1
|
Harder EM, Nardelli P, Pistenmaa CL, Ash SY, Balasubramanian A, Bowler RP, Iturrioz Campo M, Diaz AA, Hassoun PM, Leopold JA, Martinez FJ, Nathan SD, Noth I, Podolanczuk AJ, Saggar R, San José Estépar R, Shlobin OA, Wang W, Waxman AB, Putman RK, Washko GR, Choi B, San José Estépar R, Rahaghi FN. Preacinar Arterial Dilation Mediates Outcomes of Quantitative Interstitial Abnormalities in the COPDGene Study. Am J Respir Crit Care Med 2024; 210:1132-1142. [PMID: 38820122 PMCID: PMC11544357 DOI: 10.1164/rccm.202312-2342oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/31/2024] [Indexed: 06/02/2024] Open
Abstract
Rationale: Quantitative interstitial abnormalities (QIAs) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes, including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIAs and its role in the QIA-outcome relationship is unknown. Objectives: To quantify radiographic pulmonary vasculopathy in QIAs and determine whether this vasculopathy mediates the QIA-outcome relationship. Methods: Ever-smokers with QIAs, outcomes, and pulmonary vascular mediator data were identified from the Genetic Epidemiology of COPD (COPDGene) study cohort. CT-based vascular mediators were right ventricle-to-left ventricle ratio, pulmonary artery-to-aorta ratio, and preacinar intraparenchymal arterial dilation (pulmonary artery volume, 5-20 mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were 6-minute walk distance and a modified Medical Council Research Council Dyspnea Scale score of 2 or higher. Adjusted causal mediation analyses were used to determine whether the pulmonary vasculature mediated the QIA effect on outcomes. Associations of preacinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. Measurements and Main Results: Among 8,200 participants, QIA burden correlated positively with vascular damage measures, including preacinar arterial dilation. Preacinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6-minute walk distance (56.2-100%; P < 0.001). Pulmonary artery-to-aorta ratio was a weak mediator, and right ventricle-to-left ventricle ratio was a suppressor. Similar results were observed in the relationship between QIA and modified Medical Council Research Council dyspnea score. Preacinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels, including angiopoietin-2 and N-terminal brain natriuretic peptide. Conclusions: Parenchymal QIAs deleteriously impact outcomes primarily through pulmonary vasculopathy. Preacinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIAs.
Collapse
Affiliation(s)
| | | | | | - Samuel Y Ash
- Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, and School of Medicine, Tufts University, Boston, Massachusetts
| | - Aparna Balasubramanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Russell P Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | | | | | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Steven D Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | | | - Oksana A Shlobin
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Bina Choi
- Division of Pulmonary and Critical Care Medicine
| | | | | |
Collapse
|
2
|
Collins SÉ, Kirby M, Smith BM, Tan W, Bourbeau J, Thompson S, van Diepen S, Jensen D, Stanojevic S, Stickland MK. Pulmonary Vascular Structure and Function Are Related to Exercise Capacity in Health and COPD. Chest 2024:S0012-3692(24)05284-X. [PMID: 39368737 DOI: 10.1016/j.chest.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Although it is generally accepted that aerobic exercise training does not change lung structure or function, some work suggests that greater pulmonary vascular structure and function is associated with higher exercise capacity (peak oxygen consumption [Vo2peak]). RESEARCH QUESTION Is there a cross-sectional association between the pulmonary vasculature and Vo2peak? We hypothesized that those with higher CT blood vessel volumes and capacity of the lungs for carbon monoxide (Dlco) would have higher Vo2peak, independent of airflow limitation. STUDY DESIGN AND METHODS Participants from the Canadian Cohort Obstructive Lung Disease (CanCOLD) study were categorized as follows: never smokers with normal spirometry (n = 263), ever smokers with normal spirometry (n = 407), and COPD: individuals with spirometric airflow obstruction (n = 334). Total vessel volume (TVV), volume for vessels < 5 mm2 in cross-sectional area (BV5), and volume for vessels between 5 and 10 mm2 in cross-sectional area (BV5-10) were generated from CT scans and used as indices of pulmonary vascular structure. Dlco was used as an index of pulmonary microvascular function. Vo2peak was evaluated via incremental cardiopulmonary exercise testing. RESULTS General linear regression models revealed that even after controlling for FEV1, emphysema severity, and body morphology, Dlco, TVV, BV5, and BV5-10, were independently associated with Vo2peak. Interaction effects were observed between COPD and TVV, BV5, and BV5-10, indicating a weaker association between pulmonary vascular volumes and Vo2peak in COPD. INTERPRETATION Our results suggest that pulmonary vascular structure and Dlco are independently associated with Vo2peak, regardless of severity of airflow limitation and emphysema, suggesting that these associations are not limited to COPD.
Collapse
Affiliation(s)
- Sophie É Collins
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Benjamin M Smith
- Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada; Department of Medicine, Columbia University Medical Center, New York, NY
| | - Wan Tan
- University of British Columbia, Vancouver, BC, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada
| | - Stephanie Thompson
- Division of Nephrology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sean van Diepen
- Division of Critical Care, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dennis Jensen
- Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada; Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Sanja Stanojevic
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry University of Alberta, Edmonton, AB, Canada; G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Rajagopal S, Bogaard HJ, Elbaz MSM, Freed BH, Remy-Jardin M, van Beek EJR, Gopalan D, Kiely DG. Emerging multimodality imaging techniques for the pulmonary circulation. Eur Respir J 2024; 64:2401128. [PMID: 39209480 PMCID: PMC11525339 DOI: 10.1183/13993003.01128-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) remains a challenging condition to diagnose, classify and treat. Current approaches to the assessment of PH include echocardiography, ventilation/perfusion scintigraphy, cross-sectional imaging using computed tomography and magnetic resonance imaging, and right heart catheterisation. However, these approaches only provide an indirect readout of the primary pathology of the disease: abnormal vascular remodelling in the pulmonary circulation. With the advent of newer imaging techniques, there is a shift toward increased utilisation of noninvasive high-resolution modalities that offer a more comprehensive cardiopulmonary assessment and improved visualisation of the different components of the pulmonary circulation. In this review, we explore advances in imaging of the pulmonary vasculature and their potential clinical translation. These include advances in diagnosis and assessing treatment response, as well as strategies that allow reduced radiation exposure and implementation of artificial intelligence technology. These emerging modalities hold the promise of developing a deeper understanding of pulmonary vascular disease and the impact of comorbidities. They also have the potential to improve patient outcomes by reducing time to diagnosis, refining classification, monitoring treatment response and improving our understanding of disease mechanisms.
Collapse
Affiliation(s)
| | - Harm J Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
4
|
Li R, Song M, Wang R, Su N, E L. Can CT-Based Arterial and Venous Morphological Markers of Chronic Obstructive Pulmonary Disease Explain Pulmonary Vascular Remodeling? Acad Radiol 2024; 31:22-34. [PMID: 37248100 DOI: 10.1016/j.acra.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
RATIONALE AND OBJECTIVES We analyzed changes in quantitative pulmonary artery and vein parameters to investigate pulmonary vascular remodeling characteristics in chronic obstructive pulmonary disease (COPD) patients. MATERIALS AND METHODS This retrospective study recruited healthy volunteers and COPD patients. Participants undergoing standard-of-care pulmonary function testing (PFT) and computed tomography (CT) evaluations were classified into five groups: normal and Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 1-4. Artery and vein analyses (volumes, numbers, densities, and fractions) were performed using artificial intelligence. RESULTS Among 139 subjects (136 men; mean age, 64years±8 [SD]) with GOLD grade 1 (n = 13), grade 2 (n = 49), grade 3 (n = 42), grade 4 (n = 17) and control subjects (n = 18) enrolled, differences in arterial volumes (BV5-10, BV10+, pulmonary arterial volume) and venous densities (BV5 density, BV10+ density, pulmonary venous density, pulmonary venous branch density) among control and GOLD grades 1-4 were statistically significant (P < .05). Higher pulmonary arterial volumes and lower number were observed with more advanced COPD. The number and volumes of pulmonary veins were lower in GOLD grades 2 and 3 than in GOLD grade 1 but higher in GOLD grade 4 than in GOLD grade 3. The numbers and volumes of pulmonary arteries and veins showed varying positive correlations (γ = 0.18-0.96, P < .05). Pulmonary vascular densities were mildly to moderately correlated with PFT results (γ = 0.236-0.495, P < .05) and were moderately negatively correlated with the emphysema percentage (γ = -0.591 to -0.315, P < .05). CONCLUSION Patients with COPD exhibited pulmonary vascular remodeling, which occurred in the arteries at the early grade of COPD and in the veins at the late grade. CT-based quantitative analysis of pulmonary vasculature may become an imaging marker for early diagnosis and assessment of COPD severity.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China (R.L., M.S., R.W., N.S.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (R.L., M.S., R.W., N.S.)
| | - Mengyi Song
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China (R.L., M.S., R.W., N.S.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (R.L., M.S., R.W., N.S.)
| | - Ronghua Wang
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China (R.L., M.S., R.W., N.S.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (R.L., M.S., R.W., N.S.)
| | - Ningling Su
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China (R.L., M.S., R.W., N.S.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (R.L., M.S., R.W., N.S.)
| | - Linning E
- Department of Radiology, People's Hospital of Longhua, No. 38 Jinglong Construction Rd, Shenzhen 518109, China (L.E).
