1
|
Ginting Munte FA, Elen E, Lelya O, Rudiktyo E, Prakoso R, Lilyasari O. Right ventricular fibrosis in adults with uncorrected secundum atrial septal defect and pulmonary hypertension: a cardiovascular magnetic resonance study with late gadolinium enhancement, native T1 and extracellular volume. Front Cardiovasc Med 2024; 11:1395382. [PMID: 38873272 PMCID: PMC11169901 DOI: 10.3389/fcvm.2024.1395382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Right ventricular (RV) fibrosis represents both adaptive and maladaptive responses to the overloaded RV condition. Its role in pulmonary hypertension (PH) associated with secundum atrial septal defect (ASD), which is the most common adult congenital heart disease (CHD), remains poorly understood. Methods We enrolled 65 participants aged ≥18 years old with uncorrected secundum ASD who had undergone clinically indicated right heart catheterization (RHC), divided into the non-PH group (n = 7), PH group (n = 42), and Eisenmenger syndrome (ES) group (n = 16). We conducted cardiovascular magnetic resonance (CMR) studies with late gadolinium enhancement (LGE) imaging, native T1 mapping, and extracellular volume (ECV) measurement to evaluate the extent and clinical correlates of RV fibrosis. Results LGE was present in 94% of the population and 86% of the non-PH group, mostly located at the right ventricular insertion point (RVIP) regions. LGE in the septal and inferior RV region was predominantly observed in the ES group compared to the other groups (p = 0.031 and p < 0.001, respectively). The mean LGE scores in the ES and PH groups were significantly higher than those in the non-PH group (3.38 ± 0.96 vs. 2.74 ± 1.04 vs. 1.57 ± 0.79; p = 0.001). The ES and PH groups had significantly higher degrees of interstitial RV fibrosis compared to those in the non-PH group, indicated by native T1 (1,199.9 ± 68.9 ms vs. 1,131.4 ± 47.8 ms vs. 1,105.4 ± 44.0 ms; p < 0.001) and ECV (43.6 ± 6.6% vs. 39.5 ± 4.9% vs. 39.4 ± 5.8%; p = 0.037). Additionally, native T1 significantly correlated with pulmonary vascular resistance (r = 0.708, p < 0.001), RV ejection fraction (r = -0.468, p < 0.001) and peripheral oxygen saturation (r = -0.410, p = 0.001). Conclusion In patients with uncorrected secundum ASD, RV fibrosis may occur before the development of PH and progressively intensify alongside the progression of PH severity. A higher degree of RV fibrosis, derived from CMR imaging, correlates with worse hemodynamics, RV dysfunction, and poorer clinical conditions.
Collapse
Affiliation(s)
- Fatwiadi Apulita Ginting Munte
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Elen Elen
- Division of Cardiovascular Imaging and Nuclear Cardiology, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Olfi Lelya
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Estu Rudiktyo
- Division of Echocardiography, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Radityo Prakoso
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Oktavia Lilyasari
- Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|
2
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Nizhnikava V, Reiter U, Kovacs G, Reiter C, Kräuter C, Olschewski H, Fuchsjäger M, Reiter G. Myocardial strain parameters in pulmonary hypertension are determined by changes in volumetric function rather than by hemodynamic alterations. Eur J Radiol 2024; 170:111187. [PMID: 37995513 DOI: 10.1016/j.ejrad.2023.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To investigate associations of cardiac magnetic resonance feature-tracking-derived left (LV) and right ventricular (RV) global myocardial peak strains and strain rates with volumetric function and hemodynamic parameters to identify the major determinants of myocardial strain alterations in pulmonary hypertension (PH). METHODS Sixty-seven patients with PH or at risk of developing PH underwent right heart catheterization (RHC) and cine realtime imaging at 3 T. RHC parameters included mean pulmonary arterial pressure (mPAP), which was used for the diagnosis of PH. LV and RV volumetric function and feature-tracking-derived global radial, circumferential, and longitudinal (GLS) peak strains, together with their strain rates, were evaluated from cine images using routine software. Furthermore, myocardial strain parameters of 24 healthy subjects were evaluated as controls. Means were compared by t-test; relationships between parameters were investigated by correlation and regression analysis. RESULTS Compared to controls, RV-GLS, all RV systolic strain rates and the LV systolic longitudinal strain rate showed lower magnitudes in PH (RV-GLS: -21 ± 4% vs. -16 ± 5%, p < 0.0001); the strongest univariate correlate to mPAP was the RV-GLS (r = 0.59). All LV and RV strain parameters yielded stronger correlations with their respective ejection fractions. In bi-linear models using mPAP and ejection fraction as predictors, mPAP remained significant only for diastolic LV radial and circumferential strain rates. CONCLUSION Impairment of myocardial strains is more strongly associated with alterations in LV and RV volumetric function parameters than elevated mPAP, therefore limiting diagnostic information of myocardial strain parameters in PH.
Collapse
Affiliation(s)
- Volha Nizhnikava
- Department of Radiology, Medical University of Graz, Austria; Department of Radiology, Kantonsspital Graubuenden, Chur, Switzerland.
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Austria.
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria & LBI for Lung Vascular Research Graz, Austria.
| | - Clemens Reiter
- Department of Radiology, Medical University of Graz, Austria.
| | - Corina Kräuter
- Department of Radiology, Medical University of Graz, Austria.
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria & LBI for Lung Vascular Research Graz, Austria.
| | | | - Gert Reiter
- Department of Radiology, Medical University of Graz, Austria; Research & Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria.
| |
Collapse
|
4
|
Hameed A, Condliffe R, Swift AJ, Alabed S, Kiely DG, Charalampopoulos A. Assessment of Right Ventricular Function-a State of the Art. Curr Heart Fail Rep 2023; 20:194-207. [PMID: 37271771 PMCID: PMC10256637 DOI: 10.1007/s11897-023-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW The right ventricle (RV) has a complex geometry and physiology which is distinct from the left. RV dysfunction and failure can be the aftermath of volume- and/or pressure-loading conditions, as well as myocardial and pericardial diseases. RECENT FINDINGS Echocardiography, magnetic resonance imaging and right heart catheterisation can assess RV function by using several qualitative and quantitative parameters. In pulmonary hypertension (PH) in particular, RV function can be impaired and is related to survival. An accurate assessment of RV function is crucial for the early diagnosis and management of these patients. This review focuses on the different modalities and indices used for the evaluation of RV function with an emphasis on PH.
Collapse
Affiliation(s)
- