambikan AT, Ray S, Singh K, Mikaeloff F, Diez RC, Narayanan A, Vesterbacka J, Nowak P, Sönnerborg A, Neogi U. Fecal Metabolome Signature in the HIV-1 Elite Control Phenotype: Enrichment of Dipeptides Acts as an HIV-1 Antagonist but a Prevotella Agonist. J Virol 2021; 95:e0047921. [PMID: 34232744 PMCID: PMC8387056 DOI: 10.1128/jvi.00479-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
HIV-1 elite controllers (EC) are a rare group among HIV-1-infected individuals who can naturally control viral replication for a prolonged period. Due to their heterogeneous nature, no universal mechanism could be attributed to the EC status; instead, several host and viral factors have been discussed as playing a role. In this study, we investigated the fecal metabolome and microbiome in a Swedish cohort of EC (n = 14), treatment-naive viremic progressors (VP; n = 16), and HIV-negative individuals (HC; n = 12). Fecal untargeted metabolomics was performed by four ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Molecular docking and biochemical microscale thermophoresis (MST) were used to describe the peptide-metabolite interactions. Single-cycle infectivity assays were performed in TZM-Bl cell lines using CCR5- and CXCR4-tropic HIV-1 strains. The microbiome analysis was performed using 16S rRNA sequencing. Th effects of metabolites on bacterial species viability were determined using several clinical isolates. We observed an enrichment of dipeptides in EC compared to VP and HC (adjusted P < 0.05). In silico analysis by molecular docking, in vitro biochemical assays, and ex vivo infection assays identified anti-HIV-1 properties for two dipeptides (WG and VQ) that could bind to the HIV-1 gp120, of which WG was more potent. The microbiome analysis identified enrichment of the genus Prevotella in EC, and these dipeptides supported bacterial growth of the genus Prevotella in vitro. The enrichments of the dipeptides and higher abundance of Prevotella have a distinct mechanism of elite control status in HIV-1 infection that influences host metabolism. IMPORTANCE HIV-1 elite controllers (EC) are a rare group among HIV-1-infected individuals who can naturally control viral replication for a prolonged period. Due to their heterogeneous nature, no universal mechanism could be attributed to the EC status; instead, several host and viral factors have been discussed as playing a role. In this study, we investigated the fecal metabolome and microbiome in a Swedish cohort of EC, treatment-naive viremic progressors (VP), and HIV-negative individuals (HC). We observed an enrichment of dipeptides in EC compared to the other two study groups. In silico and in vitro analyses identified anti-HIV-1 properties for two dipeptides that could bind to the HIV-1 gp120 and act as an HIV-1 antagonist. Furthermore, these dipeptides supported bacterial growth of the genus Prevotella in vitro that was enriched in EC, which influences host metabolism. Thus, increased levels of both dipeptides and Prevotella could provide beneficial effects for EC.
Collapse
Affiliation(s)
- Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
| | - Anoop T. Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
| | - Shilpa Ray
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
| | - Kamal Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA, 65211, USA
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
| | - Rafael Ceña Diez
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ashwathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
30
|
Perler BK, Reinhart EM, Montgomery M, Maynard M, Shapiro JM, Belenky P, Chan PA. Evaluation of the Microbiome in Men Taking Pre-exposure Prophylaxis for HIV Prevention. AIDS Behav 2021; 25:2005-2013. [PMID: 33394167 DOI: 10.1007/s10461-020-03130-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/04/2023]
Abstract
Tenofovir-based regimens as pre-exposure prophylaxis (PrEP) are highly effective at preventing HIV infection. The most common side-effect is gastrointestinal (GI) distress which may be associated with changes in the microbiome. Dysbiosis of the microbiome can have numerous health-related consequences. To understand the effect of PrEP on dysbiosis, we evaluated 27 individuals; 14 were taking PrEP for an average of 171 weeks. Sequencing of 16S rRNA was performed using self-collected rectal swabs. Mixed beta diversity testing demonstrated significant differences between PrEP and non-PrEP users with Bray-Curtis and unweighted UniFrac analyses (p = 0.05 and 0.049, respectively). At the genus level, there was a significant reduction in Finegoldia, along with a significant increase in Catenibacterium and Prevotella in PrEP users. Prevotella has been associated with inflammatory pathways, insulin resistance and cardiovascular disease, while Catenibacterium has been associated with morbid obesity and metabolic syndrome. Overall, these results suggest that PrEP may be associated with some degree of microbiome dysbiosis, which may contribute to GI symptoms. Long-term impact of these changes is unknown.
Collapse
|
31
|
Wolday D, Ndungu FM, Gómez-Pérez GP, de Wit TFR. Chronic Immune Activation and CD4 + T Cell Lymphopenia in Healthy African Individuals: Perspectives for SARS-CoV-2 Vaccine Efficacy. Front Immunol 2021; 12:693269. [PMID: 34220854 PMCID: PMC8249933 DOI: 10.3389/fimmu.2021.693269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic immune activation has been considered as the driving force for CD4+ T cell depletion in people infected with HIV-1. Interestingly, the normal immune profile of adult HIV-negative individuals living in Africa also exhibit chronic immune activation, reminiscent of that observed in HIV-1 infected individuals. It is characterized by increased levels of soluble immune activation markers, such as the cytokines interleukin (IL)-4, IL-10, TNF-α, and cellular activation markers including HLA-DR, CD-38, CCR5, coupled with reduced naïve and increased memory cells in CD4+ and CD8+ subsets. In addition, it is accompanied by low CD4+ T cell counts when compared to Europeans. There is also evidence that mononuclear cells from African infants secrete less innate cytokines than South and North Americans and Europeans in vitro. Chronic immune activation in Africans is linked to environmental factors such as parasitic infections and could be responsible for previously observed immune hypo-responsiveness to infections and vaccines. It is unclear whether the immunogenicity and effectiveness of anti-SARS-CoV-2 vaccines will also be reduced by similar mechanisms. A review of studies investigating this phenomenon is urgently required as they should inform the design and delivery for vaccines to be used in African populations.
Collapse
Affiliation(s)
- Dawit Wolday
- Department of Medicine, Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | - Francis M. Ndungu
- Department of Global Health, Kenyan Medical Research Institute (KEMRI) – Wellcome Research Programme, Nairobi, Kenya
| | - Gloria P. Gómez-Pérez
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University, Amsterdam, Netherlands
| | - Tobias F. Rinke de Wit
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University, Amsterdam, Netherlands
- Joep-Lange Institute, Amsterdam, Netherlands
| |
Collapse
|
32
|
Nyström S, Govender M, Yap SH, Kamarulzaman A, Rajasuriar R, Larsson M. HIV-Infected Individuals on ART With Impaired Immune Recovery Have Altered Plasma Metabolite Profiles. Open Forum Infect Dis 2021; 8:ofab288. [PMID: 34258318 PMCID: PMC8271132 DOI: 10.1093/ofid/ofab288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background Multiple host factors may influence immune reconstitution in HIV-infected people after the initiation of suppressive antiretroviral therapy (ART). Aberrant metabolic pathways have been reported in people with HIV (PWH) on ART. We hypothesized that alterations in plasma metabolites were associated with immune recovery following ART. Methods In this cross-sectional study, the plasma metabolomic profiles of PWH on ART were evaluated. PWH of slow and fast immune recovery were classified by increase in CD4 T cells following 2 years of ART. Targeted plasma metabolite profiling by liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry to determine metabolite signatures for HIV recovery identified >200 metabolites. Results Notably, indole-3-propionic acid was downregulated during HIV, possibly reflecting impaired gastrointestinal epithelium homeostasis. The most important metabolite discriminating between the PWH with fast and slow immune recovery was cysteine. Upregulated cysteine and cysteine pathways may contribute to redox-balance maintenance and T-cell function in PWH with fast immune recovery. Additionally, serine and glycine metabolism and bile acid biosynthesis were the most perturbed metabolic pathways in PWH. Conclusions These results provide a starting point for developing biomarker candidates for immune recovery in PWH on ART and provide insight into the interplay of metabolism and immune response in HIV infection.
Collapse
Affiliation(s)
- Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 2021; 11:646467. [PMID: 34084754 PMCID: PMC8168436 DOI: 10.3389/fcimb.2021.646467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To evaluate the current scientific basis for administering probiotics to people living with HIV (PLHIV) to alleviate chronic inflammation and subsequently improve their prognosis. RECENT FINDINGS The gut microbiome is a potential contributing factor to low-grade inflammation in HIV infection, and there is a scientific rationale for attempting to attenuate inflammation by administering probiotics. Sixteen reports from clinical studies in antiretroviral therapy (ART)-treated PLHIV assessing inflammation after probiotic intervention have been identified; half of them randomized control trials (RCT). Some of the studies report improvement in some parameters of inflammation, but results are inconsistent. No studies report improvement of CD4 counts. None of the RCTs report improvements in any markers of inflammation when analyzed according to protocol. SUMMARY Current scientific evidence does not support the use of probiotics to alleviate inflammation in HIV infection. The potential effect of probiotic intervention in ART-treated PLHIV with high risk for inflammation remains to be investigated.
Collapse
|
36
|
Palacios Argueta P, Salazar M, Attar B, Simons-Linares R, Shen B. 90-Day Specific Readmission for Clostridium difficile Infection After Hospitalization With an Inflammatory Bowel Disease Flare: Outcomes and Risk Factors. Inflamm Bowel Dis 2021; 27:530-537. [PMID: 32812037 DOI: 10.1093/ibd/izaa224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have an increased risk for Clostridium difficile infection (CDI) and carry significantly higher morbidities and mortality than those without IBD. We aimed to investigate disease-specific readmission rates and independent risk factors for CDI within 90 days of an index hospitalization for an IBD flare. METHODS The Nationwide Readmission Database was queried for the year 2016. We collected data on hospital readmissions of 50,799 adults who were hospitalized for urgent IBD flare and discharged. The primary outcome was disease-specific readmission rate for CDI within 90 days of discharge. The secondary outcomes were readmission rate of colonoscopic procedures, morbidities (including mechanical ventilation and shock), and hospital economic burden. The risk factors for readmission were identified using Cox regression analysis. RESULTS The 90-day specific readmission rate was 0.1% (N = 477). A total of 3,005 days were associated with readmission, and the total health care in-hospital economic burden of readmission was $19.1 million (in charges) and $4.79 million (in costs). Independent predictors during index admission for readmission were mechanical ventilation for >24 hours (hazard ratio [HR], 6.62, 95% confidence interval [CI], 0.80-54.57); history of previous CDI (HR, 5.48; 95% CI, 3.66-8.19); HIV-positive status (HR, 4.60; 95% CI, 1.03-20.50); alcohol abuse disorders (HR, 2.06; 95% CI, 1.15-3.70); Parkinson's disease (HR, 4.68; 95% CI, 1.65-13.31); index admission for noncomplicated ulcerative colitis (HR, 4.72; 95% CI, 2.99-7.45]-), complicated ulcerative colitis (HR, 4.49; 95% CI, 2.80- 7.18), or noncomplicated Crohn disease (HR, 2.54; 95% CI, 2.80-4.04); and hospital length of stay (HR, 1.01; 95% CI, 1.01-1.02). CONCLUSIONS The 90-day CDI-specific readmission rate after the index admission of IBD flares was 0.1%. We found risk factors for CDI-associated readmissions such as history of Parkinson's disease, prior CDI, HIV-positive status, and alcohol abuse disorder. Finally, our study also revealed a high health care cost, charges, and burden.
Collapse
Affiliation(s)
| | - Miguel Salazar
- Internal Medicine, Cook County Health, Rush University, Chicago, Illinois, USA
| | - Bashar Attar
- Department of Gastroenterology and Hepatology, Cook County Health, Chicago, Illinois, USA
| | - Roberto Simons-Linares
- Gastroenterology and Hepatology Department, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Bo Shen
- Surgery Department, Columbia University, New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
37
|
Pérez-Santiago J, Marquine MJ, Cookson D, Giraud-Colón R, Heaton RK, Grant I, Ellis RJ, Letendre SL, Peterson SN. Gut microbiota dysbiosis is associated with worse emotional states in HIV infection. J Neurovirol 2021; 27:228-238. [PMID: 33651324 DOI: 10.1007/s13365-020-00933-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The biological mechanisms underlying emotional distress in HIV infection are likely to be complex but remain understudied. We investigated whether dysbiotic signatures in the gut microbiome of persons living with HIV (PLWH) are associated with their emotional status. We retrospectively examined the gut microbiome and clinical evaluation of 129 adults (94 PLWH and 35 HIV-) enrolled at UC San Diego's HIV Neurobehavioral Research Program. A subset of participants (32 PLWH vs. 13 HIV-) underwent an emotional assessment using the NIH Toolbox Emotion Battery summarized by three composite scores (negative affect, social satisfaction, and psychological well-being). We then sequenced the 16S rDNA V3-V4 regions from stool and performed taxonomic assignment using CLC Microbial Genomics Module. The gut microbiota profiles were evaluated in relation to participants' emotional assessment. All analyses were done in R statistical software. We found that the relative abundance of aerotolerant bacteria was significantly higher in PLWH (p < 0.01) and was associated with a lifetime major depression diagnosis independently of HIV status (p = 0.05). Moreover, PLWH experienced significantly worse psychological well-being (p = 0.02), less social satisfaction (p = 0.03), and more negative affect (p = 0.02). Higher levels of aerotolerant bacteria were associated with worse psychological well-being (rho = -0.35, p = 0.02), less social satisfaction (r = - 0.42, p < 0.01), and more negative affect (rho = 0.46, p < 0.01). The association of aerotolerant bacteria with social satisfaction and negative affect was independent of HIV status (p < 0.05, for both). The over-representation of aerotolerant bacteria in the gut may reflect worse oxidative stress and barrier defects and may contribute to emotional distress during HIV infection.