| |
Collapse
|
5
|
Synn AJ, Harder EM, Nardelli P, Ross JC, Maron BA, Leopold JA, Waxman AB, San José Estépar R, Washko GR, Rahaghi FN. Automated CT-Based Quantification of Pulmonary Veins Shows Greater Central Venous Dilation in Group 2 Pulmonary Hypertension Compared With Group 1 Pulmonary Arterial Hypertension and Control Subjects. CHEST PULMONARY 2023; 1:100020. [PMID: 38144213 PMCID: PMC10745213 DOI: 10.1016/j.chpulm.2023.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Affiliation(s)
- Andrew J Synn
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Eileen M Harder
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Pietro Nardelli
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - James C Ross
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Bradley A Maron
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Jane A Leopold
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Raúl San José Estépar
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - George R Washko
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| | - Farbod N Rahaghi
- Division of Pulmonary and Critical Care (A. J. S.), Beth Israel Deaconess Medical Center, the Division of Pulmonary and Critical Care (E. M. H., A. B. W., G. R. W., and F. N. R.), Department of Radiology (P. N., J. C. R., and R. S. J. E.), and the Division of Cardiovascular Medicine (J. A. L.), Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine (B. A. M.), University of Maryland School of Medicine, and the University of Maryland-Institute for Health Computing (B. A. M.), Bethesda, MD
| |
Collapse
|
6
|
Hassan SM, Nardelli P, Minhas JK, Ash SY, Estépar RSJ, Antkowiak MC, Badlam JB, Piazza G, Estépar RSJ, Washko GR, Rahaghi FN. CT imaging determinants of persistent hypoxemia in acute intermediate-risk pulmonary embolism. J Thromb Thrombolysis 2023:10.1007/s11239-023-02813-x. [PMID: 37140805 DOI: 10.1007/s11239-023-02813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
The factors associated with persistent hypoxemia after pulmonary embolus (PE) are not well understood. Predicting the need for oxygen post discharge at the time of diagnosis using available CT imaging will enable better discharge planning. To examine the relationship between CT derived imaging markers (automated computation of arterial small vessel fraction, pulmonary artery diameter to aortic diameter ratio (PA:A), right to left ventricular diameter ratio (RV:LV) and new oxygen requirement at the time of discharge in patients diagnosed with acute intermediate-risk PE. CT measurements were obtained in a retrospective cohort of patients with acute-intermediate risk PE admitted to Brigham and Women's Hospital between 2009 and 2017. Twenty one patients without a history of lung disease requiring home oxygen and 682 patients without discharge oxygen requirements were identified. There was an increased median PA:A ratio (0.98 vs. 0.92, p = 0.02) and arterial small vessel fraction (0.32 vs. 0.39, p = 0.001) in the oxygen-requiring group], but no difference in the median RV:LV ratio (1.20 vs. 1.20, p = 0.74). Being in the upper quantile for the arterial small vessel fraction was associated with decreased odds of oxygen requirement (OR 0.30 [0.10-0.78], p = 0.02). Loss of arterial small vessel volume as measured by arterial small vessel fraction and an increase in the PA:A ratio at the time of diagnosis were associated with the presence of persistent hypoxemia on discharge in acute intermediate-risk PE.
Collapse
Affiliation(s)
- Syed Moin Hassan
- Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA.
| | - Pietro Nardelli
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasleen K Minhas
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rubén San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - MaryEllen C Antkowiak
- Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Jessica B Badlam
- Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory Piazza
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Farbod N Rahaghi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Huang X, Yin W, Shen M, Wang X, Ren T, Wang L, Liu M, Guo Y. Contributions of Emphysema and Functional Small Airway Disease on Intrapulmonary Vascular Volume in COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1951-1961. [PMID: 36045693 PMCID: PMC9423118 DOI: 10.2147/copd.s368974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have demonstrated that there is a certain correlation between emphysema and changes in pulmonary small blood vessels in patients with chronic obstructive pulmonary disease (COPD), but most of them were limited to the investigation of the inspiratory phase. The emphysema indicators need to be further optimized. Based on the parametric response mapping (PRM) method, this study aimed to investigate the effect of emphysema and functional small airway disease on intrapulmonary vascular volume (IPVV). Methods This retrospective study enrolled 63 healthy subjects and 47 COPD patients, who underwent both inspiratory and expiratory CT scans of the chest and pulmonary function tests (PFTs). Inspiratory and expiratory IPVV were measured by using an automatic pulmonary vessels integration segmentation approach, the ratio of emphysema volume (Emph%), functional small airway disease volume (fsAD%), and normal areas volume (Normal%) were quantified by the PRM method for biphasic CT scans. The participants were grouped according to PFTs. Analysis of variance (ANOVA) and Kruskal–Wallis H-test were used to analyze the differences in indicators between different groups. Then, Spearman’s rank correlation coefficients were used to analyze the correlation between Emph%, fsAD%, Normal%, PFTs, and IPVV. Finally, multiple linear regression was applied to analyze the effects of Emph% and fsAD% on IPVV. Results Differences were found in age, body mass index (BMI), smoking index, FEV1%, FEV1/forced vital capacity (FVC), expiratory IPVV, IPVV relative value, IPVV difference value, Emph%, fsAD%, and Normal% between the groups (P<0.05). A strong correlation was established between the outcomes of PFTs and quantitative CT indexes. Finally, the effect of Emph% was more significant than that of fsAD% on expiratory IPVV, IPVV difference value, and IPVV relative value. Conclusion IPVV may have a potential value in assessing COPD severity and is significantly affected by emphysema.
