1
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
2
|
Li J, Wang B, He X, Li Z, Sun L, Li W, Bai G. Epidemiological characteristics of norovirus infection in pediatric patients during the COVID-19 pandemic. J Med Virol 2023; 95:e28874. [PMID: 37322803 DOI: 10.1002/jmv.28874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
To assess the epidemiological characteristics of norovirus infection. We included 5564 patients under the age of 18 years who visited the hospital in which the study took place from December 2020 to November 2022 with a primary diagnosis of acute diarrhea. Clinical information was extracted from the electronic health record system. We calculated the prevalence of norovirus infection by age, gender, season, year, and type of patients. A nonlinear association between age and prevalence rates was assessed using a restricted cubic spline regression model. A total of 5564 patients completed the test for human norovirus, among whom 1442 (25.9%) tested positive. The prevalence of norovirus infection was significantly lower in 2022 than in 2021 (35.9% vs. 53.7%, p < 0.001), and the highest prevalence was observed in winter (35.1%) and then followed by autumn (27.5%). Regarding the age pattern, the highest rate was seen in children aged 1-3 years (37.5%). Children at age 1.5 years may have the highest risk of having norovirus infection (Pnonlinear < 0.001). The prevalence of norovirus infection of norovirus during the COVID-19 pandemic was similar to that before the pandemic shown in literatures. A relatively high rate was observed in cool seasons and in younger children (i.e., 1-3 years).
Collapse
Affiliation(s)
- Jiabin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Binghan Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu He
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziqiao Li
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lidan Sun
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guannan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Stacenko M, Vorobievskaya S, Naumova S, Kovaleva V. Usage of “Feed Back” as an ecologically safe and effective means for preventing rotoviral infection of piglets. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224303009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diseases of the gastrointestinal tract in newborn piglets cause enormous economic damage to countries where pig breeding is intensively developed. The high pathogenicity of the causative agents of these diseases, their resistance in the external environment, the ability to persist in the host organism leads to the rapid spread of these diseases. In our work in a pig farm, the effectiveness of the use of “Feed Back” (reverse feeding) for the prevention of rotavirus infection in suckling pigs was assessed. “Feed Back” or reverse feeding is feeding pregnant sows and replacement pigs material for re-infecting animals with infectious agents necessary for us: clostridiosis, colibacillosis and rotavirus infection with the subsequent transmission of colostral immunity to piglets. The purpose of this method is to enhance the action of the vaccines used and develop colostral immunity to those diseases against which vaccines are not used.
Collapse
|
4
|
Lattos A, Chaligiannis I, Papadopoulos D, Giantsis IA, Petridou EI, Vafeas G, Staikou A, Michaelidis B. How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods 2021; 10:2793. [PMID: 34829074 PMCID: PMC8623680 DOI: 10.3390/foods10112793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Raw-bivalves consumption is a wide trend in Mediterranean countries. Despite the unambiguous nutritional value of seafood, raw consumption of bivalves may involve risks that could pose a significant threat to consumers' health. Their filter-feeding behavior is responsible for the potential hosting of a wide variety of microorganisms, either pathogenic for the bivalves or public health threats. Under this prism, the current study was conducted in an effort to evaluate the risk of eating raw bivalves originating from the two biggest seafood markets in Thessaloniki, the largest production area of bivalves in Greece. Both microbiological and molecular methodologies were applied in order to assess the presence of various harmful microbes, including noroviruses, Bonamia, Marteilia, Esherichia coli, Salmonella, and Vibrio. Results indicated the presence of several Vibrio strains in the analyzed samples, of which the halophilic Vibrio harveyi was verified by 16S rRNA sequencing; other than this, no enteropathogenic Vibrio spp. was detected. Furthermore, although Esherichia coli was detected in several samples, it was mostly below the European Union (EU) legislation thresholds. Interestingly, the non-target Photobacterium damselae was also detected, which is associated with both wound infections in human and aquatic animals. Regarding host pathogenic microorganisms, apart from Vibrio harveyi, the protozoan parasite Marteilia refrigens was identified in oysters, highlighting the continuous infection of this bivalve in Greece. In conclusion, bivalves can be generally characterized as a safe-to-eat raw food, hosting more bivalve pathogenic microbes than those of public health concern.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ilias Chaligiannis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Evanthia I. Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Vafeas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 57001 Thermi, Greece;
| | - Alexandra Staikou
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (D.P.); (B.M.)
- Environmental Control and Research Laboratory, Region of Central Macedonia, 54625 Thessaloniki, Greece;
| |
Collapse
|
5
|
Chen D, Mechlowitz K, Li X, Schaefer N, Havelaar AH, McKune SL. Benefits and Risks of Smallholder Livestock Production on Child Nutrition in Low- and Middle-Income Countries. Front Nutr 2021; 8:751686. [PMID: 34778344 PMCID: PMC8579112 DOI: 10.3389/fnut.2021.751686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Livestock production may improve nutritional outcomes of pregnant women and children by increasing household income, availability of nutrient-dense foods, and women's empowerment. Nevertheless, the relationship is complex, and the nutritional status of children may be impaired by presence of or proximity to livestock and their pathogens. In this paper, we review the benefits and risks of livestock production on child nutrition. Evidence supports the nutritional benefits of livestock farming through income, production, and women's empowerment. Increasing animal source food consumption requires a combination of efforts, including improved animal management so that herd size is adequate to meet household income needs and consumption and addressing sociocultural and gendered norms. Evidence supports the inclusion of behavior change communication strategies into livestock production interventions to facilitate the sustainability of nutritional benefits over time, particularly interventions that engage women and foster dimensions of women's empowerment. In evaluating the risks of livestock production, evidence indicates that a broad range of enteric pathogens may chronically infect the intestines of children and, in combination with dietary deficits, may cause environmental enteric dysfunction (EED), a chronic inflammation of the gut. Some of the most important pathogens associated with EED are zoonotic in nature with livestock as their main reservoir. Very few studies have aimed to understand which livestock species contribute most to colonization with these pathogens, or how to reduce transmission. Control at the point of exposure has been investigated in a few studies, but much less effort has been spent on improving animal husbandry practices, which may have additional benefits. There is an urgent need for dedicated and long-term research to understand which livestock species contribute most to exposure of young children to zoonotic enteric pathogens, to test the potential of a wide range of intervention methods, to assess their effectiveness in randomized trials, and to assure their broad adaptation and sustainability. This review highlights the benefits and risks of livestock production on child nutrition. In addition to identifying research gaps, findings support inclusion of poor gut health as an immediate determinant of child undernutrition, expanding the established UNICEF framework which includes only inadequate diet and disease.
Collapse
Affiliation(s)
- Dehao Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Karah Mechlowitz
- Department of Social and Behavioral Sciences, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Xiaolong Li
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Nancy Schaefer
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Arie H. Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, United States
| | - Sarah L. McKune
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for African Studies, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|
7
|
Zhao F, Ding G, Wang S, Cai Y, Xu J, Cheng J, Zhou D. Preliminary Quantitative Risk Assessment of Norovirus in Shellfish in the Yellow Sea and Bohai Sea of China. Foodborne Pathog Dis 2021; 18:668-674. [PMID: 34191596 DOI: 10.1089/fpd.2021.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Norovirus (NoV) is a main foodborne pathogen of acute gastroenteritis in the world. A preliminary quantitative risk assessment (QRA) was conducted to evaluate the health risk caused by this virus in shellfish in the Yellow Sea and Bohai Sea of China. The QRA framework was established from the process of shellfish at retail through cooking at home to consumer consumption. The prevalence and quantity of NoVs in shellfish, cooking methods, internal temperature and time of shellfish in different cooking conditions, shellfish consumption frequency, and consumption amount were analyzed in the exposure assessment. The results of exposure assessment were introduced into the beta-Poisson dose-response model, and Monte Carlo analysis was used to calculate the risk of gastroenteritis caused by shellfish consumption in the cities around the Yellow Sea and Bohai Sea of China. The results showed that the probability of illness caused by NoVs due to shellfish consumption per year (Pill,yr) was 1.86 × 10-5. It was estimated that the annual number of patients with gastroenteritis per 1,000,000 general population (Nexp,mil) was 0.10, 1.23, 16.90, and 0.38 for population aged 0-4, 5-18, 19-64, and >65 years, respectively. This assessment provides valuable information such as the probability of illness associated with the consumption of shellfish and it also provides a reference for further in-depth QRA of NoVs in shellfish or other foods.