Collapse
Affiliation(s)
- Josué Pérez-Santiago
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, USA. .,University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | - Igor Grant
- University of California San Diego, La Jolla, CA, USA
| | | | | | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
Ancona G, Merlini E, Tincati C, Barassi A, Calcagno A, Augello M, Bono V, Bai F, Cannizzo ES, d'Arminio Monforte A, Marchetti G. Long-Term Suppressive cART Is Not Sufficient to Restore Intestinal Permeability and Gut Microbiota Compositional Changes. Front Immunol 2021; 12:639291. [PMID: 33717191 PMCID: PMC7952451 DOI: 10.3389/fimmu.2021.639291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: We explored the long-term effects of cART on markers of gut damage, microbial translocation, and paired gut/blood microbiota composition, with a focus on the role exerted by different drug classes. Methods: We enrolled 41 cART naïve HIV-infected subjects, undergoing blood and fecal sampling prior to cART (T0) and after 12 (T12) and 24 (T24) months of therapy. Fifteen HIV-uninfected individuals were enrolled as controls. We analyzed: (i) T-cell homeostasis (flow cytometry); (ii) microbial translocation (sCD14, EndoCab, 16S rDNA); (iii) intestinal permeability and damage markers (LAC/MAN, I-FABP, fecal calprotectin); (iv) plasma and fecal microbiota composition (alpha- and beta-diversity, relative abundance); (v) functional metagenome predictions (PICRUSt). Results: Twelve and twenty four-month successful cART resulted in a rise in EndoCAb (p = 0.0001) and I-FABP (p = 0.039) vis-à-vis stable 16S rDNA, sCD14, calprotectin and LAC/MAN, along with reduced immune activation in the periphery. Furthermore, cART did not lead to substantial modifications of microbial composition in both plasma and feces and metabolic metagenome predictions. The stratification according to cART regimens revealed a feeble effect on microbiota composition in patients on NNRTI-based or INSTI-based regimens, but not PI-based regimens. Conclusions: We hereby show that 24 months of viro-immunological effective cART, while containing peripheral hyperactivation, exerts only minor effects on the gastrointestinal tract. Persistent alteration of plasma markers indicative of gut structural and functional impairment seemingly parallels enduring fecal dysbiosis, irrespective of drug classes, with no effect on metabolic metagenome predictions.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Barassi
- Biochemistry Laboratory, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elvira S Cannizzo
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
39
|
Xie Y, Sun J, Wei L, Jiang H, Hu C, Yang J, Huang Y, Ruan B, Zhu B. Altered gut microbiota correlate with different immune responses to HAART in HIV-infected individuals. BMC Microbiol 2021; 21:11. [PMID: 33407128 PMCID: PMC7789785 DOI: 10.1186/s12866-020-02074-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Although gut microbiota dysbiosis has been reported in HIV infected individuals recently, the relationship between the gut microbiota and immune activation in patients with different immune responses to highly active antiretroviral therapy (HAART) is still not well understood. Gut microbiota and immune activation were studied in 36 non-HIV-infected subjects (healthy controls) and 58 HIV-infected individuals, including 28 immunological responders (IR) and 30 immunological non-responders (INR) (≥500 and < 200 CD4+ T-cell counts/μl after 2 years of HIV-1 viral suppression respectively) without comorbidities. Results Metagenome sequencing revealed that HIV-infected immunological responders and immunological non-responders could not recover completely from the gut microbiota dysbiosis. At a 97% similarity level, the relative abundances of Fusobacterium, Ruminococcus gnavus and Megamonas were greater, whereas Faecalibacterium, Alistipes, Bifidobacterium, Eubacterium rectale and Roseburia were more depleted in the IR and INR groups than those in the healthy controls. Ruminococcaceae and Alistipes were positively correlated with nadir and current CD4+ T-cell counts, but negatively correlated with CD8 + CD57+ T-cell counts. Inflammation markers and translocation biomarkers (LPS) levels were positively correlated with the abundances of genera Ruminococcus and Fusobacterium but were negatively correlated with the genus Faecalibacterium. The relative abundances of Escherichia-Shigella and Blautia were significantly higher in the IR than those in the INR group. Escherichia-Shigella were negatively correlated with the CD4/CD8 ratio but positively correlated with the amount of CD8 + CD57+ T-cells. Roseburia and Blautia were negatively associated with nadir CD4+ T-cell and positively associated with CD8 + CD57+ T-cell counts. Conclusions Gut microbiota dysbiosis may be one of the factors contributing to different immune responses and treatment outcomes to HAART. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02074-1.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China.
| | - Jia Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Li Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Haiyin Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Ying Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China.
| |
Collapse
|
40
|
Abstract
The usage of combination antiretroviral therapy in people with HIV (PWH) has incited profound improvement in morbidity and mortality. Yet, PWH may not experience full restoration of immune function which can manifest with non-AIDS comorbidities that frequently associate with residual inflammation and can imperil quality of life or longevity. In this review, we discuss the pathogenesis underlying chronic inflammation and residual immune dysfunction in PWH, as well as potential therapeutic interventions to ameliorate them and prevent incidence or progression of non-AIDS comorbidities. Current evidence advocates that early diagnosis and prompt initiation of therapy at high CD4 counts may represent the best available approach for an improved immune recovery in PWH.