Collapse
Affiliation(s)
- Xiaoqi Huang
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Weiling Yin
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Min Shen
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Xionghui Wang
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Tao Ren
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Lei Wang
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Youmin Guo
- Department of Radiology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| |
Collapse
|
8
|
Alenezi F, Covington TA, Mukherjee M, Mathai SC, Yu PB, Rajagopal S. Novel Approaches to Imaging the Pulmonary Vasculature and Right Heart. Circ Res 2022; 130:1445-1465. [PMID: 35482838 PMCID: PMC9060389 DOI: 10.1161/circresaha.121.319990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increased appreciation for the importance of the right heart and pulmonary circulation in several disease states across the spectrum of pulmonary hypertension and left heart failure. However, assessment of the structure and function of the right heart and pulmonary circulation can be challenging, due to the complex geometry of the right ventricle, comorbid pulmonary airways and parenchymal disease, and the overlap of hemodynamic abnormalities with left heart failure. Several new and evolving imaging modalities interrogate the right heart and pulmonary circulation with greater diagnostic precision. Echocardiographic approaches such as speckle-tracking and 3-dimensional imaging provide detailed assessments of regional systolic and diastolic function and volumetric assessments. Magnetic resonance approaches can provide high-resolution views of cardiac structure/function, tissue characterization, and perfusion through the pulmonary vasculature. Molecular imaging with positron emission tomography allows an assessment of specific pathobiologically relevant targets in the right heart and pulmonary circulation. Machine learning analysis of high-resolution computed tomographic lung scans permits quantitative morphometry of the lung circulation without intravenous contrast. Inhaled magnetic resonance imaging probes, such as hyperpolarized 129Xe magnetic resonance imaging, report on pulmonary gas exchange and pulmonary capillary hemodynamics. These approaches provide important information on right ventricular structure and function along with perfusion through the pulmonary circulation. At this time, the majority of these developing technologies have yet to be clinically validated, with few studies demonstrating the utility of these imaging biomarkers for diagnosis or monitoring disease. These technologies hold promise for earlier diagnosis and noninvasive monitoring of right heart failure and pulmonary hypertension that will aid in preclinical studies, enhance patient selection and provide surrogate end points in clinical trials, and ultimately improve bedside care.
Collapse
Affiliation(s)
- Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | | - Steve C. Mathai
- Johns Hopkins Division of Pulmonary and Critical Care Medicine, Baltimore, MD
| | - Paul B. Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
9
|
Cao X, Gao X, Yu N, Shi M, Wei X, Huang X, Xu S, Pu J, Jin C, Guo Y. Potential Value of Expiratory CT in Quantitative Assessment of Pulmonary Vessels in COPD. Front Med (Lausanne) 2021; 8:761804. [PMID: 34722596 PMCID: PMC8551380 DOI: 10.3389/fmed.2021.761804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate the associations between intrapulmonary vascular volume (IPVV) depicted on inspiratory and expiratory CT scans and disease severity in COPD patients, and to determine which CT parameters can be used to predict IPVV. Methods: We retrospectively collected 89 CT examinations acquired on COPD patients from an available database. All subjects underwent both inspiratory and expiratory CT scans. We quantified the IPVV, airway wall thickness (WT), the percentage of the airway wall area (WA%), and the extent of emphysema (LAA%−950) using an available pulmonary image analysis tool. The underlying relationship between IPVV and COPD severity, which was defined as mild COPD (GOLD stage I and II) and severe COPD (GOLD stage III and IV), was analyzed using the Student's t-test (or Mann-Whitney U-test). The correlations of IPVV with pulmonary function tests (PFTs), LAA%−950, and airway parameters for the third to sixth generation bronchus were analyzed using the Pearson or Spearman's rank correlation coefficients and multiple stepwise regression. Results: In the subgroup with only inspiratory examinations, the correlation coefficients between IPVV and PFT measures were −0.215 ~ −0.292 (p < 0.05), the correlation coefficients between IPVV and WT3−6 were 0.233 ~ 0.557 (p < 0.05), and the correlation coefficient between IPVV and LAA%−950 were 0.238 ~ 0.409 (p < 0.05). In the subgroup with only expiratory scan, the correlation coefficients between IPVV and PFT measures were −0.238 ~ −0.360 (p < 0.05), the correlation coefficients between IPVV and WT3−6 were 0.260 ~ 0.566 (p < 0.05), and the correlation coefficient between IPVV and LAA%−950 were 0.241 ~ 0.362 (p < 0.05). The multiple stepwise regression analyses demonstrated that WT were independently associated with IPVV (P < 0.05). Conclusion: The expiratory CT scans can provide a more accurate assessment of COPD than the inspiratory CT scans, and the airway wall thickness maybe an independent predictor of pulmonary vascular alteration in patients with COPD.