Collapse
Affiliation(s)
- Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guoying Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yiyang Cai
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jie Xu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jingye Cheng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
8
|
Successfully Treated Norovirus- and Sapovirus-Associated Diarrhea in Three Renal Transplant Patients. Case Rep Infect Dis 2018; 2018:6846873. [PMID: 30538873 PMCID: PMC6260410 DOI: 10.1155/2018/6846873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives To examine the burden of norovirus- and sapovirus-related diarrhea in renal transplant patients and to propose the use of nitazoxanide as a therapeutic option for treatment. Methods We reviewed three renal transplant patients with viral diarrhea requiring hospitalization due to acute renal failure and signs of graft rejection. All three patients were treated with nitazoxanide. We examined their clinical courses after therapy and compared time to resolution of symptoms and viral shedding. Results In all three renal transplant patients, improvement of diarrheal illness was witnessed within one week of nitazoxanide initiation. Conclusions Infectious diarrhea remains an underestimated yet significant cause of morbidity in solid organ transplant patients. Norovirus and sapovirus are often responsible for this presentation. Nitazoxanide was used as a treatment modality with success in reduction of symptoms, decreased duration of illness, and cessation of viral shedding.
Collapse
|
9
|
Abstract
Foodborne pathogens are causing a great number of diseases with significant effects on human health and economy. The characteristics of the most common pathogenic bacteria (Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus, Vibrio spp. and Yersinia enterocolitica), viruses (Hepatitis A and Noroviruses) and parasites (Cyclospora cayetanensis, Toxoplasma gondii and Trichinella spiralis), together with some important outbreaks, are reviewed. Food safety management systems based on to classical hazard-based approach has been proved to be inefficient, and risk-based food safety approach is now suggested from leading researchers and organizations. In this context, a food safety management system should be designed in a way to estimate the risks to human health from food consumption and to identify, select and implement mitigation strategies in order to control and reduce these risks. In addition, the application of suitable food safety education programs for all involved people in the production and consumption of foods is suggested.
Collapse
Affiliation(s)
- Thomas Bintsis
- Department of International Trade, TEI of West Macedonia, Kastoria, Greece
| |
Collapse
|
10
|
Shukla S, Cho H, Kwon OJ, Chung SH, Kim M. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review. Crit Rev Food Sci Nutr 2017; 58:405-419. [PMID: 27245816 DOI: 10.1080/10408398.2016.1182891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.
Collapse
Affiliation(s)
- Shruti Shukla
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea.,b Department of Energy and Materials Engineering , Dongguk University , Seoul , Republic of Korea
| | - Hyunjeong Cho
- c Experiment and Research Institute, National Agricultural Products Quality Management Service , Gimcheon-si , Gyeongsangbuk-do , Republic of Korea
| | - O Jun Kwon
- d Evaluation Team, Gyeongbuk Institute for Regional Program Evaluation , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| | - Soo Hyun Chung
- e Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Myunghee Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| |
Collapse
|
11
|
Full-genome sequence analysis of an uncommon norovirus genotype, GII.21, from South Korea. Epidemiol Infect 2017; 145:2231-2240. [PMID: 28651680 DOI: 10.1017/s0950268817001273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses (NoVs) are major causal agents of acute gastroenteritis in humans. NoV GII.4 is the predominant genotype globally. However, uncommon and minor types of NoVs are consistently detected and some have been shown to dominate over GII.4. Therefore, the prevalence of dominant and uncommon NoVs makes the identification of these viruses important for the prediction and prevention of pandemics. In this study, the full-genome sequence of a NoV (strain JW) detected in Korea was extensively characterized. The full-length genome was 7510 nucleotides long, and phylogenetic analysis based on the whole-genome sequences, including open reading frame (ORF)1, ORF2, and ORF3, indicated that it belonged to the GII.21 genotype. Strain JW showed maximum identity with strain YO284; however, comparison of the amino acid sequence of ORF2, which functions as an antigen, showed substitutions in several amino acids. GII.21 is not a prevalent epidemiological agent of acute gastroenteritis in humans, but it is consistently found in gastroenteritis patients from several countries. The present study provides the first full-genome sequence analysis of NoV GII.21 isolated from a patient in Korea. Our findings provide not only valuable genome information but also data for epidemiology studies, epidemic prevention, and vaccine development strategies.
Collapse
|
12
|
La Bella G, Martella V, Basanisi MG, Nobili G, Terio V, La Salandra G. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:179-186. [PMID: 27943110 PMCID: PMC5429374 DOI: 10.1007/s12560-016-9273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Shellfish are an important vehicle for transmission of food-borne pathogens including norovirus (NoV) and hepatitis A virus (HAV). The risks related with consumption of shellfish are greater if these products are eaten raw or slightly cooked. As molluscs are filter-feeding organisms, they are able to concentrate pathogens dispersed in the water. Data on shellfish viral contamination are therefore useful to obtain a background information on the presence of contamination in the environment, chiefly in shellfish production areas and to generate a picture of the epidemiology of viral pathogens in local populations. From January 2013 to July 2015, 253 samples of bivalve molluscs collected in harvesting areas from a large coastal tract (860 km) of Southern Italy were screened for HAV and NoV of genogroups GI and GII, using real-time reverse transcription qualitative PCR. The RNA of HAV was not detected in any of the analyzed samples. In contrast, the RNA of NoV was identified in 14.2% of the samples with a higher prevalence of NoVs of genogroup GII (12.2%) than genogroup GI (1.6%). Upon sequence analysis of a short diagnostic region located in capsid region, the NoV strains were characterized as GII.2, GII.4 Sydney 2012, GII.6, GII.13, GI.4, and GI.6, all which were circulating in local populations in the same time span. These data confirm that consumption of mussels can expose consumers to relevant risks of infection. Also, matching between the NoV genotypes circulating in local population and detected in molluscs confirms the diffusion in the environment of NoVs.
Collapse
Affiliation(s)
- G La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Martella
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - M G Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - G Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Terio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - G La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy.
| |
Collapse
|
13
|
Norovirus epidemiology in South African children <5 years hospitalised for diarrhoeal illness between 2009 and 2013. Epidemiol Infect 2017; 145:1942-1952. [PMID: 28393756 DOI: 10.1017/s0950268817000668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Public health interest in norovirus (NoV) has increased in recent years following improved diagnostics, global burden estimates and the development of NoV vaccine candidates. This study aimed to describe the detection rate, clinical characteristics and environmental features associated with NoV detection in hospitalized children <5 years with diarrhoea in South Africa (SA). Between 2009 and 2013, prospective diarrhoeal surveillance was conducted at four sites in SA. Stool specimens were collected and screened for NoVs and other enteric pathogens using molecular and serological assays. Epidemiological and clinical data were compared in patients with or without detection of NoV. The study detected NoV in 15% (452/3103) of hospitalized children <5 years with diarrhoea with the majority of disease in children <2 years (92%; 417/452). NoV-positive children were more likely to present with diarrhoea and vomiting (odds ratio (OR) 1·3; 95% confidence interval (CI) 1·1-1·7; P = 0·011) with none-to-mild dehydration (adjusted OR 0·5; 95% CI 0·3-0·7) compared with NoV-negative children. Amongst children testing NoV positive, HIV-infected children were more likely to have prolonged hospitalization and increased mortality compared with HIV-uninfected children. Continued surveillance will be important to consider the epidemic trends and estimate the burden and risk of NoV infection in SA.