Collapse
Affiliation(s)
- Catherine W Cai
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States.
| |
Collapse
|
41
|
Thurman M, Johnson S, Acharya A, Pallikkuth S, Mahesh M, Byrareddy SN. Biomarkers of Activation and Inflammation to Track Disparity in Chronological and Physiological Age of People Living With HIV on Combination Antiretroviral Therapy. Front Immunol 2020; 11:583934. [PMID: 33162998 PMCID: PMC7581935 DOI: 10.3389/fimmu.2020.583934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
With advancement, prompt use, and increasing accessibility of antiretroviral therapy, people with HIV are living longer and have comparable lifespans to those negative for HIV. However, people living with HIV experience tradeoffs with quality of life often developing age-associated co-morbid conditions such as cancers, cardiovascular diseases, or neurodegeneration due to chronic immune activation and inflammation. This creates a discrepancy in chronological and physiological age, with HIV-infected individuals appearing older than they are, and in some contexts ART-associated toxicity exacerbates this gap. The complexity of the accelerated aging process in the context of HIV-infection highlights the need for greater understanding of biomarkers involved. In this review, we discuss markers identified in different anatomical sites of the body including periphery, brain, and gut, as well as markers related to DNA that may serve as reliable predictors of accelerated aging in HIV infected individuals as it relates to inflammatory state and immune activation.
Collapse
Affiliation(s)
- Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samuel Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Mohan Mahesh
- Southwest National Primate Research Institute, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
42
|
Cook RR, Fulcher JA, Tobin NH, Li F, Lee D, Woodward C, Javanbakht M, Brookmeyer R, Shoptaw S, Bolan R, Aldrovandi GM, Gorbach PM. Combined effects of HIV and obesity on the gastrointestinal microbiome of young men who have sex with men. HIV Med 2020; 21:365-377. [PMID: 31883184 PMCID: PMC7299823 DOI: 10.1111/hiv.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The prevalence of obesity is rising among people living with HIV, which may synergistically increase inflammation and the risk of associated diseases. Disruption of gut bacterial communities may be one of the key drivers of this inflammation; however, the combined effects of HIV and obesity on the microbiome have not been explored. METHODS This study included 381 men who have sex with men. Thirty-nine were HIV-positive and obese (H+O+), 143 were HIV-positive and nonobese, 64 were HIV-negative and obese, and 135 were HIV-negative and nonobese. Microbiome composition was assessed by targeted sequencing of the V4 region of the 16S ribosomal RNA (rRNA) gene using rectal swab samples. Inverse probability of treatment-weighted marginal structural models were used to investigate differences in microbial composition between groups while controlling for numerous clinical and behavioural confounders. RESULTS Significant variability in microbial composition was explained by the combination of HIV and obesity, over and above each condition alone (R2 for the marginal contribution of the H+/O+ group = 0.008; P = 0.001). H+O+ participants had the highest ratios of Prevotella to Bacteroides, a pro-inflammatory enterotype that has been described in HIV infection and obesity independently. H+O+ participants had lower levels of Bacteroides and Veillonella than all other groups, suggesting a synergistic effect of HIV and obesity on these genera. CONCLUSIONS Our findings support the hypothesis that HIV and obesity act together to disrupt gut microbial communities, which may help explain higher levels of generalized inflammation among people living with both HIV and obesity.
Collapse
Affiliation(s)
- Ryan R. Cook
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Jennifer A. Fulcher
- Divison of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - David Lee
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Cora Woodward
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Marjan Javanbakht
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Ron Brookmeyer
- Department of Biostatistics, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Steve Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Robert Bolan
- Los Angeles LGBT Center, Los Angeles, USA
- Department of Family Medicine, Keck School of Medicine at the University of Southern California, USA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Pamina M. Gorbach
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| |
Collapse
|
43
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Abstract
Early in the HIV epidemic, lipodystrophy, characterized by subcutaneous fat loss (lipoatrophy), with or without central fat accumulation (lipohypertrophy), was recognized as a frequent condition among people living with HIV (PLWH) receiving combination antiretroviral therapy. The subsequent identification of thymidine analogue nucleoside reverse transcriptase inhibitors as the cause of lipoatrophy led to the development of newer antiretroviral agents; however, studies have demonstrated continued abnormalities in fat and/or lipid storage in PLWH treated with newer drugs (including integrase inhibitor-based regimens), with fat gain due to restoration to health in antiretroviral therapy-naive PLWH, which is compounded by the rising rates of obesity. The mechanisms of fat alterations in PLWH are complex, multifactorial and not fully understood, although they are known to result in part from the direct effects of HIV proteins and antiretroviral agents on adipocyte health, genetic factors, increased microbial translocation, changes in the adaptive immune milieu after infection, increased tissue inflammation and accelerated fibrosis. Management includes classical lifestyle alterations with a role for pharmacological therapies and surgery in some patients. Continued fat alterations in PLWH will have an important effect on lifespan, healthspan and quality of life as patients age worldwide, highlighting the need to investigate the critical uncertainties regarding pathophysiology, risk factors and management.
Collapse
|
45
|
Abstract
Recent studies have raised interest in the possibility that dysbiosis of the gut microbiome (i.e., the communities of bacteria residing in the intestine) in HIV-infected patients could contribute to chronic immune activation, and, thus, to elevated mortality and increased risk of inflammation-related clinical diseases (e.g., stroke, cardiovascular disease, cancer, long-bone fractures, and renal dysfunction) found even in those on effective antiretroviral therapy. Yet, to date, a consistent pattern of HIV-associated dysbiosis has not been identified. What is becoming clear, however, is that status as a man who has sex with men (MSM) may profoundly impact the structure of the gut microbiota, and that this factor likely confounded many HIV-related intestinal microbiome studies. However, what factor associated with MSM status drives these gut microbiota-related changes is unclear, and what impact, if any, these changes may have on the health of MSM is unknown. In this review, we outline available data on changes in the structure of the gut microbiome in HIV, based on studies that controlled for MSM status. We then examine what is known regarding the gut microbiota in MSM, and consider possible implications for research and the health of this population. Lastly, we discuss knowledge gaps and needed future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| | - Wei Li Koay
- Department of Infectious Disease, Children’s
National Hospital, Washington, D.C.;,School of Medicine and Health Sciences, George Washington
University, Washington, D.C
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| |
Collapse
|
46
|
Immune effects of Lactobacillus casei Shirota in treated HIV-infected patients with poor CD4+ T-cell recovery. AIDS 2020; 34:381-389. [PMID: 31714353 DOI: 10.1097/qad.0000000000002420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND HIV infection leads to depletion of intestinal CD4+ T cells, mucosal barrier dysfunction, increased gut permeability and microbial translocation even among patients on suppressive ART. Previous studies suggest probiotics may help restore intestinal function. METHODS In this double-blind, placebo-controlled pilot study, we enrolled HIV-infected patients on suppressive ART with poor CD4+ recovery to address the effect of daily oral use of Lactobacillus casei Shirota (LcS) on CD4+ T-cell count and CD4+/CD8+ ratio at 6 and 12 weeks after treatment initiation; immune activation and intestinal microbiome composition were addressed as secondary outcomes. RESULTS From January 2015 to July 2016, 48 patients were randomized (1 : 1) to active intervention or placebo. Groups had comparable demographic and clinical characteristics; only CD4+ T-cell nadir was statistically different between groups. All participants were virologically suppressed under ART. At week 6, the increment in CD4+ T-cell count was 17 cells/μl [interquartile range (IQR) -33 to 74] in the active intervention arm and 4 cells/μl (IQR -43 to 51) in the placebo arm (P = 0.291); at week 12, the change in CD4+ T-cell count was 8 cells//μl (IQR -30 to 70) in the active arm and 10 cells//μl (IQR -50 to 33) among participants allocated to placebo (P = 0.495). Median change in CD4+/CD8+ ratio at week 6 compared with baseline was 0 (IQR -0.04 to 0.05) in the active intervention arm and -0.01 in the placebo arm (IQR -0.06 to 0.03; P = 0.671). At week 12, the change in CD4+/CD8+ ratio was higher in the active product group compared with placebo (respectively 0.07 and 0.01), but this difference failed to reach statistical significance (P = 0.171). We found no significant effects of LcS on immune activation markers, CD4+ and CD8+ subpopulations, sCD14 levels or NK cells at week 12. Finally, we found no statistically significant differences between groups in the change of enteric microbiome at week 12. CONCLUSION In this pilot study, we found no statistically significant effect of LcS probiotic on CD4+ T-cell counts, CD4+/CD8+ ratio, immune activation or intestinal microbiome among HIV-infected patients on suppressive ART with poor CD4+ recovery.
