1
|
Ziccardi S, Timanus S, Ashrafzadehkian G, Guy SJ, Hawe RL. Characterization of bilateral reaching development using augmented reality games. Hum Mov Sci 2024; 96:103254. [PMID: 39084100 PMCID: PMC11404352 DOI: 10.1016/j.humov.2024.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Bilateral coordination is commonly impaired in neurodevelopmental conditions including cerebral palsy, developmental coordination disorder, and autism spectrum disorder. However, we lack objective clinical assessments that can quantify bilateral coordination in a clinically feasible manner and determine age-based norms to identify impairments. The objective of this study was to use augmented reality and computer vision to characterize bilateral reaching abilities in typically developing children. Typically developing children (n = 133) ages 6-17 years completed symmetric and asymmetric bilateral reaching tasks in an augmented reality game environment. We analyzed the number of target pairs they could reach in 50 s as well as the time lag between their hands reaching the targets. We found that performance on both tasks developed in parallel, with development slowing but not plateauing after age 12. Children performed better on the symmetric task than asymmetric, both in targets reached and with shorter hand lags. Variability between children in hand lag decreased with age. We also found gender differences with females outperforming males, which were most pronounced in the 10-11 year olds. Overall, this study demonstrates parallel development through childhood and adolescence of symmetric and asymmetric reaching abilities. Furthermore, it demonstrates the ability to quantify bilateral coordination using computer vision and augmented reality, which can be applied to assess clinical populations.
Collapse
Affiliation(s)
- Shelby Ziccardi
- Department of Computer Science and Engineering, University of Minnesota, Kenneth H. Keller Hall, 200 Union St SE, Minneapolis, MN 55455, United States of America
| | - Samantha Timanus
- Department of Computer Science and Engineering, University of Minnesota, Kenneth H. Keller Hall, 200 Union St SE, Minneapolis, MN 55455, United States of America
| | - Ghazaleh Ashrafzadehkian
- College of Design, University of Minnesota, 107 Rapson Hall, 89 Church Street SE, Minneapolis, MN 55455, United States of America
| | - Stephen J Guy
- Department of Computer Science and Engineering, University of Minnesota, Kenneth H. Keller Hall, 200 Union St SE, Minneapolis, MN 55455, United States of America
| | - Rachel L Hawe
- School of Kinesiology, University of Minnesota, Cooke Hall, 1900 University Ave SE, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
2
|
Dewey D. Brain lesion type, corticospinal tract organization, and task demands may be predictive of mirror movements and motor outcomes in children with unilateral cerebral palsy. Dev Med Child Neurol 2023; 65:154-155. [PMID: 35809248 DOI: 10.1111/dmcn.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Deborah Dewey
- University of Calgary - Departments of Paediatrics and Community Health Sciences, Owerko Centre in the Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Validity and reliability of an electromyography-based similarity index to quantify lower extremity selective voluntary motor control in children with cerebral palsy. Clin Neurophysiol Pract 2022; 7:107-114. [PMID: 35372733 PMCID: PMC8967969 DOI: 10.1016/j.cnp.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022] Open
Abstract
The SISCALE is a new electromyography-based measure to quantify selective voluntary motor control. There is a need for precise, interval-scaled measures of selective voluntary motor control in children with cerebral palsy. Concurrent and discriminative validity of the new measure was affirmed and test–retest reliability was acceptable.
Objective To quantify selective voluntary motor control (SVMC) objectively and more precisely, we combined the “Selective Control Assessment of the Lower Extremity” (SCALE) with surface electromyography. The resulting Similarity Index (SI) measures the similarity of muscle activation patterns. This study evaluated the preliminary validity and reliability of this novel SISCALE measure in children with cerebral palsy (CP). Methods We investigated concurrent validity by correlating the SISCALE of 24 children with CP (median age 10.6 years) with comparator assessments. For discriminative validity, the patients’ SISCALE scores were compared to 31 neurologically intact age-matched peers. Test-retest reliability was quantified using intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values. Results The SISCALE correlated strongly with the SCALE (ρ = 0.90, p < .001) and the Gross Motor Function Classification System (ρ = −0.74, p < .001). SISCALE scores were significantly lower in children with CP compared to healthy peers. Test-retest reliability appeared good (for the more and less affected leg, ICC ≥ 0.84, and MDC ≤ 0.17). Conclusions Validity and reliability of the SISCALE leg and total scores lay within clinically acceptable ranges. Further clinimetric analyses should include responsiveness. Significance A neurophysiology-based assessment could contribute to a more refined assessment of SVMC impairments.
Collapse
|
4
|
Development of Laterality and Bimanual Interference of Fine Motor Movements in Childhood and Adolescence. Motor Control 2021; 25:587-615. [PMID: 34489369 DOI: 10.1123/mc.2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
Drawing and handwriting are fine motor skills acquired during childhood. We analyzed the development of laterality by comparing the performance of the dominant with the nondominant hand and the effect of bimanual interference in kinematic hand movement parameters (speed, automation, variability, and pressure). Healthy subjects (n = 187, 6-18 years) performed drawing tasks with both hands on a digitizing tablet followed by performance in the presence of an interfering task of the nondominant hand. Age correlated positively with speed, automation, and pressure, and negatively with variability for both hands. As task complexity increased, differences between both hands were less pronounced. Playing an instrument had a positive effect on the nondominant hand. Speed and automation showed a strong association with lateralization. Bimanual interference was associated with an increase of speed and variability. Maturation of hand laterality and the extent of bimanual interference in fine motor tasks are age-dependent processes.
Collapse
|
5
|
Valkama AM, Rytky SO, Olsén PM. Bilateral Motor Responses to Transcranial Magnetic Stimulation in Preterm Children at 9 Years of Age. Neuropediatrics 2021; 52:268-273. [PMID: 33706405 DOI: 10.1055/s-0041-1726127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study was aimed to evaluate motor tracts integrity in nondisabled preterm-born (PT) children at 9 years of age. METHODS Overall, 18 PT and 13 term-born (T) children without motor disability were assessed by transcranial magnetic stimulation (TMS). Motor-evoked potentials (MEPs) were measured bilaterally from the abductor pollicis brevis (APB) and the tibialis anterior (TA) muscles. Muscle responses could be stimulated from all patients. RESULTS Overall, 83.3 and 23.1% of PT and T children, respectively, had mild clumsiness (p = 0.001). One PT and three T children had immediate bilateral responses in the upper extremities. Seven PT children had delayed ipsilateral APB responses after left and ten after right TMS. Three controls had delayed ipsilateral responses. Ipsilateral lower extremity responses were seen in one PT after right and two PT children and one T child after left TMS. The results did not correlate to groups, genders, clumsiness, or handedness. CONCLUSION Children of PT and T may have bilateral motor responses after TMS at 9 years of age. Ipsilateral conduction emerges immediately or more often slightly delayed and more frequently in upper than in lower extremities. SIGNIFICANCE Bilateral motor conduction reflects developmental and neurophysiological variability in children at 9 years of age. MEPs can be used as a measure of corticospinal tract integrity in PT children.
Collapse
Affiliation(s)
- A Marita Valkama
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Seppo O Rytky
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Päivi M Olsén
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Increased interhemispheric somatomotor functional connectivity and mirror overflow in ADHD. NEUROIMAGE-CLINICAL 2021; 31:102759. [PMID: 34280835 PMCID: PMC8319349 DOI: 10.1016/j.nicl.2021.102759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
Resting state fMRI study of the neurobiological basis of mirror overflow in ADHD. Children with ADHD show greater interhemispheric motor functional connectivity. Children with ADHD show greater mirror overflow during finger sequencing. Interhemispheric functional connectivity correlates with mirror overflow in ADHD. Greater interhemispheric motor connectivity may impede overflow inhibition in ADHD.
Mirror overflow is a developmental phenomenon defined as unintentional movements that mimic the execution of intentional movements in homologous muscles on the opposite side of the body. In children with attention-deficit/hyperactivity disorder (ADHD), mirror overflow is commonly excessive, abnormally persistent, and correlated with ADHD symptom severity. As such, it represents a promising clinical biomarker for disinhibited behavior associated with ADHD. Yet, the neural underpinnings of mirror overflow in ADHD remain unclear. Our objective was to test whether intrinsic interhemispheric functional connectivity between homologous regions of the somatomotor network (SMN) is associated with mirror overflow in school age children with and without ADHD using resting state functional magnetic resonance imaging. To this end, we quantified mirror overflow in 119 children (8–12 years old, 62 ADHD) during a finger sequencing task using finger twitch transducers affixed to the index and ring fingers. Group ICA was used to identify right- and left-lateralized SMNs and subject-specific back reconstructed timecourses were correlated to obtain a measure of SMN interhemispheric connectivity. We found that children with ADHD showed increased mirror overflow (p < 0.001; d = 0.671) and interhemispheric SMN functional connectivity (p = 0.023; d = 0.521) as compared to typically developing children. In children with ADHD, but not the typically developing children, there was a significant relationship between interhemispheric SMN functional connectivity and mirror overflow (t = 2.116; p = 0.039). Our findings of stronger interhemispheric functional connectivity between homologous somatomotor regions in children with ADHD is consistent with previous transcranial magnetic stimulation and diffusion-tractography imaging studies suggesting that interhemispheric cortical inhibitory mechanisms may be compromised in children with ADHD. The observed brain-behavior correlation further suggests that abnormally strong interhemispheric SMN connectivity in children with ADHD may diminish their ability to suppress overflow movements.
Collapse
|
7
|
Fahr A, Keller JW, Balzer J, Lieber J, van Hedel HJA. Quantifying age-related differences in selective voluntary motor control in children and adolescents with three assessments. Hum Mov Sci 2021; 77:102790. [PMID: 33798928 DOI: 10.1016/j.humov.2021.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurophysiological development of selective voluntary motor control (SVMC) is assumed but has not been quantified objectively. We assessed SVMC with (i) clinical assessments, (ii) a combination of these assessments with surface electromyography (sEMG) and, (iii) a playful computer game. The aim of this study was to describe and compare age-related differences in SVMC, quantified with these tools, in neurologically intact children, adolescents, and adults. METHODS We measured upper and lower extremity SVMC with three assessments in 31 children and adolescents. A sample of 33 and 31 adults provided reference values for the upper and lower extremity assessments, respectively. The Selective Control of the Upper Extremity Scale (SCUES) or the Selective Control Assessment of the Lower Extremity (SCALE) were combined with simultaneous sEMG recordings. We quantified SVMC by a similarity index that compared an individual's muscle activation pattern with those of an adult reference group. The SVMC Assessgame required isolated joint movements to steer an avatar and quantified the accuracy of the selective movement and the extent of involuntary movements occurring in not involved joints. RESULTS Results from the conventional clinical assessments correlated low to moderately with age (SCUES: r = 0.55, p = 0.013; SCALE: r = 0.44, p = 0.001), while the correlation between the sEMG based similarity index and age was negligible (r ≤ 0.25). The outcomes of the Assessgame correlated highly with age (r ≥ 0.80, p ≤ 0.001). Older children and adolescents performed movements more accurately and with fewer involuntary movements compared to younger participants. CONCLUSIONS The tools assess and quantify SVMC differently, affecting the way they capture age-related differences in SVMC. Some assessments require reference values from neurologically intact children and adolescents to correctly classify impairments of SVMC in patients with neuromotor disorders.
Collapse
Affiliation(s)
- Annina Fahr
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland; ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland.
| | - Jeffrey W Keller
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland; Doctoral Program Clinical Science, Faculty of Medicine, University of Zurich, University of Zurich Dean's Office Office of the Board of Directors of the Academic Medicine Zurich (UMZH), Pestalozzistrasse 3/5, 8091 Zurich, Switzerland.
| | - Julia Balzer
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| | - Jan Lieber
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| | - Hubertus J A van Hedel
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| |
Collapse
|
8
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Caria A, da Rocha JLD, Gallitto G, Birbaumer N, Sitaram R, Murguialday AR. Brain-Machine Interface Induced Morpho-Functional Remodeling of the Neural Motor System in Severe Chronic Stroke. Neurotherapeutics 2020; 17:635-650. [PMID: 31802435 PMCID: PMC7283440 DOI: 10.1007/s13311-019-00816-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMI) permit bypass motor system disruption by coupling contingent neuroelectric signals related to motor activity with prosthetic devices that enhance afferent and proprioceptive feedback to the somatosensory cortex. In this study, we investigated neural plasticity in the motor network of severely impaired chronic stroke patients after an EEG-BMI-based treatment reinforcing sensorimotor contingency of ipsilesional motor commands. Our structural connectivity analysis revealed decreased fractional anisotropy in the splenium and body of the corpus callosum, and in the contralesional hemisphere in the posterior limb of the internal capsule, the posterior thalamic radiation, and the superior corona radiata. Functional connectivity analysis showed decreased negative interhemispheric coupling between contralesional and ipsilesional sensorimotor regions, and decreased positive intrahemispheric coupling among contralesional sensorimotor regions. These findings indicate that BMI reinforcing ipsilesional brain activity and enhancing proprioceptive function of the affected hand elicits reorganization of contralesional and ipsilesional somatosensory and motor-assemblies as well as afferent and efferent connection-related motor circuits that support the partial re-establishment of the original neurophysiology of the motor system even in severe chronic stroke.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Ospedale San Camillo, Venice, Italy.
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany.
| | - Josué Luiz Dalboni da Rocha
- Brain and Language Laboratory, Department of Clinical Neuroscience, University of Geneva, Geneva, Switzerland
| | - Giuseppe Gallitto
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy
| | - Niels Birbaumer
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
| | - Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, Section of Neuroscience, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ander Ramos Murguialday
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
- Health Technologies Department, TECNALIA, San Sebastian, Spain
| |
Collapse
|
10
|
Lee JC, Kenney-Jung DL, Blacker CJ, Doruk Camsari D, Lewis CP. Transcranial Direct Current Stimulation in Child and Adolescent Psychiatric Disorders. Child Adolesc Psychiatr Clin N Am 2019; 28:61-78. [PMID: 30389077 DOI: 10.1016/j.chc.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research involving transcranial direct current stimulation (tDCS) in child and adolescent psychiatry is limited. Early, short-term studies have found tDCS to be safe and well-tolerated in youth with neurodevelopmental disorders (attention-deficit hyperactivity disorder, autism, learning disorders). Preliminary data suggest potential utility in symptom reduction and improving cognitive function. Further careful research considering implications for the developing brain is necessary.
Collapse
Affiliation(s)
- Jonathan C Lee
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, 1001 Queen Street W, Toronto, ON M6J 1H4, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Daniel L Kenney-Jung
- Department of Neurology, University of Minnesota, 420 Delaware Street SE, MMC 295, Minneapolis, MN 55455, USA
| | - Caren J Blacker
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Du X, Kochunov P, Summerfelt A, Chiappelli J, Choa FS, Hong LE. The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimul 2016; 10:283-290. [PMID: 27867023 DOI: 10.1016/j.brs.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. OBJECTIVE/HYPOTHESIS We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. METHODS We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. RESULTS Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r = -0.68, p = 0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r = -0.54, p = 0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients. CONCLUSION This study demonstrated the importance of structural circuitry integrity in inhibitory signaling in schizophrenia, and encouraged modeling the I-E dysfunction in schizophrenia from a circuitry perspective.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fow-Sen Choa
- The Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Abnormal interhemispheric inhibition in musician's dystonia - Trait or state? Parkinsonism Relat Disord 2016; 25:33-8. [PMID: 26923523 DOI: 10.1016/j.parkreldis.2016.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 01/25/2023]
Abstract
INTRODUCTION A clustering of relatives with dystonia has been reported in families with musician's dystonia suggesting a genetic contribution to this disease. The aim of the present study was to determine whether interhemispheric inhibition (IHI) measured with transcranial magnetic stimulation is impaired in healthy family members rendering it a suitable endophenotypic marker for musician's dystonia. METHODS Patients with musician's hand dystonia (n = 21), patients with sporadic writer's cramp (n = 15), their healthy family members (n = 27), healthy musicians (n = 12) and healthy non-musicians (n = 12) were included. An extended interview about the family history and musical activity was performed. IHI in both hemispheres was measured using transcranial magnetic stimulation. RESULTS A stepwise regression analysis revealed musical activity (p = 0.001) and a family history of dystonia (p = 0.008) but not dystonia per se, age, handedness or gender as relevant factors modulating IHI. CONCLUSION These data support the notion of a genetic background of musician's hand dystonia and suggests that reduced IHI is a possible endophenotypic marker of this disorder.
Collapse
|
13
|
Magnetic Resonance Imaging and Computed Tomography of the Brain—50 Years of Innovation, With a Focus on the Future. Invest Radiol 2015; 50:551-6. [DOI: 10.1097/rli.0000000000000170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Juenger H, Koerte IK, Muehlmann M, Mayinger M, Mall V, Krägeloh-Mann I, Shenton ME, Berweck S, Staudt M, Heinen F. Microstructure of transcallosal motor fibers reflects type of cortical (re-)organization in congenital hemiparesis. Eur J Paediatr Neurol 2014; 18:691-7. [PMID: 24993149 DOI: 10.1016/j.ejpn.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/08/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the contralesional hemisphere. Another group of patients with early unilateral lesions shows "normal" contralateral motor projections starting in the lesioned hemisphere. AIM We investigated how these different patterns of cortical (re-)organization affect interhemispheric transcallosal connectivity in patients with congenital hemiparesis. METHOD Eight patients with ipsilateral motor projections (group IPSI) versus 7 patients with contralateral motor projections (group CONTRA) underwent magnetic resonance diffusion tensor imaging (DTI). The corpus callosum (CC) was subdivided in 5 areas (I-V) in the mid-sagittal slice and volumetric information. The following diffusion parameters were calculated: fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD). RESULTS DTI revealed significantly lower FA, increased trace and RD for group IPSI compared to group CONTRA in area III of the corpus callosum, where transcallosal motor fibers cross the CC. In the directly neighboring area IV, where transcallosal somatosensory fibers cross the CC, no differences were found for these DTI parameters between IPSI and CONTRA. Volume of callosal subsections showed significant differences for area II (connecting premotor cortices) and III, where group IPSI had lower volume. INTERPRETATION The results of this study demonstrate that the callosal microstructure in patients with congenital hemiparesis reflects the type of cortical (re-)organization. Early lesions disrupting corticospinal motor projections to the paretic hand consecutively affect the development or maintenance of transcallosal motor fibers.
Collapse
Affiliation(s)
- Hendrik Juenger
- Department of Pediatrics, Klinikum rechts der Isar, Technical University Munich, Koelner Platz 1, 80804 Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany.
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Marc Muehlmann
- Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Michael Mayinger
- Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Volker Mall
- Social Pediatrics and Developmental Medicine, Klinikum rechts der Isar, Technical University Munich, Koelner Platz 1, 80804 Munich, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Veterans Affairs (VA) Boston Healthcare System, Brockton, MA, USA
| | - Steffen Berweck
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Martin Staudt
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Germany; German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
| |
Collapse
|
15
|
Kwon HG, Son SM, Jang SH. Development of the transcallosal motor fiber from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci 2014; 8:153. [PMID: 24672465 PMCID: PMC3957222 DOI: 10.3389/fnhum.2014.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
Transcallosal motor fiber (TCMF) plays a role in interhemispheric inhibition (IHI) between two primary motor cortices. IHI has been an important concept in development of the motor system of the brain. Many studies have focused on the research of the topography of TCMF, however, little is known about development of TCMF. In the current study, we attempted to investigate development of TCMF from the corticospinal tract (CST) in the human brain using diffusion tensor tractography. A total of 76 healthy subjects were recruited for this study. We reconstructed the TCMF, which was derived from the CST, by selection of two regions of interest below the corpus callosum (upper and middle pons). Termination criteria used for fiber tracking were fractional anisotropy <0.2 and three tract turning angles of <45, 60, and 75°. The subjects were classified into four groups according to age: group A (0–5 years), group B (6–10 years), group C (11–15 years), and group D (16–20 years). Significant differences in the incidence of TCMF were observed between group B and group C, and between group B and group D, with tract turning angles of 60 and 75° (p < 0.05). However, no significant differences in any tract turning angle were observed between group C and group D (p > 0.05). In addition, in terms of the incidence of TCMF, no significant differences were observed between the three tract turning angles (p > 0.05). We obtained visualized TCMF from the CST with development and found that the incidence of TCMF differed significantly around the approximate age of 10 years. As a result, we demonstrated structural evidence for development of TCMF in the human brain.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Su Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| |
Collapse
|
16
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
17
|
Phillips KA, Schaeffer JA, Hopkins WD. Corpus callosal microstructure influences intermanual transfer in chimpanzees. Front Syst Neurosci 2013; 7:125. [PMID: 24427118 PMCID: PMC3875866 DOI: 10.3389/fnsys.2013.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/15/2013] [Indexed: 01/19/2023] Open
Abstract
Learning a new motor skill with one hand typically results in performance improvements in the alternate hand. The neural substrates involved with this skill acquisition are poorly understood. We combined behavioral testing and non-invasive brain imaging to study how the organization of the corpus callosum was related to intermanual transfer performance in chimpanzees. Fifty-three chimpanzees were tested for intermanual transfer of learning using a bent-wire task. Magnetic resonance and diffusion tensor images were collected from 39 of these subjects. The dominant hand showed greater performance benefits than the nondominant hand. Further, performance was associated with structural integrity of the motor and sensory regions of the CC. Subjects with better intermanual transfer of learning had lower fractional anisotropy values. The results are consistent with the callosal access model of motor programming.
Collapse
Affiliation(s)
- Kimberley A Phillips
- Department of Psychology, Trinity University San Antonio, TX, USA ; Southwest National Primate Research Center, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Jennifer A Schaeffer
- Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center Atlanta, GA, USA
| | - William D Hopkins
- Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center Atlanta, GA, USA ; Neuroscience Institute and Language Research Center, Georgia State University Atlanta, GA, USA
| |
Collapse
|
18
|
The effect of injury timing on white matter changes in the corpus callosum following unilateral brain injury. NEUROIMAGE-CLINICAL 2013; 3:115-22. [PMID: 24179855 PMCID: PMC3791284 DOI: 10.1016/j.nicl.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/04/2022]
Abstract
Motor impairments following unilateral brain injuries may be related to changes in the corpus callosum. The purpose of this study was to determine if the corpus callosum is impacted differently in pediatric versus adult hemiplegia. Diffusion tensor imaging was completed on 41 participants (11 pediatric hemiplegia, 10 adult hemiplegia, 10 pediatric control and 10 adult control). Fractional anisotropy values and cross-sectional areas for five regions of the corpus callosum were compared between subject groups. Additionally, the amount of involuntary activity in the paretic elbow was quantified during non-paretic elbow flexion tasks for a subset of pediatric hemiplegia participants. Fractional anisotropy values were reduced in pediatric hemiplegia compared to pediatric control subjects in callosal regions corresponding to premotor and supplementary motor areas, primary sensory cortex, and parietal, temporal, and occipital cortices. Differences in fractional anisotropy between adult stroke and adult controls were only found in the region corresponding to parietal, temporal, and occipital cortices. Cross-sectional area was affected in all regions of the corpus callosum in pediatric hemiplegia, but only in the primary sensory region in adult hemiplegia. Additionally, changes in the cross-sectional areas were correlated with involuntary mirror movements in the pediatric hemiplegia group. In conclusion, the corpus callosum is affected to a greater extent in pediatric compared to adult hemiplegia, which may explain why unsuppressed mirror movements and difficulty with bimanual coordination are greater problems in this population. DTI was used to compare the corpus callosum between pediatric and adult hemiplegia. Pediatric hemiplegia subjects had decreased fractional anisotropy. Cross-sectional area of the corpus callosum was reduced in pediatric hemiplegia. Corpus callosum was less affected in adult hemiplegia versus pediatric hemiplegia. Corpus callosum changes were correlated with bimanual coordination deficits.
Collapse
|
19
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
20
|
Wegrzyn M, Teipel SJ, Oltmann I, Bauer A, Thome J, Großmann A, Hauenstein K, Höppner J. Structural and functional cortical disconnection in Alzheimer's disease: a combined study using diffusion tensor imaging and transcranial magnetic stimulation. Psychiatry Res 2013; 212:192-200. [PMID: 23149037 DOI: 10.1016/j.pscychresns.2012.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/07/2012] [Accepted: 04/20/2012] [Indexed: 10/27/2022]
Abstract
We investigated the functional consequences of compromised white matter integrity in Alzheimer's disease by combining Diffusion Tensor Imaging (DTI) and Transcranial Magnetic Stimulation (TMS) in 19 patients with AD (Alzheimer's disease) and 19 healthy controls. We used a region of interest approach and correlated the ipsilateral silent period (iSP) and the resting motor threshold (RMT) from TMS with fractional anisotropy (FA) and mean diffusivity (MD) values of the corpus callosum and corticospinal tract. AD patients showed significant reductions of FA in intracortical projecting fibre tracts compared to controls and widespread increases in MD. TMS data showed increased latency of iSP in AD patients and a decreased RMT, indicating decreased motor cortical inhibition. Although both TMS and DTI metrics were prominently altered in AD patients, impaired white matter integrity was not associated with increased iSP latency or reduced RMT, as correlation of TMS parameters with FA and MD values in the a priori defined regions showed no significant effects. Therefore, we argue that beside the direct degeneration of the underlying fibre tracts, other pathophysiological mechanisms may account for the observation of decreased transcallosal inhibition and increased motor excitability in AD.
Collapse
Affiliation(s)
- Martin Wegrzyn
- DZNE, German Centre for Neurodegenerative Diseases, Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Blaschek A, Keeser D, Müller S, Koerte IK, Sebastian Schröder A, Müller-Felber W, Heinen F, Ertl-Wagner B. Early white matter changes in childhood multiple sclerosis: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2013; 34:2015-20. [PMID: 23681354 DOI: 10.3174/ajnr.a3581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Loss of integrity in nonlesional white matter occurs as a fundamental feature of multiple sclerosis in adults. The purpose of our study was to evaluate DTI-derived measures of white matter microstructure in children with MS compared with age- and sex-matched controls by using tract-based spatial statistics. MATERIALS AND METHODS Fourteen consecutive pediatric patients with MS (11 female/3 male; mean age, 15.1 ± 1.6 years; age range, 12-17 years) and age- and sex-matched healthy subjects (11 female/3 male; mean age, 14.8 ± 1.7 years) were included in the study. After we obtained DTI sequences, data processing was performed by using tract-based spatial statistics. RESULTS Compared with healthy age- and sex-matched controls, children with multiple sclerosis showed a global decrease in mean fractional anisotropy (P ≤ .001), with a concomitant increase in mean (P < .001), radial (P < .05), and axial diffusivity (P < .001). The most pronounced fractional anisotropy value decrease in patients with MS was found in the splenium of the corpus callosum (P < .001). An additional decrease in fractional anisotropy was identified in the right temporal and right and left parietal regions (P < .001). Fractional anisotropy of the white matter skeleton was related to disease duration and may, therefore, serve as a diagnostic marker. CONCLUSIONS The microstructure of white matter is altered early in the disease course in childhood multiple sclerosis.
Collapse
Affiliation(s)
- A Blaschek
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Anatomical location of transcallosal sensorimotor fibers in the human brain: Diffusion tensor tractography study. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0129-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractMany diffusion tensor tractography (DTT) studies have reported on the topography of transcallosal fibers (TCF). However, little detailed anatomical information on TCF that can be easily applied for clinical purposes is known. Using probabilistic DTT, we attempted to determine the anatomical location of the TCF for motor and sensory function in the human brain. A total of 51 healthy subjects were recruited for this study. Diffusion tensor images (DTIs) were obtained at 1.5 T, and four TCF for the premotor cortex (PMC), the primary motor cortex (M1) for hand and leg, and the primary somatosensory cortex (S1) were obtained using FMRIB software. Locations of the TCF were defined as the highest probabilistic location on the midsagittal slice of the corpus callosum. We measured distances between the most anterior and posterior points of the corpus callosum. The relative mean distances of the highest probabilistic location for the precentral knob PMC (Brodmann area 6 anterior to the precentral knob), hand M1, leg M1, and precentral knob S1 (postcentral gyrus posterior to the precentral knob) TCF were 48.99%, 59.78%, 67.93%, and 73,48% from the most anterior point of the CC, respectively. According to our findings, the precentral knob PMC, hand M1, leg M1, and precentral knob S1 TCF were located at the anterior body, posterior body, posterior body, and isthmus according to Witelson’s classification, respectively.
Collapse
|
23
|
Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012; 2012:823285. [PMID: 23326685 PMCID: PMC3541646 DOI: 10.1155/2012/823285] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum, which is the largest white matter structure in the human brain, connects the 2 cerebral hemispheres. It plays a crucial role in maintaining the independent processing of the hemispheres and in integrating information between both hemispheres. The functional integrity of interhemispheric interactions can be tested electrophysiologically in humans by using transcranial magnetic stimulation, electroencephalography, and functional magnetic resonance imaging. As a brain structural imaging, diffusion tensor imaging has revealed the microstructural connectivity underlying interhemispheric interactions. Sex, age, and motor training in addition to the size of the corpus callosum influence interhemispheric interactions. Several neurological disorders change hemispheric asymmetry directly by impairing the corpus callosum. Moreover, stroke lesions and unilateral peripheral impairments such as amputation alter interhemispheric interactions indirectly. Noninvasive brain stimulation changes the interhemispheric interactions between both motor cortices. Recently, these brain stimulation techniques were applied in the clinical rehabilitation of patients with stroke by ameliorating the deteriorated modulation of interhemispheric interactions. Here, we review the interhemispheric interactions and mechanisms underlying the pathogenesis of these interactions and propose rehabilitative approaches for appropriate cortical reorganization.
Collapse
|
24
|
Interhemispheric control of unilateral movement. Neural Plast 2012; 2012:627816. [PMID: 23304559 PMCID: PMC3523159 DOI: 10.1155/2012/627816] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery.
Collapse
|
25
|
Bologna M, Caronni A, Berardelli A, Rothwell JC. Practice-related reduction of electromyographic mirroring activity depends on basal levels of interhemispheric inhibition. Eur J Neurosci 2012; 36:3749-57. [DOI: 10.1111/ejn.12009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London; UK
| |
Collapse
|
26
|
Hübers A, Klein JC, Kang JS, Hilker R, Ziemann U. The relationship between TMS measures of functional properties and DTI measures of microstructure of the corticospinal tract. Brain Stimul 2012; 5:297-304. [DOI: 10.1016/j.brs.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/21/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022] Open
|
27
|
Fling BW, Benson BL, Seidler RD. Transcallosal sensorimotor fiber tract structure-function relationships. Hum Brain Mapp 2011; 34:384-95. [PMID: 22042512 DOI: 10.1002/hbm.21437] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 07/27/2011] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated neuroanatomically selective relationships among white matter tract microstructure, physiological function, and task performance. Such findings suggest that the microstructure of transcallosal motor fibers may reflect the capacity for interhemispheric inhibition between the primary motor cortices, although full characterization of the transcallosal inhibitory sensorimotor network is lacking. Thus, the goal of this study was to provide a comprehensive description of transcallosal fibers connecting homologous sensorimotor cortical regions and to identify the relationship(s) between fiber tract microstructure and interhemispheric inhibition during voluntary cortical activity. To this end, we assessed microstructure of fiber tracts connecting homologous sensorimotor regions of the cortex with diffusion tensor imaging. We also assessed interhemispheric inhibition by eliciting the ipsilateral silent period (iSP) within the same participants. We mapped mutually exclusive transcallosal connections between homologous sensorimotor regions and computed quantitative metrics of each fiber tract. Paralleling work in non-human primates, we found the densest interhemispheric sensorimotor connections to be between the medial motor areas. Additionally, we provide a midsagittal callosal atlas in normalized Montreal Neurological Institute (MNI) space for future studies to use when investigating callosal fiber tracts connecting primary and secondary sensorimotor cortices. Finally, we report a strong, positive relationship (r = 0.76) between strength of interhemispheric inhibition (iSP) and microstructure of interhemispheric fibers that is specific to tracts connecting the primary motor cortices. Thus, increased fiber microstructure in young adults predicts interhemispheric inhibitory capacity.
Collapse
Affiliation(s)
- Brett W Fling
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
28
|
Fling BW, Seidler RD. Task-dependent effects of interhemispheric inhibition on motor control. Behav Brain Res 2011; 226:211-7. [PMID: 21944939 DOI: 10.1016/j.bbr.2011.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022]
Abstract
Interhemispheric communication consists of a complex balance of facilitation and inhibition that is modulated in a task-dependent manner. However, it remains unclear how individual differences in interhemispheric interactions relate to motor performance. To assess interhemispheric inhibition, we utilized the ipsilateral silent period technique (iSP; evoked by suprathreshold transcranial magnetic stimulation), which elicits inhibition of volitional motor activity. Participants performed three force production tasks: (1) unimanual (right hand) constant force, (2) bimanual constant force, (bimanual simultaneous) and (3) bimanual with right hand constant force and left hand sine wave tracking (bimanual independent). We found that individuals with greater IHI capacity demonstrated reduced mirror EMG activity in the left hand during unimanual right hand contraction. However, these same individuals demonstrated the poorest performance during the bimanual independent force production task. We suggest that a high capacity for IHI from one motor cortex to another can effectively prevent "motor overflow" during unimanual tasks, but it can also limit interhemispheric cooperation during independently controlled bimanual tasks.
Collapse
Affiliation(s)
- Brett W Fling
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
29
|
Avanzino L, Martino D, Bove M, De Grandis E, Tacchino A, Pelosin E, Mirabelli M, Veneselli E, Abbruzzese G. Movement lateralization and bimanual coordination in children with Tourette syndrome. Mov Disord 2011; 26:2114-8. [PMID: 21932301 DOI: 10.1002/mds.23839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gilles de la Tourette syndrome is a childhood-onset disorder characterized by persistent motor and vocal tics fluctuating in severity. Although structural changes observed in Gilles de la Tourette syndrome concern brain structures involved in voluntary motor control such as the basal ganglia, the frontoparietal cortex, and the corpus callosum, movement lateralization and bimanual coordination have been underinvestigated. METHODS Using a sensor-engineered glove, we analyzed the performance of repetitive externally paced single-hand and bimanual finger movements in 11 children with Gilles de la Tourette syndrome. RESULTS When requested to perform sequential single-hand finger movements, patients with Gilles de la Tourette syndrome showed longer touch duration, shorter movement time, and more errors than healthy subjects. When requested to execute the task bimanually, healthy subjects exhibited a slight loss in accuracy and an increase in touch duration compared with the single-hand task, whereas patients with Gilles de la Tourette syndrome did not. Further, healthy subjects presented great asymmetry in terms of movement accuracy between left and right hands during the bimanual task, whereas patients with Gilles de la Tourette syndrome did not. CONCLUSIONS These findings suggest that patients with Gilles de la Tourette syndrome may present an abnormal process of sensorimotor integration, movement lateralization, and bimanual coordination during sequential finger movements.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Neurosciences, Ophthalmology & Genetics and Istituto Nazionale di Neuroscienze, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
KOERTE INGA, PELAVIN PAULA, KIRMESS BERIT, FUCHS TERESA, BERWECK STEFFEN, LAUBENDER RUEDIGERPAUL, BORGGRAEFE INGO, SCHROEDER SEBASTIAN, DANEK ADRIAN, RUMMENY CLAUDIA, REISER MAXIMILIAN, KUBICKI MAREK, SHENTON MARTHAE, ERTL-WAGNER BIRGIT, HEINEN FLORIAN. Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol 2011; 53:179-86. [PMID: 21121906 PMCID: PMC3057566 DOI: 10.1111/j.1469-8749.2010.03840.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM In children with bilateral spastic cerebral palsy (CP), periventricular leukomalacia (PVL) is commonly identified on magnetic resonance imaging. We characterized this white matter condition by examining callosal microstructure, interhemispheric inhibitory competence (IIC), and mirror movements. METHOD We examined seven children (age range 11y 9mo-17y 9mo, median age 15y 10mo, four females, three males) with bilateral spastic CP/PVL (Gross Motor Function Classification System level I or II, Manual Ability Classification System level I) and 12 age-matched controls (age range 11y 7mo-17y 1mo, median age 15y 6mo, seven females, five males). Fractional anisotropy of the transcallosal motor fibres (TCMF) and the corticospinal tract (CST) of both sides were calculated. The parameters of IIC (transcranial magnetic stimulation) and mirror movements were measured using a standardized clinical examination and a computer-based hand motor test. RESULTS Fractional anisotropy was lower in children with bilateral spastic CP/PVL regarding the TCMF, but not the left or right CST. Resting motor threshold was elevated in children with bilateral spastic CP/PVL whereas measures of IIC tended to be lower. Mirror movements were markedly elevated in bilateral spastic CP/PVL. INTERPRETATION This study provides new information on different aspects of motor function in children with bilateral spastic CP/PVL. Decreased fractional anisotropy of TCMF is consistent with impairment of hand motor function in children with bilateral spastic CP/PVL. The previously overlooked microstructure of the TCMF may serve as a potential indicator for hand motor function in patients with bilateral spastic CP/PVL.
Collapse
Affiliation(s)
- INGA KOERTE
- Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - PAULA PELAVIN
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - BERIT KIRMESS
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - TERESA FUCHS
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - STEFFEN BERWECK
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - RUEDIGER PAUL LAUBENDER
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Germany
| | - INGO BORGGRAEFE
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - SEBASTIAN SCHROEDER
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - ADRIAN DANEK
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - CLAUDIA RUMMENY
- Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - MAXIMILIAN REISER
- Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - MAREK KUBICKI
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - MARTHA E SHENTON
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| | - BIRGIT ERTL-WAGNER
- Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - FLORIAN HEINEN
- Pediatric Neurology and Developmental Medicine, Dr von Hauners Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
31
|
Koerte I, Eftimov L, Laubender RP, Esslinger O, Schroeder AS, Ertl-Wagner B, Wahllaender-Danek U, Heinen F, Danek A. Mirror movements in healthy humans across the lifespan: effects of development and ageing. Dev Med Child Neurol 2010; 52:1106-12. [PMID: 21039436 DOI: 10.1111/j.1469-8749.2010.03766.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM mirror movements are a transient phenomenon during childhood, which decrease in intensity with motor development. An increasing inhibitory competence resulting in the ability of movement lateralization is thought to be the underlying mechanism. We aimed to quantify unintended mirror movements systematically across the lifespan and to investigate the influences of age, sex, handedness, and task frequency. METHOD a total of 236 participants (127 females, 109 males; 216 right-handed, 20 left-handed; age range 3-96y, median 25y 8mo) first performed four clinical routine tests while mirror movements were rated by the observer. They were then asked to hold a force transducer in each hand between the thumb and index finger and to perform oscillatory grip force changes in one hand, while the other hand had to prevent the force transducer from dropping. RESULTS age showed a strong nonlinear effect on the mirror-movement ratio (the amplitude ratio of the mirror and active hand, adjusted by the respective maximum grip force). Initially, there was a steep decline in the mirror-movement ratio during childhood and adolescence, followed by a gradual rise during adulthood. Males had lower mirror-movement ratios than females. The high-frequency condition triggered lower mirror-movement ratios. No significant differences of mirror movements between dominant and non-dominant hand, or left- and right-handed participants, were found. INTERPRETATION this study provides, for the first time to our knowledge, normative values of mirror movements across the lifespan that can aid differentiation between physiological and pathological mirror movements.
Collapse
Affiliation(s)
- Inga Koerte
- Institute of Clinical Radiology, Grosshadern Campus, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 2009; 587:5393-410. [PMID: 19770195 PMCID: PMC2793872 DOI: 10.1113/jphysiol.2009.175885] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/15/2009] [Indexed: 12/27/2022] Open
Abstract
Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy adults to what extent and under what conditions voluntary activation of the stimulated right M1 by moving the left hand strengthens interhemispheric inhibition as indexed by an enhancement of the ISP area in the maximally contracting right first dorsal interosseous (FDI). Left index finger abduction, already at low levels of contraction, significantly enhanced the ISP compared to left hand at rest. Even imagination of left index finger movement enhanced the ISP compared to rest or mental calculation. This enhancement occurred in the absence of motor-evoked potential amplitude modulation in the left FDI, thus excluding a non-specific contribution from an increase in right M1 corticospinal excitability. Contraction of the left extensor indicis, but not contraction of more proximal left upper limb or left or right lower limb muscles also enhanced the ISP. A reaction time experiment showed that the ISP enhancement developed at a late stage of movement preparation just before or at movement onset. Interhemispheric inhibition of the motor-evoked potential as tested by a bifocal paired-pulse TMS protocol and thought to be mediated via a neuronal circuit different to the ISP was not enhanced when tested under identical motor task conditions. Finally, ISP enhancement by contraction of the left FDI correlated inversely with EMG mirror activity in the right FDI during phasic abductions of the left index finger. Our findings strongly suggest that voluntary M1 activation by real or imagined movement of the contralateral hand increases interhemispheric motor inhibition of the opposite M1. This phenomenon shows substantial topographical, temporal and neuronal circuit specificity, and has functional significance as it probably plays a pivotal role in suppressing mirror activity.
Collapse
|