Collapse
|
14
|
Santos VS, Gurgel RQ, Cavalcante SM, Kirby A, Café LP, Souto MJ, Dolabella SS, de Assis MR, Fumian TM, Miagostovich MP, Cunliffe NA, Cuevas LE. Acute norovirus gastroenteritis in children in a highly rotavirus-vaccinated population in Northeast Brazil. J Clin Virol 2017; 88:33-38. [DOI: 10.1016/j.jcv.2016.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
15
|
Norovirus Infection. EMERGING AND RE-EMERGING INFECTIOUS DISEASES OF LIVESTOCK 2017. [PMCID: PMC7122952 DOI: 10.1007/978-3-319-47426-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Oyinloye SO, Aminu M, Ella EE, Jatau ED. The prevalence and predisposing factors of norovirus and astrovirus infection among diarrheic children in north east, Nigeria. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jphe2016.0840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Zhang SX, Li L, Yin JW, Jin M, Kong XY, Pang LL, Zhou YK, Tian LG, Chen JX, Zhou XN. Emergence of human caliciviruses among diarrhea cases in southwest China. BMC Infect Dis 2016; 16:511. [PMID: 27663519 PMCID: PMC5035476 DOI: 10.1186/s12879-016-1831-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/10/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acute diarrhea is one of the most serious problems in global public health that causes considerable morbidity and mortality worldwide. Human caliciviruses (HuCV) including norovirus (NoV, genogroup GI and GII) and sapovirus (SaV), is a leading cause of acute sporadic diarrhea in individuals across all age groups. However, few studies had been conducted clarifying the characteristics of HuCV in diarrhea cases across all age groups in China. Our study was aimed at assessing the HuCV-related diarrhea burden and NoV genotypes distribution in southwest China. METHODS The study was conducted in four hospitals in Kunming city, Yunnan province, from June 2014 to July 2015. Stool specimens were collected from 1,121 diarrhea cases and 319 healthy controls in outpatient departments. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect NoV (GI, GII) and SaV. Sequencing was applied to confirm the three viral infections and phylogenetic analysis was performed to determine their genotypes. A structured questionnaire was used to record the demographic information and clinical symptoms of subjects. RESULTS HuCV was detected at an 11.0 % infection rate in 1,121 diarrhea cases and at 3.4 % rate in 319 non-diarrhea subjects (p < 0.0001, OR = 3.5, 95 % CI 1.8-6.5). The prevalence of the NoV genogroup GII and genotype GII.4 in diarrhea cases was significantly higher than that found in healthy controls (p < 0.0001, p = 0.018, respectively). NoV GII (n = 118, 10.5 %) was the most common HuCV subtype in diarrhea cases, followed by SaV (n = 3, 0.3 %) and NoV GI (n = 2, 0.2 %). Of 118 NoV GII strains isolated from diarrhea patients. GII.4 (n = 55, 46.6 %) was the predominant strain, followed by GII.3 (n = 28, 23.7 %), GII.12 (n = 25, 21.2 %), GII.17 (n = 8, 6.8 %), and GII.5 (n = 2, 1.7 %). Of the 55 GII.4 strains, the GII.4 Sydney 2012 variant had absolutely predominant prevalence (n = 52, 94.5 %), followed by the NoV GII.4-2006b variant (n = 3, 5.5 %). The GII.4 Orleans 2009 variant was not found in diarrhea cases of the study. CONCLUSIONS NoV GII was the major genogroup and GII.4 was the most predominant strain detected in diarrhea patients. The GII.17 is an emergent variant in sporadic diarrhea and might become the predominant strain in diarrhea cases in the near future. Rapid, accurate detection kits need to be developed to help us find and treat NoV-associated diarrhea in clinical settings in a timely manner.
Collapse
Affiliation(s)
- Shun-Xian Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Li Li
- The First People's Hospital of Yunnan Province, Kunming, 650000, People's Republic of China
| | - Jian-Wen Yin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, 650000, People's Republic of China
| | - Miao Jin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xiang-Yu Kong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Li-Li Pang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yong-Kang Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Li-Guang Tian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
18
|
Zheng S, Yu F, Chen X, Cui D, Cheng Y, Xie G, Yang X, Han D, Wang Y, Zhang W, Chen Y. Enteropathogens in children less than 5 years of age with acute diarrhea: a 5-year surveillance study in the Southeast Coast of China. BMC Infect Dis 2016; 16:434. [PMID: 27544130 PMCID: PMC4992557 DOI: 10.1186/s12879-016-1760-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/07/2016] [Indexed: 05/29/2023] Open
Abstract
Background Diarrhea is the second most common cause of death among children less than 5 years of age worldwide. The etiological agents of diarrhea in the southeast coastal area of China were studied from July 2009 to December 2014. Methods A total of the 2318 patients were enrolled in this study and examined for the presence of viruses, bacteria, and parasites. Multiplex real-time PCR was used for the detection of diarrheagenic Escherichia.coli (DEC). DEC strains were tested for susceptibility to a panel of 20 antibiotics using the Kirby-Bauer disc-diffusion method. Results Of the 2318 children with diarrhea, 962 (41.5 %) were positive for at least one pathogen. Rotavirus, human calicivirus (HucV), and DEC were predominant, with detection rates of 19.1 % (443), 17.7 % (411), and 7.6 % (177), respectively. The prevalences of various pathogens in patients of different ages and in different seasons were not the same. The resistance rates of 177 strains of DEC to ampicillin, tetracycline, and cefazolin were 93.2 %, 60.0 %, and 57.7 %, respectively. Conclusions Rotavirus, HucV, and DEC were the main pathogens associated with diarrhea in Zhejiang, China. DEC possessed high levels of antibiotic resistance. Increased monitoring of etiological agents of diarrhea is necessary.
Collapse
Affiliation(s)
- Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Fei Yu
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Xiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Dawei Cui
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Yongzhang Cheng
- Center of Clinical Laboratory, Affiliated Children's Hospital, School of Medicine, Zhejiang University, No. 57, Zhuganxiang Road, Hangzhou, 310052, People's Republic China
| | - Guoliang Xie
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Xianzhi Yang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Dongsheng Han
- Department of Clinical Laboratory, Northern Jiangsu People's Hospital, No. 98, Nantong West Road, Yangzhou, 225001, People's Republic China
| | - Yiyin Wang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Wen Zhang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China. .,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, No. 79, Qingchun Road, Hangzhou, 310003, People's Republic China.
| |
Collapse
|
19
|
Torner N, Martinez A, Broner S, Moreno A, Camps N, Domínguez A. Epidemiology of Acute Gastroenteritis Outbreaks Caused by Human Calicivirus (Norovirus and Sapovirus) in Catalonia: A Two Year Prospective Study, 2010-2011. PLoS One 2016; 11:e0152503. [PMID: 27120472 PMCID: PMC4847761 DOI: 10.1371/journal.pone.0152503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background The epidemiology of cases of acute gastroenteritis (AGE) of viral etiology is a relevant public health issue. Due to underreporting, the study of outbreaks is an accepted approach to investigate their epidemiology. The objective of this study was to investigate the epidemiological characteristics of AGE outbreaks due to norovirus (NoV) and sapovirus (SV) in Catalonia. Material and Methods Prospective study of AGE outbreaks of possible viral etiology notified during two years in Catalonia. NoV and SV were detected by real time reverse transcription polymerase (RT-PCR). Results A total of 101 outbreaks were registered affecting a total of 2756 persons and 12 hospitalizations (hospitalization rate: 0.8x1,000,000 persons-year); 49.5% of outbreaks were foodborne, 45.5% person to person and 5% waterborne. The distribution of outbreaks according to the setting showed a predominance of catering services (39.6%), nursing homes and long term care facilities (26.8%) and schools (11.9%). The median number of cases per outbreak was 17 (range 2–191). The total Incidence rate (IR) was 18.3 per 100,000 persons-years (95%CI: 17.6–19.0). The highest IR was in persons aged ≥65 years (43.6x100,000 (95% CI: 41.0–46.2)) (p<0.001). A total of 1065 samples were analyzed with a positivity rate of 60.8%. 98% of positive samples were NoV (GII 56.3%; GI 4.2%; GII+GI 4.2%; non- typable 33.0%). SV was identified in two person-to-person transmission outbreaks in children. Conclusions These results confirm the relevance of viral AGE outbreaks, both foodborne and person-to-person, especially in institutionalized persons. SV should be taken into account when investigating viral AGE outbreaks.
Collapse
Affiliation(s)
- Nuria Torner
- Public Health Agency of Catalonia, Barcelona, Spain
- CIBER Epidemiología y Salud Pública CIBERESP, Carlos III Health Institute, Madrid, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Ana Martinez
- Public Health Agency of Catalonia, Barcelona, Spain
- CIBER Epidemiología y Salud Pública CIBERESP, Carlos III Health Institute, Madrid, Spain
| | - Sonia Broner
- CIBER Epidemiología y Salud Pública CIBERESP, Carlos III Health Institute, Madrid, Spain
| | | | - Neus Camps
- Public Health Agency of Catalonia, Barcelona, Spain
| | - Angela Domínguez
- CIBER Epidemiología y Salud Pública CIBERESP, Carlos III Health Institute, Madrid, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
20
|
Evaluation of survival of murine norovirus-1 during sauerkraut fermentation and storage under standard and low-sodium conditions. Food Microbiol 2015; 52:119-23. [PMID: 26338124 DOI: 10.1016/j.fm.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 01/22/2023]
Abstract
Sodium reduction strategies have raised a few concerns in regards to possible outbreaks in unpasteurised raw fermented vegetables. Among potential outbreak agents, foodborne viruses are recognized as an important cause of food-borne illnesses. As most of them are acid-resistant, evaluation of the efficacy of lactic fermentation in inactivating enteric viruses must be considered to ensure the safety of these foods. In particular with the sodium reduction trend which could impair adequate fermentation in vegetables, we have challenged sauerkraut fermentation at a final concentration of 4 log TCID50/mL with the murine norovirus (MNV-1). Three sodium chloride concentrations (1.0%, 1.5%, 2.0%) were evaluated in spontaneous and starter fermentation of sauerkraut and were followed during fermentation and over a storage phase of 90 days. Detection of MNV-1 genetic material was carried out by real-time RT-PCR and the infectivity on cell culture. Real-time RT-PCR results showed that viral RNA was still detected after 90 day in sauerkraut under all the different conditions. Furthermore, MNV-1 viral particles were able to infect RAW cells after 90 days of storage with a non-significant viral charge reduction. Sodium reduction has a significant impact on the fermentation processing of sauerkraut but no influence on the destruction of norovirus particles or on their survival.
Collapse
|
21
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
22
|
Xue Y, Pan H, Hu J, Wu H, Li J, Xiao W, Zhang X, Yuan Z, Wu F. Epidemiology of norovirus infections among diarrhea outpatients in a diarrhea surveillance system in Shanghai, China: a cross-sectional study. BMC Infect Dis 2015; 15:183. [PMID: 25884557 PMCID: PMC4438334 DOI: 10.1186/s12879-015-0922-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/01/2015] [Indexed: 01/06/2023] Open
Abstract
Background Norovirus is an important cause of gastroenteritis both in children and adults. In China, few studies have been conducted on adult populations. This study aimed to determine the contribution of norovirus to gastroenteritis, characterize the features of norovirus infections, compare them with other pathogens, and test the effectiveness of the surveillance system. Methods A citywide surveillance network on diarrhea patients was established. Samples were collected with intervals from both children and adults among diarrhea outpatients in hospitals and tested for viruses using rRT-PCR and for bacteria in CDCs. Patient information was acquired through interviews and recorded into a dedicated online system. The Pearsonχ2 test, multivariate logistic regression models and discriminant models were fitted into its comparisons with the non-norovirus group and other pathogens. Results Norovirus was detected in 22.91% of sampled diarrhea patients. The seasonal distribution of norovirus infections was different from non-norovirus patients (p < 0.001), with a half-year peak. Higher proportions of males (p = 0.001, OR = 1.303, 95% CI = 1.110-1.529), local citizens (p < 0.001) and officials/clerks (p = 0.001, OR = 1.348, 95% CI = 1.124-1.618) were affected with norovirus when compared with non-norovirus patients. Diarrhea patients affected with norovirus featured nausea (p < 0.001, OR = 1.418, 95% CI = 1.176-1.709) and vomiting (p < 0.001, OR = 1.969, 95% CI = 1.618-2.398), while fewer manifested fever (p = 0.046, OR = 0.758, 95% CI = 0.577-0.996) and abdominal pain (p = 0.018, OR = 0.815, 95% CI = 0.689-0.965). Children were more vulnerable to rotavirus (p = 0.008, OR = 1.637, 95% CI = 1.136-2.358) and bacteria (p = 0.027, OR = 1.511, 95% CI = 1.053-2.169) than norovirus. There was a seasonal difference between the GI and GII genotypes (p < 0.001). Officials or clerks were more easily affected with GI than GII (p = 0.006, OR = 1.888, 95% CI = 1.205-2.958). Conclusions This study was based on a citywide hospital-sentinel surveillance system with multiple enteric pathogens included. Norovirus was recognized as the most prevalent enteric pathogen in Shanghai. The seasonal peak was from October to April. Males had a higher prevalence than females. Local citizens and officials/clerks were more vulnerable to norovirus than other pathogens. Compared with rotavirus and bacteria, children were less frequently affected by norovirus. Nausea and vomiting were typical of norovirus, whereas fever and abdominal pain were uncommon symptoms of this pathogen. GI and GII infections were centered in different seasons. Officials and clerks were more easily affected by GI than GII. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0922-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Xue
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Hao Pan
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Jiayu Hu
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Huanyu Wu
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Jian Li
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Wenjia Xiao
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Xi Zhang
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Zheng'an Yuan
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| | - Fan Wu
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, West Zhongshan Road, Shanghai, 200336, China.
| |
Collapse
|
23
|
Nausea, Vomiting, and Noninflammatory Diarrhea. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7173487 DOI: 10.1016/b978-1-4557-4801-3.00100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Abstract
Norovirus is the most frequent cause of acute infectious gastroenteritis and it is difficult to control in crowded environments like hospitals and nursing homes. Transmission depends on oral intake of virus deposited in the environment by infectious subjects. Data from volunteer studies indicate that virus concentrations in stool are highly variable, but systematic studies of the time-course of shedding and its individual variation are lacking. This paper quantifies norovirus shedding in a large population of 102 subjects, including asymptomatic shedders, and uses a longitudinal model to generalize shedding patterns. Enhanced surveillance for studies of transmission of norovirus in hospital outbreaks has yielded a considerable number of faecal samples from symptomatic and asymptomatic shedders, both from patients and staff. Norovirus concentrations were determined by real-time PCR. A quantitative dynamic model was fitted to the shedding data, in a multilevel Bayesian framework, to study the time-course of shedding and its variation. The results indicate that shedding in asymptomatic subjects is similar to that in symptomatic infections, both showing considerable variation in peak levels (average 105-109 /g faeces) as well as duration of virus shedding (average 8-60 days). Patients appear to shed higher numbers of virus than staff, for slightly longer durations, but the differences are too small to be significant. Given equal shedding, the greater contribution of symptomatic cases to transmission must be caused by their higher efficiency in spreading these viruses. The results of this study will be helpful for risk studies that need to quantify the deposition of virus in the environment.
Collapse
|
25
|
Novel recombinant GII.P16_GII.13 and GII.P16_GII.3 norovirus strains in Italy. Virus Res 2014; 188:142-5. [DOI: 10.1016/j.virusres.2014.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
|
26
|
El Qazoui M, Oumzil H, Baassi L, El Omari N, Sadki K, Amzazi S, Benhafid M, El Aouad R. Rotavirus and norovirus infections among acute gastroenteritis children in Morocco. BMC Infect Dis 2014; 14:300. [PMID: 24894194 PMCID: PMC4057912 DOI: 10.1186/1471-2334-14-300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background Acute gastroenteritis is a serious cause of child mortality and morbidity in resource-limited countries. A viral etiology is most common, and rotavirus and norovirus are reported to be the leading causative agents. There are still few epidemiological data on the simultaneous occurrence of these viruses in Morocco. The aim of this study was to provide useful epidemiological data on the gastroenteritis associated with rotavirus and norovirus among children aged less than 5 years. Methods From January to December 2011, 335 samples were tested for rotavirus and norovirus using enzyme-linked immunosorbent assay, reverse-transcription-polymerase chain reaction (RT-multiplex PCR) and real-time RT-PCR. Partial sequences of the norovirus were phylogenetically analyzed to determine the genotype. Results The overall rates of rotavirus and norovirus infections were 26.6% and 16.1%, respectively. Mixed viral infections were detected in 9 of 335 stool specimens (2.7%). The most common genotype combination in the rotavirus strains was G1[P8] (51.7%), followed by G2[P4] (10.1%), G2[P8] (4.5%), G9[P8] (3.4%), G4[P8] (3.4%), and G1[P6] (2.3%). Among patients positive for norovirus, 42 (77.8%) tested positive for GII and 12 (22.2%) for GI. Thirty-three (78.6%) of the norovirus GII-positive cases were successfully characterized. Genotype GII.4 was the most prevalent (n = 27; 81.8%), followed by GII.3 (n = 2; 6.1%), GII.13 (n = 2; 6.1%), GII.16 (n = 1; 3%), and GII.17 (n = 1; 3%). Conclusion This study suggests that in Morocco, norovirus is the most frequent cause of acute gastroenteritis after rotavirus, but further enteric viruses need to be integrated in the surveillance system so that a conclusion could be drawn.