Collapse
|
47
|
Kortekangas E, Kamng'ona AW, Fan Y, Cheung YB, Ashorn U, Matchado A, Poelman B, Maleta K, Dewey KG, Ashorn P. Environmental exposures and child and maternal gut microbiota in rural Malawi. Paediatr Perinat Epidemiol 2020; 34:161-170. [PMID: 32011017 PMCID: PMC7154550 DOI: 10.1111/ppe.12623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/24/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gut microbiota composition is associated with child health, but the effect of the environment on microbiota composition is not well understood. Few studies have been conducted in low-income settings where childhood malnutrition is common and possibly related to microbiota composition. OBJECTIVES To investigate whether gut microbiota composition in young children and their mothers is associated with different environmental exposures in rural Malawi. We hypothesized that more adverse environmental exposures would be associated with lower levels of microbiota maturity and diversity. METHODS Faecal samples from up to 631 children and mothers participating in a nutrition intervention trial were collected at 1, 6, 12, 18, and 30 months (children) and at 1 month (mothers) after birth and analysed for microbiota composition with 16S rRNA sequencing. Bacterial OTU and genus abundances, measures of microbiota maturity and diversity, and UniFrac distances were compared between participants with different environmental exposures. The exposure variables included socio-economic status, water source, sanitary facility, domestic animals, maternal characteristics, season, antibiotic use, and delivery mode. RESULTS Measures of microbiota maturity and diversity in children were inversely associated with maternal education at 6, 18, and 30 months and did not otherwise differ consistently between participants with different environmental exposures. Phylogenetic distance was related to season of stool sample collection at all time points. At the level of individual OTUs and genera, season of stool sample collection, type of water source, and maternal education showed most associations with child gut microbiota, while HIV status was the most important predictor of relative OTU and genus abundances in mothers. CONCLUSION The results do not support the hypothesis that adverse environmental exposures are broadly associated with lower microbiota maturity and diversity but suggest that environmental exposures influence the abundance of several bacterial OTUs and genera and that low maternal education is associated with higher microbiota maturity and diversity.
Collapse
Affiliation(s)
- Emma Kortekangas
- Center for Child Health ResearchFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Arox W. Kamng'ona
- Department of Biomedical SciencesCollege of MedicineUniversity of MalawiBlantyreMalawi,Program in International and Community NutritionUniversity of California DavisDavisCAUSA
| | - Yue‐Mei Fan
- Center for Child Health ResearchFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Yin Bun Cheung
- Program in Health Services & Systems Research and Centre for Quantitative MedicineDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ulla Ashorn
- Center for Child Health ResearchFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Andrew Matchado
- Program in International and Community NutritionUniversity of California DavisDavisCAUSA,School of Public Health and Family MedicineUniversity of Malawi College of MedicineBlantyreMalawi
| | - Basho Poelman
- Center for Child Health ResearchFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kenneth Maleta
- School of Public Health and Family MedicineUniversity of Malawi College of MedicineBlantyreMalawi
| | | | - Per Ashorn
- Center for Child Health ResearchFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland,Department of PaediatricsTampere University HospitalTampereFinland
| |
Collapse
|
48
|
Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL. The Impact of Human Immunodeficiency Virus Infection on Gut Microbiota α-Diversity: An Individual-level Meta-analysis. Clin Infect Dis 2020; 70:615-627. [PMID: 30921452 PMCID: PMC7319268 DOI: 10.1093/cid/ciz258] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Whether human immunodeficiency virus (HIV) infection impacts gut microbial α-diversity is controversial. We reanalyzed raw 16S ribosomal RNA (rRNA) gene sequences and metadata from published studies to examine α-diversity measures between HIV-uninfected (HIV-) and HIV-infected (HIV+) individuals. METHODS We conducted a systematic review and individual level meta-analysis by searching Embase, Medline, and Scopus for original research studies (inception to 31 December 2017). Included studies reported 16S rRNA gene sequences of fecal samples from HIV+ patients. Raw sequence reads and metadata were obtained from public databases or from study authors. Raw reads were processed through standardized pipelines with use of a high-resolution taxonomic classifier. The χ2 test, paired t tests, and generalized linear mixed models were used to relate α-diversity measures and clinical metadata. RESULTS Twenty-two studies were identified with 17 datasets available for analysis, yielding 1032 samples (311 HIV-, 721 HIV+). HIV status was associated with a decrease in measures of α-diversity (P < .001). However, in stratified analysis, HIV status was associated with decreased α-diversity only in women and in men who have sex with women (MSW) but not in men who have sex with men (MSM). In analyses limited to women and MSW, controlling for HIV status, women displayed increased α-diversity compared with MSW. CONCLUSIONS Our study suggests that HIV status, sexual risk category, and gender impact gut microbial community α-diversity. Future studies should consider MSM status in gut microbiome analyses.
Collapse
Affiliation(s)
| | - Wei Li A Koay
- Children’s National Medical Center, Baltimore, Maryland
- George Washington University, Washington, District of Columbia, Baltimore, Maryland
| | - Ni Zhao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Khalil G Ghanem
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Barbier F, Mer M, Szychowiak P, Miller RF, Mariotte É, Galicier L, Bouadma L, Tattevin P, Azoulay É. Management of HIV-infected patients in the intensive care unit. Intensive Care Med 2020; 46:329-342. [PMID: 32016535 PMCID: PMC7095039 DOI: 10.1007/s00134-020-05945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
The widespread use of combination antiretroviral therapies (cART) has converted the prognosis of HIV infection from a rapidly progressive and ultimately fatal disease to a chronic condition with limited impact on life expectancy. Yet, HIV-infected patients remain at high risk for critical illness due to the occurrence of severe opportunistic infections in those with advanced immunosuppression (i.e., inaugural admissions or limited access to cART), a pronounced susceptibility to bacterial sepsis and tuberculosis at every stage of HIV infection, and a rising prevalence of underlying comorbidities such as chronic obstructive pulmonary diseases, atherosclerosis or non-AIDS-defining neoplasms in cART-treated patients aging with controlled viral replication. Several patterns of intensive care have markedly evolved in this patient population over the late cART era, including a steady decline in AIDS-related admissions, an opposite trend in admissions for exacerbated comorbidities, the emergence of additional drivers of immunosuppression (e.g., anti-neoplastic chemotherapy or solid organ transplantation), the management of cART in the acute phase of critical illness, and a dramatic progress in short-term survival that mainly results from general advances in intensive care practices. Besides, there is a lack of data regarding other features of ICU and post-ICU care in these patients, especially on the impact of sociological factors on clinical presentation and prognosis, the optimal timing of cART introduction in AIDS-related admissions, determinants of end-of-life decisions, long-term survival, and functional outcomes. In this narrative review, we sought to depict the current evidence regarding the management of HIV-infected patients admitted to the intensive care unit.
Collapse
Affiliation(s)
- François Barbier
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France.
| | - Mervin Mer
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Critical Care and Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg University Hospital, Johannesburg, South Africa
| | - Piotr Szychowiak
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| | - Robert F Miller
- Research Department of Infection and Population Health, University College London, London, UK
| | - Éric Mariotte
- Medical Intensive Care Unit, Saint-Louis University Hospital, APHP, Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Saint-Louis University Hospital, APHP, Paris, France
| | - Lila Bouadma
- Medical and Infectious Diseases Intensive Care Unit, Bichat-Claude Bernard University Hospital, APHP, Paris, France
- Paris Diderot University, IAME-UMR 1137, INSERM, Paris, France
| | - Pierre Tattevin
- Infectious Diseases and Medical Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | - Élie Azoulay
- Medical Intensive Care Unit, Saint-Louis University Hospital, APHP, Paris, France.
- ECSTRA Team, Biostatistics and Clinical Epidemiology, UMR 1153 (Center of Epidemiology and Biostatistic, Sorbonne-Paris Cité, CRESS), INSERM, Paris Diderot University, Paris, France.
| |
Collapse
|
50
|
Pan L, Han P, Ma S, Peng R, Wang C, Kong W, Cong L, Fu J, Zhang Z, Yu H, Wang Y, Jiang J. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10:249-261. [PMID: 32082971 PMCID: PMC7016297 DOI: 10.1016/j.apsb.2019.10.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of hyperuricemia disease is often accompanied by damage to renal function. However, there are few studies on hyperuricemia nephropathy, especially its association with intestinal flora. This study combines metabolomics and gut microbiota diversity analysis to explore metabolic changes using a rat model as well as the changes in intestinal flora composition. The results showed that amino acid metabolism was disturbed with serine, glutamate and glutamine being downregulated whilst glycine, hydroxyproline and alanine being upregulated. The combined glycine, serine and glutamate could predict hyperuricemia nephropathy with an area under the curve of 1.00. Imbalanced intestinal flora was also observed. Flavobacterium, Myroides, Corynebacterium, Alcaligenaceae, Oligella and other conditional pathogens increased significantly in the model group, while Blautia and Roseburia, the short-chain fatty acid producing bacteria, declined greatly. At phylum, family and genus levels, disordered nitrogen circulation in gut microbiota was detected. In the model group, the uric acid decomposition pathway was enhanced with reinforced urea liver-intestine circulation. The results implied that the intestinal flora play a vital role in the pathogenesis of hyperuricemia nephropathy. Hence, modulation of gut microbiota or targeting at metabolic enzymes, i.e., urease, could assist the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Can Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Weijia Kong
- Insitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| |
Collapse
|