Collapse
Affiliation(s)
- Xianxian Cao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Diagnostic Imaging, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Gao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Medical Imaging Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Nan Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meijuan Shi
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Wei
- Department of Respiratory Medicine, The Ninth Hospital of Xi'an Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqi Huang
- Department of Radiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Shudi Xu
- Department of Respiratory Medicine, The Ninth Hospital of Xi'an Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiantao Pu
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chenwang Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Youmin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Sweatt AJ, Reddy R, Rahaghi FN, Al-Naamani N. What's new in pulmonary hypertension clinical research: lessons from the best abstracts at the 2020 American Thoracic Society International Conference. Pulm Circ 2021; 11:20458940211040713. [PMID: 34471517 PMCID: PMC8404658 DOI: 10.1177/20458940211040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
Collapse
Affiliation(s)
- Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Raju Reddy
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nadine Al-Naamani
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - on behalf of the American Thoracic Society Pulmonary Circulation Assembly Early Career Working Group
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Rahaghi FN, Hilton JF, Corrêa RA, Loureiro C, Ota-Arakaki JS, Verrastro CGY, Lee MH, Mickael C, Nardelli P, Systrom DA, Waxman AB, Washko GR, San José Estépar R, Graham BB, Oliveira RKF. Arterial vascular volume changes with haemodynamics in schistosomiasis-associated pulmonary arterial hypertension. Eur Respir J 2021; 57:2003914. [PMID: 33446601 PMCID: PMC8106660 DOI: 10.1183/13993003.03914-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/19/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Farbod N Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joan F Hilton
- Dept of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ricardo A Corrêa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Jaquelina S Ota-Arakaki
- Division of Respiratory Diseases, Dept of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Michael H Lee
- Pulmonary Sciences and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Claudia Mickael
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz medical campus, Aurora, CO, USA
| | - Pietro Nardelli
- Applied Chest Imaging Laboratory, Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Systrom
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Pulmonary Sciences and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rudolf K F Oliveira
- Division of Respiratory Diseases, Dept of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
12
|
Cigarette Smoke Exposure and Radiographic Pulmonary Vascular Morphology in the Framingham Heart Study. Ann Am Thorac Soc 2020; 16:698-706. [PMID: 30714821 DOI: 10.1513/annalsats.201811-795oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoke exposure is a risk factor for many lung diseases, and histologic studies suggest that tobacco-related vasoconstriction and vessel loss plays a role in the development of emphysema. However, it remains unclear how tobacco affects the pulmonary vasculature in general populations with a typical range of tobacco exposure, and whether these changes are detectable by radiographic methods. Objectives: To determine whether tobacco exposure in a generally healthy population manifests as lower pulmonary blood vessel volumes and vascular pruning on imaging. Methods: A total of 2,410 Framingham Heart Study participants with demographic data and smoking history underwent volumetric whole-lung computed tomography from 2008 to 2011. Automated algorithms calculated the total blood volume of all intrapulmonary vessels (TBV), smaller peripheral vessels (defined as cross-sectional area <5 mm2 [BV5]), and the relative fraction of small vessels (BV5/TBV). Tobacco exposure was assessed as smoking status, cumulative pack-years, and second-hand exposure. We constructed multivariable linear regression models to evaluate associations of cigarette exposure and pulmonary blood vessel volume measures, adjusting for demographic covariates, including age, sex, height, weight, education, occupation, and median neighborhood income. Results: All metrics of tobacco exposure (including smoking status, pack-years, and second-hand exposure) were consistently associated with higher absolute pulmonary blood vessel volume, higher small vessel volume, and/or higher small vessel fraction. For example, ever-smokers had a 4.6 ml higher TBV (95% confidence interval [CI] = 2.9-6.3, P < 0.001), 2.1 ml higher BV5 (95% CI = 1.3-2.9, P < 0.001), and 0.28 percentage-point-higher BV5/TBV (95% CI = 0.03-0.52, P = 0.03) compared with never-smokers. These associations remained significant after adjustment for percent predicted forced expiratory volume in 1 second, cardiovascular comorbidities, and did not differ based on presence or absence of airflow obstruction. Conclusions: Using computed tomographic imaging, we found that cigarette exposure was associated with higher pulmonary blood vessel volumes, especially in the smaller peripheral vessels. Although, histologically, tobacco-related vasculopathy is characterized by vessel narrowing and loss, our results suggest that radiographic vascular pruning may not be a surrogate of these pathologic changes.
Collapse
|
13
|
Washko GR, Nardelli P, Ash SY, Vegas Sanchez-Ferrero G, Rahaghi FN, Come CE, Dransfield MT, Kalhan R, Han MK, Bhatt SP, Wells JM, Aaron CP, Diaz AA, Ross JC, Cuttica MJ, Labaki WW, Querejeta Roca G, Shah AM, Young K, Kinney GL, Hokanson JE, Agustí A. Arterial Vascular Pruning, Right Ventricular Size, and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. A Longitudinal Observational Study. Am J Respir Crit Care Med 2019; 200:454-461. [PMID: 30758975 PMCID: PMC6701031 DOI: 10.1164/rccm.201811-2063oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/05/2023] Open
Abstract
Rationale: Cor pulmonale (right ventricular [RV] dilation) and cor pulmonale parvus (RV shrinkage) are both described in chronic obstructive pulmonary disease (COPD). The identification of emphysema as a shared risk factor suggests that additional disease characterization is needed to understand these widely divergent cardiac processes.Objectives: To explore the relationship between computed tomography measures of emphysema and distal pulmonary arterial morphology with RV volume, and their association with exercise capacity and mortality in ever-smokers with COPD enrolled in the COPDGene Study.Methods: Epicardial (myocardium and chamber) RV volume (RVEV), distal pulmonary arterial blood vessel volume (arterial BV5: vessels <5 mm2 in cross-section), and objective measures of emphysema were extracted from 3,506 COPDGene computed tomography scans. Multivariable linear and Cox regression models and the log-rank test were used to explore the association between emphysema, arterial BV5, and RVEV with exercise capacity (6-min-walk distance) and all-cause mortality.Measurements and Main Results: The RVEV was approximately 10% smaller in Global Initiative for Chronic Obstructive Lung Disease stage 4 versus stage 1 COPD (P < 0.0001). In multivariable modeling, a 10-ml decrease in arterial BV5 (pruning) was associated with a 1-ml increase in RVEV. For a given amount of emphysema, relative preservation of the arterial BV5 was associated with a smaller RVEV. An increased RVEV was associated with reduced 6-minute-walk distance and in those with arterial pruning an increased mortality.Conclusions: Pulmonary arterial pruning is associated with clinically significant increases in RV volume in smokers with COPD and is related to exercise capacity and mortality in COPD.Clinical trial registered with www.clinicaltrials.gov (NCT00608764).
Collapse
Affiliation(s)
| | | | - Samuel Y. Ash
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | | | - Carolyn E. Come
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Mark T. Dransfield
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ravi Kalhan
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Surya P. Bhatt
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - J. Michael Wells
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - James C. Ross
- Applied Chest Imaging Laboratory, Department of Radiology
| | - Michael J. Cuttica
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Amil M. Shah
- Division of Cardiovascular, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Kendra Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Gregory L. Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - for the COPDGene Investigators
- Division of Pulmonary and Critical Care, Department of Medicine
- Applied Chest Imaging Laboratory, Department of Radiology
- Department of Anesthesia, and
- Division of Cardiovascular, Brigham and Women’s Hospital, Boston, Massachusetts
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
- Hospital Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Rahaghi FN, Argemí G, Nardelli P, Domínguez-Fandos D, Arguis P, Peinado VI, Ross JC, Ash SY, de La Bruere I, Come CE, Diaz AA, Sánchez M, Washko GR, Barberà JA, San José Estépar R. Pulmonary vascular density: comparison of findings on computed tomography imaging with histology. Eur Respir J 2019; 54:1900370. [PMID: 31196942 PMCID: PMC7007984 DOI: 10.1183/13993003.00370-2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/11/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Exposure to cigarette smoke has been shown to lead to vascular remodelling. Computed tomography (CT) imaging measures of vascular pruning have been associated with pulmonary vascular disease, an important morbidity associated with smoking. In this study we compare CT-based measures of distal vessel loss to histological vascular and parenchymal changes. METHODS A retrospective review of 80 patients who had undergone lung resection identified patients with imaging appropriate for three-dimensional (3D) vascular reconstruction (n=18) and a second group for two-dimensional (2D) analysis (n=19). Measurements of the volume of the small vessels (3D) and the cross-sectional area of the small vessels (<5 mm2 cross-section) were computed. Histological measures of cross-sectional area of the vasculature and loss of alveoli septa were obtained for all subjects. RESULTS The 2D cross-sectional area of the vasculature on CT imaging was associated with the histological vascular cross-sectional area (r=0.69; p=0.001). The arterial small vessel volume assessed by CT correlated with the histological vascular cross-sectional area (r=0.50; p=0.04), a relationship that persisted even when adjusted for CT-derived measures of emphysema in a regression model. CONCLUSIONS Loss of small vessel volume in CT imaging of smokers is associated with histological loss of vascular cross-sectional area. Imaging-based quantification of pulmonary vasculature provides a noninvasive method to study the multiscale effects of smoking on the pulmonary circulation.
Collapse
Affiliation(s)
- Farbod N Rahaghi
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| | - Gemma Argemí
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Equal contributors on this article
| | - Pietro Nardelli
- Dept of Radiology, Harvard School of Medicine, Boston, MA, USA
| | - David Domínguez-Fandos
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pedro Arguis
- Dept of Radiology, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Víctor I Peinado
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Respiratory Diseases (CIBERES), Madrid Spain
| | - James C Ross
- Dept of Radiology, Harvard School of Medicine, Boston, MA, USA
| | - Samuel Y Ash
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Isaac de La Bruere
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolyn E Come
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alejandro A Diaz
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo Sánchez
- Dept of Radiology, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - George R Washko
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| | - Joan Albert Barberà
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Respiratory Diseases (CIBERES), Madrid Spain
- Equal contributors on this article
| | - Raúl San José Estépar
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| |
Collapse
|
15
|
Bhatt SP, Washko GR, Hoffman EA, Newell JD, Bodduluri S, Diaz AA, Galban CJ, Silverman EK, San José Estépar R. Imaging Advances in Chronic Obstructive Pulmonary Disease. Insights from the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study. Am J Respir Crit Care Med 2019; 199:286-301. [PMID: 30304637 PMCID: PMC6363977 DOI: 10.1164/rccm.201807-1351so] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, which began in 2007, is an ongoing multicenter observational cohort study of more than 10,000 current and former smokers. The study is aimed at understanding the etiology, progression, and heterogeneity of chronic obstructive pulmonary disease (COPD). In addition to genetic analysis, the participants have been extensively characterized by clinical questionnaires, spirometry, volumetric inspiratory and expiratory computed tomography, and longitudinal follow-up, including follow-up computed tomography at 5 years after enrollment. The purpose of this state-of-the-art review is to summarize the major advances in our understanding of COPD resulting from the imaging findings in the COPDGene study. Imaging features that are associated with adverse clinical outcomes include early interstitial lung abnormalities, visual presence and pattern of emphysema, the ratio of pulmonary artery to ascending aortic diameter, quantitative evaluation of emphysema, airway wall thickness, and expiratory gas trapping. COPD is characterized by the early involvement of the small conducting airways, and the addition of expiratory scans has enabled measurement of small airway disease. Computational advances have enabled indirect measurement of nonemphysematous gas trapping. These metrics have provided insights into the pathogenesis and prognosis of COPD and have aided early identification of disease. Important quantifiable extrapulmonary findings include coronary artery calcification, cardiac morphology, intrathoracic and extrathoracic fat, and osteoporosis. Current active research includes identification of novel quantitative measures for emphysema and airway disease, evaluation of dose reduction techniques, and use of deep learning for phenotyping COPD.
Collapse
Affiliation(s)
- Surya P. Bhatt
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - John D. Newell
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sandeep Bodduluri
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Craig J. Galban
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | | | - Raúl San José Estépar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - for the COPDGene Investigators
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
- Department of Radiology, National Jewish Health, Denver, Colorado
| |
Collapse
|
16
|
Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, San Jose Estepar R. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2428-2440. [PMID: 29993996 PMCID: PMC6214740 DOI: 10.1109/tmi.2018.2833385] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent studies show that pulmonary vascular diseases may specifically affect arteries or veins through different physiologic mechanisms. To detect changes in the two vascular trees, physicians manually analyze the chest computed tomography (CT) image of the patients in search of abnormalities. This process is time consuming, difficult to standardize, and thus not feasible for large clinical studies or useful in real-world clinical decision making. Therefore, automatic separation of arteries and veins in CT images is becoming of great interest, as it may help physicians to accurately diagnose pathological conditions. In this paper, we present a novel, fully automatic approach to classify vessels from chest CT images into arteries and veins. The algorithm follows three main steps: first, a scale-space particles segmentation to isolate vessels; then a 3-D convolutional neural network (CNN) to obtain a first classification of vessels; finally, graph-cuts' optimization to refine the results. To justify the usage of the proposed CNN architecture, we compared different 2-D and 3-D CNNs that may use local information from bronchus- and vessel-enhanced images provided to the network with different strategies. We also compared the proposed CNN approach with a random forests (RFs) classifier. The methodology was trained and evaluated on the superior and inferior lobes of the right lung of 18 clinical cases with noncontrast chest CT scans, in comparison with manual classification. The proposed algorithm achieves an overall accuracy of 94%, which is higher than the accuracy obtained using other CNN architectures and RF. Our method was also validated with contrast-enhanced CT scans of patients with chronic thromboembolic pulmonary hypertension to demonstrate that our model generalizes well to contrast-enhanced modalities. The proposed method outperforms state-of-the-art methods, paving the way for future use of 3-D CNN for artery/vein classification in CT images.
Collapse
|
17
|
Ash SY, Rahaghi FN, Come CE, Ross JC, Colon AG, Cardet-Guisasola JC, Dunican EM, Bleecker ER, Castro M, Fahy JV, Fain SB, Gaston BM, Hoffman EA, Jarjour NN, Mauger DT, Wenzel SE, Levy BD, San Jose Estepar R, Israel E. Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. Am J Respir Crit Care Med 2018; 198:39-50. [PMID: 29672122 PMCID: PMC6034125 DOI: 10.1164/rccm.201712-2426oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Loss of the peripheral pulmonary vasculature, termed vascular pruning, is associated with disease severity in patients with chronic obstructive pulmonary disease. OBJECTIVES To determine if pulmonary vascular pruning is associated with asthma severity and exacerbations. METHODS We measured the total pulmonary blood vessel volume (TBV) and the blood vessel volume of vessels less than 5 mm2 in cross-sectional area (BV5) and of vessels less than 10 mm2 (BV10) in cross-sectional area on noncontrast computed tomographic scans of participants from the Severe Asthma Research Program. Lower values of the BV5 to TBV ratio (BV5/TBV) and the BV10 to TBV ratio (BV10/TBV) represented vascular pruning (loss of the peripheral pulmonary vasculature). MEASUREMENTS AND MAIN RESULTS Compared with healthy control subjects, patients with severe asthma had more pulmonary vascular pruning. Among those with asthma, those with poor asthma control had more pruning than those with well-controlled disease. Pruning of the pulmonary vasculature was also associated with lower percent predicted FEV1 and FVC, greater peripheral and sputum eosinophilia, and higher BAL serum amyloid A/lipoxin A4 ratio but not with low-attenuation area or with sputum neutrophilia. Compared with individuals with less pruning, individuals with the most vascular pruning had 150% greater odds of reporting an asthma exacerbation (odds ratio, 2.50; confidence interval, 1.05-5.98; P = 0.039 for BV10/TBV) and reported 45% more asthma exacerbations during follow-up (incidence rate ratio, 1.45; confidence interval, 1.02-2.06; P = 0.036 for BV10/TBV). CONCLUSIONS Pruning of the peripheral pulmonary vasculature is associated with asthma severity, control, and exacerbations, and with lung function and eosinophilia.
Collapse
Affiliation(s)
- Samuel Y. Ash
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Carolyn E. Come
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James C. Ross
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Alysha G. Colon
- College of Medicine, University of Florida, Gainesville, Florida
| | | | - Eleanor M. Dunican
- St. Vincent’s University Hospital, University College Dublin, Dublin, Ireland
| | - Eugene R. Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Sean B. Fain
- Department of Medical Physics
- Department of Radiology
- Department of Biomedical Engineering, and
| | - Benjamin M. Gaston
- Division of Pediatric Allergy/Immunology and
- Division of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital and Cleveland Medical Center, Cleveland, Ohio
| | - Eric A. Hoffman
- Department of Radiology
- Department of Biomedical Engineering, and
- Department of Medicine, University of Iowa, Iowa City, Iowa
| | - Nizar N. Jarjour
- Division of Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - David T. Mauger
- Division of Biostatistics and Bioinformatics, Eberly College of Science, Penn State University, University Park, Pennsylvania; and
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine and
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine and
| | - SARP Investigators
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
- College of Medicine, University of Florida, Gainesville, Florida
- Division of Allergy and Immunology, Department of Medicine, University of South Florida, Tampa, Florida
- St. Vincent’s University Hospital, University College Dublin, Dublin, Ireland
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
- Department of Medical Physics
- Department of Radiology
- Department of Biomedical Engineering, and
- Division of Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
- Division of Pediatric Allergy/Immunology and
- Division of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital and Cleveland Medical Center, Cleveland, Ohio
- Department of Radiology
- Department of Biomedical Engineering, and
- Department of Medicine, University of Iowa, Iowa City, Iowa
- Division of Biostatistics and Bioinformatics, Eberly College of Science, Penn State University, University Park, Pennsylvania; and
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Pienn M, Burgard C, Payer C, Avian A, Urschler M, Stollberger R, Olschewski A, Olschewski H, Johnson T, Meinel FG, Bálint Z. Healthy Lung Vessel Morphology Derived From Thoracic Computed Tomography. Front Physiol 2018; 9:346. [PMID: 29755360 PMCID: PMC5932382 DOI: 10.3389/fphys.2018.00346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the lung vessel morphology in healthy subjects is necessary to improve our understanding about the functional network of the lung and to recognize pathologic deviations beyond the normal inter-subject variation. Established values of normal lung morphology have been derived from necropsy material of only very few subjects. In order to determine morphologic readouts from a large number of healthy subjects, computed tomography pulmonary angiography (CTPA) datasets, negative for pulmonary embolism, and other thoracic pathologies, were analyzed using a fully-automatic, in-house developed artery/vein separation algorithm. The number, volume, and tortuosity of the vessels in a diameter range between 2 and 10 mm were determined. Visual inspection of all datasets was used to exclude subjects with poor image quality or inadequate artery/vein separation from the analysis. Validation of the algorithm was performed manually by a radiologist on randomly selected subjects. In 123 subjects (men/women: 55/68), aged 59 ± 17 years, the median overlap between visual inspection and fully-automatic segmentation was 94.6% (69.2–99.9%). The median number of vessel segments in the ranges of 8–10, 6–8, 4–6, and 2–4 mm diameter was 9, 34, 134, and 797, respectively. Number of vessel segments divided by the subject's lung volume was 206 vessels/L with arteries and veins contributing almost equally. In women this vessel density was about 15% higher than in men. Median arterial and venous volumes were 1.52 and 1.54% of the lung volume, respectively. Tortuosity was best described with the sum-of-angles metric and was 142.1 rad/m (138.3–144.5 rad/m). In conclusion, our fully-automatic artery/vein separation algorithm provided reliable measures of pulmonary arteries and veins with respect to age and gender. There was a large variation between subjects in all readouts. No relevant dependence on age, gender, or vessel type was observed. These data may provide reference values for morphometric analysis of lung vessels.
Collapse
Affiliation(s)
- Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Caroline Burgard
- Clinic and Policlinic of Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Christian Payer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Faculty of Computer Science and Biomedical Engineering, Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | - Alexander Avian
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Martin Urschler
- Faculty of Computer Science and Biomedical Engineering, Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria.,Ludwig Boltzmann Institute for Clinical-Forensic Imaging, Graz, Austria
| | - Rudolf Stollberger
- Faculty of Computer Science and Biomedical Engineering, Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Felix G Meinel
- Department of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|