Collapse
Affiliation(s)
- Maria El Qazoui
- Immunology-Virology Department, National Institute of Hygiene, Ministry of Health, 27 Avenue Ibn Batouta, Rabat, Morocco.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ifantidou AM, Kachrimanidou M, Markopoulou S, Kansouzidou A, Malisiovas N, Papa A. Molecular epidemiology of noroviruses in Northern Greece, 2005-2006. J Med Virol 2014; 87:170-4. [DOI: 10.1002/jmv.23977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Athina M. Ifantidou
- First Department of Microbiology; Aristotle University of Thessaloniki; Medical School; Thessaloniki Greece
| | - Melina Kachrimanidou
- First Department of Microbiology; Aristotle University of Thessaloniki; Medical School; Thessaloniki Greece
| | - Soultana Markopoulou
- First Department of Microbiology; Aristotle University of Thessaloniki; Medical School; Thessaloniki Greece
| | - Athina Kansouzidou
- Department of Microbiology; Infectious Diseases Hospital; Thessaloniki Greece
| | - Nikolaos Malisiovas
- First Department of Microbiology; Aristotle University of Thessaloniki; Medical School; Thessaloniki Greece
| | - Anna Papa
- First Department of Microbiology; Aristotle University of Thessaloniki; Medical School; Thessaloniki Greece
| |
Collapse
|
28
|
Sabrià A, Pintó RM, Bosch A, Bartolomé R, Cornejo T, Torner N, Martínez A, de Simón M, Domínguez A, Guix S. Molecular and clinical epidemiology of norovirus outbreaks in Spain during the emergence of GII.4 2012 variant. J Clin Virol 2014; 60:96-104. [PMID: 24746342 DOI: 10.1016/j.jcv.2014.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Norovirus (NoV) is the most common cause of acute nonbacterial gastroenteritis outbreaks worldwide, but the impact of NoV infections in Spain remains underestimated. OBJECTIVES This study aimed to determine the prevalence and genetic diversity of NoVs causing outbreaks of acute gastroenteritis in Northeastern Spain (Catalonia) during 2010-2012, and to compare clinical features and levels of viral shedding of the most prevalent GII.4 2012 variant with its predecessor. STUDY DESIGN NoVs were screened and genotyped in stools from gastroenteritis outbreaks. Genetic diversity over a region covering 50% of VP1, and viral loads were analyzed in stools belonging to GII.4 2009 and 2012 variants. RESULTS More than 50% of outbreaks were caused by genotype GII.4, although outbreaks caused by multiple strains, GII.6 and GII.1 were also prevalent. During 2012, GII.4 2012 strains clearly replaced GII.4 2009 strains. The first 2012 strain was detected in February 2011, representing the earliest isolate reported worldwide. Epidemiological features of GII.4 2012 and GII.4 2009 outbreaks were comparable, as well as levels of viral shedding in stools. Finally, analysis of the capsid gene showed a higher amino acid variability and diversification in GII.4 2012, affecting sites located at the P2 domain, but also in the shell domain. CONCLUSIONS Clinical features of outbreaks caused by different genotypes circulating in Spain, including outbreaks caused by GII.4 2012 and GII.4 2009 strains, were comparable. Although shed at similar levels than GII.4 2009 strains, GII.4 2012 strains have clearly replaced the previous predominant strain.
Collapse
Affiliation(s)
- Aurora Sabrià
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Rosa Bartolomé
- Laboratory of Microbiology, Hospital Universitari Vall d'Hebron, Pssg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Thais Cornejo
- Laboratory of Microbiology, Hospital Universitari Vall d'Hebron, Pssg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Núria Torner
- Department of Health, Generalitat of Catalonia, Roc Boronat 81-95, 08005 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Ana Martínez
- Department of Health, Generalitat of Catalonia, Roc Boronat 81-95, 08005 Barcelona, Spain
| | - Mercedes de Simón
- Laboratory of the Public Health Agency, Pl. Lesseps 1, 08024 Barcelona, Spain
| | - Angela Domínguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Department of Public Health, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain.
| | | |
Collapse
|
29
|
Rönnqvist M, Mikkelä A, Tuominen P, Salo S, Maunula L. Ultraviolet Light Inactivation of Murine Norovirus and Human Norovirus GII: PCR May Overestimate the Persistence of Noroviruses Even When Combined with Pre-PCR Treatments. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:48-57. [PMID: 24142397 DOI: 10.1007/s12560-013-9128-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
Transmission of gastroenteritis-causing noroviruses may be significant via contaminated surfaces. Measures for control, e.g. disinfection with ultraviolet irradiation (UV), are therefore necessary for interrupting this transmission. Human norovirus (HuNoV) GII.4 and Murine norovirus (MuNoV) were used to study the efficacy of UV for virus inactivation on dry glass surfaces. MuNoV inactivation was measured using viability assay and the reduction in viral RNA levels for both viruses using reverse transcription quantitative PCR (RT-QPCR). For each UV dose, two parallel sample groups were detected using RT-QPCR: one group was enzymatically pre-PCR treated with Pronase and RNAse enzymes, while the other was not treated enzymatically. In the viability assay, loss of infectivity and a 4-log reduction of MuNoV were observed when the viruses on glass slides were treated with a UV dose of 60 mJ/cm(2) or higher. In the RT-QPCR assay, a steady 2-log decline of MuNoV and HuNoV RNA levels was observed when UV doses were raised from 0 to 150 mJ/cm(2). A distinct difference in RNA levels of pretreated and non-pretreated samples was observed with UV doses of 450-1.8 × 10(3) mJ/cm(2): the RNA levels of untreated samples remained over 1.0 × 10(3) PCR units (pcr-u), while the RNA levels of enzyme-treated samples declined below 100 pcr-u. However, the data show a prominent difference between the persistence of MuNoV observed with the infectivity assay and that of viral RNA detected using RT-QPCR. Methods based on genome detection may overestimate norovirus persistence even when samples are pretreated before genome detection.
Collapse
Affiliation(s)
- M Rönnqvist
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland.
| | - A Mikkelä
- Evira Finnish Food Safety Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - P Tuominen
- Evira Finnish Food Safety Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - S Salo
- VTT Expert Services Ltd, P.O. Box 1001, 02044, Espoo, Finland
| | - L Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| |
Collapse
|
30
|
Heat shock protein 70 enhances mucosal immunity against human norovirus when coexpressed from a vesicular stomatitis virus vector. J Virol 2014; 88:5122-37. [PMID: 24574391 DOI: 10.1128/jvi.00019-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 85:2942-2952, 2011). To further improve the safety and efficacy of the vaccine candidate, heat shock protein 70 (HSP70) was inserted into the rVSV-VP1 backbone vector. A second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of HSP70 as a control for the double insertion. The resultant recombinant viruses (rVSV-HSP70-VP1 and rVSV-Luc-VP1) were significantly more attenuated in cell culture and viral spread in mice than rVSV-VP1. At the inoculation dose of 1.0 × 10(6) PFU, rVSV-HSP70-VP1 triggered significantly higher vaginal IgA than rVSV-VP1 and significantly higher fecal and vaginal IgA responses than rVSV-Luc-VP1, although serum IgG and T cell responses were similar. At the inoculation dose of 5.0 × 10(6) PFU, rVSV-HSP70-VP1 stimulated significantly higher T cell, fecal, and vaginal IgA responses than rVSV-VP1. Fecal and vaginal IgA responses were also significantly increased when combined vaccination of rVSV-VP1 and rVSV-HSP70 was used. Collectively, these data indicate that (i) insertion of an additional gene (HSP70 or Luc) into the rVSV-VP1 backbone further attenuates the VSV-based vaccine in vitro and in vivo, thus improving the safety of the vaccine candidate, and (ii) HSP70 enhances the human NoV-specific mucosal and T cell immunities triggered by a VSV-based human NoV vaccine. IMPORTANCE Human norovirus (NoV) is responsible for more than 95% of acute nonbacterial gastroenteritis worldwide. Currently, there is no vaccine for this virus. Development of a live attenuated vaccine for human NoV has not been possible because it is uncultivable. Thus, a live vector-based vaccine may provide an alternative vaccine strategy. In this study, we developed a vesicular stomatitis virus (VSV)-based human NoV vaccine candidate. We constructed rVSV-HSP70-VP1, coexpressing heat shock protein (HSP70) and capsid (VP1) genes of human NoV, and rVSV-Luc-VP1, coexpressing firefly luciferase (Luc) and VP1 genes. We found that VSVs with a double gene insertion were significantly more attenuated than VSV with a single VP1 insertion (rVSV-VP1). Furthermore, we found that coexpression or coadministration of HSP70 from VSV vector significantly enhanced human NoV-specific mucosal immunity. Collectively, we developed an improved live vectored vaccine candidate for human NoV which will be useful for future clinical studies.
Collapse
|
31
|
Genetic diversity and distribution of human norovirus in China (1999-2011). BIOMED RESEARCH INTERNATIONAL 2014; 2014:196169. [PMID: 24672783 PMCID: PMC3918700 DOI: 10.1155/2014/196169] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/25/2013] [Accepted: 11/02/2013] [Indexed: 01/23/2023]
Abstract
Noroviruses (NoVs) are a leading cause of epidemic and sporadic acute gastroenteritis worldwide. However, the genetic diversity and geographical distribution of NoV isolates from China have not been well described thus far. In this study, all NoV sequences obtained in China from 1999 to 2011 (n = 983), both partial and complete genomes, were downloaded from GenBank. Genotyping and phylogenetic and recombination analyses were performed in order to gain a better understanding of the distribution and genetic diversity of NoVs in China. The results indicated that approximately 90% of NoV sequences were obtained from the coastal regions of China, and most of the NoV sequences from distinct geographical regions appeared to be closely related. GII.4 was the most prevalent genotype, accounting for 64.4% of all genotypes, followed by GII.12 (13.9%) and GII.3 (7.0%). Over the last decade, the GII.4 variants were dominated by successive circulation of GII.4/2002, GII.4/2004, GII.4/2006b, and GII.4/2008, with GII.4/2006b continuing to date. A relatively high frequency of NoV intergenotype recombinants was identified. The most common ORF1/ORF2 intergenotype recombinant was GII.12/GII.4 (n = 11), and the relative frequency was up to 30% among all the recombinant strains (n = 36). These findings may aid in the evaluation and implementation of appropriate measures for monitoring NoV infectious diseases in China.
Collapse
|
32
|
Epidemiological and molecular features of norovirus infections in Italian children affected with acute gastroenteritis. Epidemiol Infect 2014; 142:2326-35. [DOI: 10.1017/s0950268813003373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMMARYDuring a 5-year (2007–2011) surveillance period a total of 435 (15·34%) of 2834 stool specimens from children aged <14 years with acute gastroenteritis tested positive for norovirus and 217 strains were characterized upon partial sequence analysis of the polymerase gene as either genogroup (G)I or GII. Of the noroviruses, 99·2% were GII with the GII.P4 genotype being predominant (80%). GII.P4 variants (Yerseke 2006a, Den Haag 2006b, Apeldoorn 2008, New Orleans 2009) emerged sequentially during the study period. Sequence analysis of the capsid gene of 57 noroviruses revealed that 7·8% were recombinant (ORF1/ORF2) viruses including GII.P7_GII.6, GII.P16_GII.3, GII.P16_GII.13, GII.Pe_GII.2, and GII.Pe_GII.4, never identified before in Italy. GII.P1_GII.1, GII.P2_GII.1, GII.P3_GII.3 and GII.P6_GII.6 strains were also detected. Starting in 2011 a novel GII.4 norovirus with 3–4% nucleotide difference in the polymerase and capsid genes from variant GII.4 New Orleans 2009 was monitored in the local population. Since the epidemiology of norovirus changes rapidly, continuous surveillance is necessary to promptly identify the onset of novel types/variants.
Collapse
|
33
|
Ianiro G, Delogu R, Bonomo P, Fiore L, Ruggeri FM. Molecular analysis of group A rotaviruses detected in adults and adolescents with severe acute gastroenteritis in Italy in 2012. J Med Virol 2014; 86:1073-82. [DOI: 10.1002/jmv.23871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni Ianiro
- National Center for Immunobiologicals Research and Evaluation; Istituto Superiore di Sanità; Rome Italy
| | - Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation; Istituto Superiore di Sanità; Rome Italy
| | - Paolo Bonomo
- National Center for Immunobiologicals Research and Evaluation; Istituto Superiore di Sanità; Rome Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation; Istituto Superiore di Sanità; Rome Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome Italy
| | | |
Collapse
|
34
|
Won YJ, Park JW, Han SH, Cho HG, Kang LH, Lee SG, Ryu SR, Paik SY. Full-genomic analysis of a human norovirus recombinant GII.12/13 novel strain isolated from South Korea. PLoS One 2013; 8:e85063. [PMID: 24391985 PMCID: PMC3877344 DOI: 10.1371/journal.pone.0085063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/22/2013] [Indexed: 01/25/2023] Open
Abstract
Norovirus (NoV) genogroups I and II are frequently recognized as the main causes of acute gastroenteritis and outbreaks of non-bacterial foodborne diseases. Furthermore, variants and recombinant strains of this virus are continuously emerging worldwide. The aim of this study was to identify NoV strains and to investigate and characterize rare genotypes. Stool samples (n = 500) were collected from patients with symptoms of acute gastroenteritis in Korea between December 2004 and November 2007. For analysis of the samples, rapid genotype screening was performed using reverse transcriptase-polymerase chain reaction. Full sequencing, using a newly designed set of 12 primers, revealed GII-12/13 strain. The partial sequence of GII-12/13 strain was compared with published NoV (GII-1 - 14) sequences targeting RdRp and capsid regions using phylogenetic analysis with the SimPlot program, which could evaluate recombination breakpoints. SimPlot analysis was also performed with the strain GII-12/Gifu-96/JPN (AB045603) for the RdRp region and with GII-13/G5175B-83/AUS(DQ379714) for the capsid region. NoV was detected in 19 of the 500 stool samples (3.8%). Genogroup GII-4 was found most frequently (n = 9, 1.8%), followed by GII-3 (n = 4, 0.8%), GII-6 (n = 3, 0.6%), GI-6 (n = 2, 0.4%), and GII-12/13 (n = 1, 0.2%). Importantly, we identified a novel NoV recombinant strain, C9-439 (KF289337), indicating potential risks, which suggested that, recombination occurred in the region between open reading frames 1 and 2 of the GII-12/13 strain and that breakpoints occurred in the polymerase region.
Collapse
Affiliation(s)
- Yu-Jung Won
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Woong Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-ha Han
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Han-Gil Cho
- Division of Virology, Gyeonggi Provincial Research Institute of Public Health and Environment, Suwon, Republic of Korea
| | - Lae-Hyung Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Geun Lee
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Republic of Korea
| | - Sang-Ryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Uddin Khan S, Atanasova KR, Krueger WS, Ramirez A, Gray GC. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review. Emerg Microbes Infect 2013; 2:e92. [PMID: 26038451 PMCID: PMC3880873 DOI: 10.1038/emi.2013.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
Abstract
We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry.
Collapse
Affiliation(s)
- Salah Uddin Khan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Kalina R Atanasova
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Whitney S Krueger
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Alejandro Ramirez
- Veterinary Diagnosis and Production Animal Medicine, Iowa State University , Iowa, IA 5011, USA
| | - Gregory C Gray
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
36
|
Evaluation of the TRCRtest NV-W for norovirus detection in stools by the Transcription-Reverse Transcription Concerted method. J Virol Methods 2013; 193:620-6. [DOI: 10.1016/j.jviromet.2013.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/11/2013] [Accepted: 07/18/2013] [Indexed: 11/20/2022]
|
37
|
Mans J, Murray TY, Kiulia NM, Mwenda JM, Musoke RN, Taylor MB. Human caliciviruses detected in HIV-seropositive children in Kenya. J Med Virol 2013; 86:75-81. [PMID: 24123054 DOI: 10.1002/jmv.23784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
The human caliciviruses (HuCVs) are important causes of gastroenteritis worldwide. Norovirus (NoV) and sapovirus (SaV) have been detected in HIV-seropositive children but the genetic diversity of HuCVs circulating in these individuals is largely unknown. In this study the prevalence and genotype diversity of HuCVs circulating in Kenyan HIV-positive children, with or without diarrhea, from the year 1999 to 2000 was investigated. The overall prevalence of HuCVs was 19% with NoV predominating at 17% (18/105) and SaV present in 5.7% (6/105) of specimens. Human CVs were detected in both symptomatic (24%) and asymptomatic (16%) children. Co-infections with other enteric viruses were detected in 21.6% of children with diarrhea but only in 4.4% of children without diarrhea. Remarkable genetic diversity was observed with 12 genotypes (7 NoV, 5 SaV) being identified in 20 HuCV-infected children. NoV genogroup II (GII) strains predominated with GII.2 and GII.4 each representing 27% of the NoV-positive strains. The GII.4 strain was most closely related to the nonepidemic GII.4 Kaiso 2003 variant. Other NoV genotypes detected were GI.3, GII.6, GII.12, GII.14, and GII.17. Five different SaV genotypes (GI.2, GI.6, GII.1, GII.2, and GII.4) were characterized from six specimens. Diarrheal symptoms were not associated with any specific HuCV genotype. Overall the HuCV genotype distribution detected in this study reflects those in other studies worldwide. The strains detected are closely related to genotypes that have circulated on several continents since the year 2000.
Collapse
Affiliation(s)
- Janet Mans
- Department of Medical Virology, University of Pretoria, Arcadia, Pretoria, South Africa
| | | | | | | | | | | |
Collapse
|
38
|
Menon VK, Sarkar R, Moses PD, Agarwal I, Simon A, Kang G. Norovirus genogroup II gastroenteritis in hospitalized children in South India. Am J Trop Med Hyg 2013; 89:1019-22. [PMID: 24062476 DOI: 10.4269/ajtmh.13-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The distribution of norovirus (NoV) genogroup II in children < 5 years of age admitted to a south Indian hospital with diarrhea was investigated. Viral RNA extracted from 282 stool samples were screened for NoV GII and positive amplicons sequenced. Twenty-eight (9.9%) had NoV GII infection with a median age of 6 months, with more severe episodes of diarrhea among infected (median Vesikari score 13, interquartile range [IQR] 10-15) than children without infection (median score 10, IQR 8-13, P = 0.002). The study documents NoV GII infections as an important cause of gastroenteritis and the genetic diversity of circulating strains.
Collapse
Affiliation(s)
- Vipin Kumar Menon
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India; Departments of Child Health Units I, II and III, Christian Medical College, Vellore, India
| | | | | | | | | | | |
Collapse
|
39
|
Rönnqvist M, Rättö M, Tuominen P, Salo S, Maunula L. Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in the food industry. J Food Prot 2013; 76:1421-8. [PMID: 23905799 DOI: 10.4315/0362-028x.jfp-12-371] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human norovirus (HuNoV), which causes gastroenteritis, can be transmitted to food and food contact surfaces via viruscontaminated hands. To investigate this transmission in food processing environments, we developed a swabbing protocol for environmental samples, evaluated the stability of HuNoV in the swabs, and applied the method in the food industry. Swabs made of polyester, flocked nylon, cotton wool, and microfiber were moistened in either phosphate-buffered saline (PBS) or glycine buffer (pH 9.5) and used to swab four surfaces (latex, plastic, stainless steel, and cucumber) inoculated with HuNoV. HuNoV was eluted with either PBS or glycine buffer and detected with quantitative reverse transcription PCR. HuNoV recoveries were generally higher with an inoculation dose of 100 PCR units than 1,000 PCR units. The highest recoveries were obtained when surfaces were swabbed with microfiber cloth moistened in and eluted with glycine buffer after a HuNoV inoculation dose of 100 PCR units: 66% ± 18% on latex, 89% ±2% on plastic, and 79% ±10% on stainless steel. The highest recovery for cucumber, 45% ±5%, was obtained when swabbing the surface with microfiber cloth and PBS. The stability of HuNoV was tested in microfiber cloths moistened in PBS or glycine buffer. HuNoV RNA was detected from swabs after 3 days at 4 and 22°C, although the RNA levels decreased more rapidly in swabs moistened with glycine buffer than in those moistened with PBS at 22°C. In the field study, 172 microfiber and 45 cotton wool swab samples were taken from environmental surfaces at three food processing companies. Five (5.6%) of 90 swabs collected in 2010 and 7 (8.5%) of 82 swabs collected in 2012 were positive for HuNoV genogroup II; all positive samples were collected with microfiber swabs. Three positive results were obtained from the production line and nine were obtained from the food workers' break room and restroom areas. Swabbing is a powerful tool for HuNoV RNA detection from environmental surfaces and enables investigation of virus transmission during food processing.
Collapse
Affiliation(s)
- Maria Rönnqvist
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
40
|
McFadden N, Arias A, Dry I, Bailey D, Witteveldt J, Evans DJ, Goodfellow I, Simmonds P. Influence of genome-scale RNA structure disruption on the replication of murine norovirus--similar replication kinetics in cell culture but attenuation of viral fitness in vivo. Nucleic Acids Res 2013; 41:6316-31. [PMID: 23630317 PMCID: PMC3695492 DOI: 10.1093/nar/gkt334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/08/2023] Open
Abstract
Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1-7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo.
Collapse
Affiliation(s)
- Nora McFadden
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Armando Arias
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Inga Dry
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Dalan Bailey
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Jeroen Witteveldt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David J. Evans
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ian Goodfellow
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Simmonds
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
41
|
Abstract
Gastroenteritis (GE) and its associated diarrheal diseases remain as one of the top causes of death in the world. Noroviruses (NoVs) are a group of genetically diverse RNA viruses that cause the great majority of nonbacterial gastroenteritis in humans. However, there is still no vaccine licensed for human use to prevent NoV GE. The lack of a tissue culture system and a small animal model further hinders the development of NoV vaccines. Virus-like particles (VLPs) that mimic the antigenic architecture of authentic virions, however, can be produced in insect, mammalian, and plant cells by the expression of the capsid protein. The particulate nature and high-density presentation of viral structure proteins on their surface render VLPs as a premier vaccine platform with superior safety, immunogenicity, and manufacturability. Therefore, this chapter focuses on the development of effective NoV vaccines based on VLPs of capsid proteins. The expression and structure of NoV VLPs, especially VLPs of Norwalk virus, the prototype NoV, are extensively discussed. The ability of NoV VLPs in stimulating a potent systemic and mucosal anti-NoV immunity through oral and intranasal delivery in mice is presented. The advantages of plant expression systems as a novel production platform for VLP-based NoV vaccines are discussed in light of their cost-effectiveness, production speed, and scalability. Recent achievements from the first successful demonstration of NoV VLP production in plant expression system under the current Good Manufacture Practice (cGMP) regulation by the US Food and Drug Administration (FDA) are detailed. Moreover, results of human clinical trials demonstrating the safety and efficacy of insect and plant-derived NoV VLPs are also presented. Due to the diversity of capsid protein among different NoV strains and its rapid antigenic drift, we speculate that vaccine development should focus on multivalent VLP vaccines derived from capsid proteins of the most prevalent strains. With the very recent approval of the first plant-made biologics by the FDA, we also speculate that plant-based production systems will play an important role in manufacturing such multivalent VLP-based NoV vaccines.
Collapse
|
42
|
McAuliffe GN, Anderson TP, Stevens M, Adams J, Coleman R, Mahagamasekera P, Young S, Henderson T, Hofmann M, Jennings LC, Murdoch DR. Systematic application of multiplex PCR enhances the detection of bacteria, parasites, and viruses in stool samples. J Infect 2013; 67:122-9. [PMID: 23603249 DOI: 10.1016/j.jinf.2013.04.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/11/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To determine whether systematic testing of faecal samples with a broad range multiplex PCR increases the diagnostic yield in patients with diarrhoea compared with conventional methods and a clinician initiated testing strategy. METHODS 1758 faecal samples from 1516 patients with diarrhoea submitted to two diagnostic laboratories were tested for viral, bacterial, and parasitic pathogens by Fast-Track Diagnostics multiplex real-time PCR kits and conventional diagnostic tests. RESULTS Multiplex PCR detected pathogens in 530 samples (30%): adenovirus (51, 3%), astrovirus (95, 5%), norovirus (172, 10%), rotavirus (3, 0.2%), Campylobacter jejuni/coli (85, 5%), Salmonella spp. (22, 1%), Clostridium difficile (72, 4%), entero-haemorrhagic Escherichia coli (21, 1%), Cryptosporidium spp. (3, 0.2%), Entamoeba histolytica (1, 0.1%), and Giardia lamblia (59, 3%). In contrast, conventional testing detected a pathogen in 324 (18%) samples. CONCLUSIONS Using a systematic approach to the diagnosis of gastroenteritis improved diagnostic yield. This enhanced detection with PCR was achieved by a combination of improved detection of individual pathogens and detection of pathogens not requested or unable to be tested by conventional tests. This approach also allowed earlier identification for most pathogens and created a workflow which is likely to adapt well for many diagnostic laboratories.
Collapse
Affiliation(s)
- Gary N McAuliffe
- Canterbury Health Laboratories, P O Box 151, Christchurch 8140, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yan Y, Wang HH, Gao L, Ji JM, Ge ZJ, Zhu XQ, He PY, Chen ZW. A one-step multiplex real-time RT-PCR assay for rapid and simultaneous detection of human norovirus genogroup I, II and IV. J Virol Methods 2013; 189:277-82. [PMID: 23454645 DOI: 10.1016/j.jviromet.2013.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
A one-step multiplex real-time reverse transcription-PCR (RT-PCR) assay was developed for one-tube and simultaneous detection of three genogroups of human norovirus, genogroup I, II and IV (GI, GII and GIV). The specificity and sensitivity of the assay were evaluated and 50 samples were tested by using this assay. The results showed that the multiplex assay had high sensitivity and specificity. The amplification efficiencies of the assay were 91.3%, 90.1%, 88.9% and the detection limits were up to 16.9, 6.3, 43.0 copies/reaction respectively for norovirus GI, GII and GIV detection. No cross-reaction with the other examined RNA viruses was observed, and the qualitative analysis of samples showed that the multiplex assay had a good consistency with its corresponding monoplex assays for the detection of norovirus GI, GII and GIV (Kappa values were 0.848, 0.876 and 0.812 respectively).
Collapse
Affiliation(s)
- Yong Yan
- Jiaxing Center for Disease Control and Prevention, Wen Qiao Road 486, Jiaxing 314050, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The simultaneous occurrence of human norovirus and hepatitis E virus in a Norway rat (Rattus norvegicus). Arch Virol 2013; 158:1575-8. [DOI: 10.1007/s00705-013-1646-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
|
45
|
Norovirus outbreaks: a systematic review of commonly implicated transmission routes and vehicles. Epidemiol Infect 2013; 141:1563-71. [PMID: 23433247 DOI: 10.1017/s095026881300006x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Causal mechanisms of norovirus outbreaks are often not revealed. Understanding the transmission route (e.g. foodborne, waterborne, or environmental) and vehicle (e.g. shellfish or recreational water) of a norovirus outbreak, however, is of great public health importance; this information can facilitate interventions for an ongoing outbreak and regulatory action to limit future outbreaks. Towards this goal, we conducted a systematic review to examine whether published outbreak information was associated with the implicated transmission route or vehicle. Genogroup distribution was associated with transmission route and food vehicle, but attack rate and the presence of GII.4 strain were not associated with transmission route, food vehicle, or water vehicle. Attack rate, genogroup distribution, and GII.4 strain distribution also varied by other outbreak characteristics (e.g. setting, season, hemisphere). These relationships suggest that different genogroups exploit different environmental conditions and thereby can be used to predict the likelihood of various transmission routes or vehicles.
Collapse
|
46
|
Menon VK, George S, Aladin F, Nawaz S, Sarkar R, Lopman B, Gray JJ, Gomara MI, Kang G. Comparison of age-stratified seroprevalence of antibodies against norovirus GII in India and the United Kingdom. PLoS One 2013; 8:e56239. [PMID: 23437102 PMCID: PMC3578856 DOI: 10.1371/journal.pone.0056239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Noroviruses are a common cause of gastroenteritis worldwide, but outbreaks appear to be more common in industrialized countries than in developing countries, possibly reflecting differences in exposure and immunity. In this study, age-stratified sera from India and UK populations were analysed for the presence of norovirus-genogroup II specific IgG by a time resolved immunofluorescence assay and relative levels of antibodies in the two populations were compared. Antibody levels were higher among all age groups in India than in UK and increased with age in India, whereas in the UK, levels of antibody decreased in adulthood. These results indicate different patterns of exposure to noroviruses in the two countries.
Collapse
Affiliation(s)
- Vipin Kumar Menon
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Santosh George
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Farah Aladin
- Virus Reference Department, Centre for Infection, Health Protection Agency, London, United Kingdom
| | - Sameena Nawaz
- Virus Reference Department, Centre for Infection, Health Protection Agency, London, United Kingdom
| | - Rajiv Sarkar
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ben Lopman
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James J. Gray
- Norfolk and Norwich University Hospital Specialist Virology Centre, Microbiology Department, NRP Innovation Centre, Norwich, United Kingdom
| | - Miren Iturriza Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Gagandeep Kang
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
- * E-mail:
| |
Collapse
|
47
|
Complete Genome Sequence of a Novel Recombinant Human Norovirus Genogroup II Genotype 4 Strain Associated with an Epidemic during Summer of 2012 in Hong Kong. GENOME ANNOUNCEMENTS 2013; 1:genomeA00140-12. [PMID: 23405359 PMCID: PMC3569363 DOI: 10.1128/genomea.00140-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
Beginning in July 2012, a community-wide increase in the number of norovirus-associated acute gastroenteritis cases was observed during the summer months in Hong Kong. Here, we report the complete genome sequence of a novel recombinant norovirus genogroup II genotype 4 (GII.4) strain, named “2012v,” which is associated with this “early” epidemic outside the usual winter season.
Collapse
|
48
|
Teunis P, Heijne JCM, Sukhrie F, van Eijkeren J, Koopmans M, Kretzschmar M. Infectious disease transmission as a forensic problem: who infected whom? J R Soc Interface 2013; 10:20120955. [PMID: 23389896 DOI: 10.1098/rsif.2012.0955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Observations on infectious diseases often consist of a sample of cases, distinguished by symptoms, and other characteristics, such as onset dates, spatial locations, genetic sequence of the pathogen and/or physiological and clinical data. Cases are often clustered, in space and time, suggesting that they are connected. By defining kernel functions for pairwise analysis of cases, a matrix of transmission probabilities can be estimated. We set up a Bayesian framework to integrate various sources of information to estimate the transmission network. The method is illustrated by analysing data from a multi-year study (2002-2007) of nosocomial outbreaks of norovirus in a large university hospital in the Netherlands. The study included 264 cases, the norovirus genotype was known in approximately 60 per cent of the patients. Combining all the available data allowed likely identification of individual transmission links between most of the cases (72%). This illustrates that the proposed method can be used to accurately reconstruct transmission networks, enhancing our understanding of outbreak dynamics and possibly leading to new insights into how to prevent outbreaks.
Collapse
Affiliation(s)
- Peter Teunis
- Epidemiology and Surveillance Unit, RIVM, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
50
|
Hoa Tran TN, Trainor E, Nakagomi T, Cunliffe NA, Nakagomi O. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J Clin Virol 2012; 56:185-93. [PMID: 23218993 DOI: 10.1016/j.jcv.2012.11.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/07/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022]
Abstract
Noroviruses are a leading cause of epidemic and sporadic acute gastroenteritis worldwide. The development of sensitive molecular diagnostic techniques has revolutionized our understanding of norovirus epidemiology over the past two decades, but norovirus strain types associated with sporadic gastroenteritis remain poorly described. Therefore, we conducted a systematic review of studies performed after 2000 to clarify the genotypic distribution of noroviruses in children (≤18 years of age) with sporadic acute gastroenteritis. Genogroup GII norovirus was the most prevalent, accounting for 96% of all sporadic infections. GII.4 was the most prevalent genotype, accounting for 70% of the capsid genotypes and 60% of the polymerase genotypes, followed by the capsid genotype GII.3 (16%) and the polymerase genotype GII.b (14%). The most common ORF1/ORF2 inter-genotype recombinants were GII.b, GII.12, and GII.4 polymerase genotypes combined with the capsid genotype GII.3, accounting for 19% of all genotyped strains. The distribution of GII.4 variants over the last decade was dominated by successive circulation of GII.4/2002, GII.4/2004, GII.4/2006b, and GII.4/2008 with GII.4/2006b continuing to date. Genotypes GII.4 and GII.3 have predominated in children during the past decade; this is most notable in the global emergence of GII.4 variant noroviruses. As the burden of rotavirus disease decreases following the introduction of childhood immunization programs, the relative importance of norovirus in the etiology of acute childhood gastroenteritis will likely increase. In order for a successful norovirus vaccine to be developed, it should provide immunity against strains with capsid genotypes GII.4 and GII.3.
Collapse
Affiliation(s)
- T N Hoa Tran
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, The Global Center of Excellence, Nagasaki University, Nagasaki, Japan
| | | | | | | | | |
Collapse
|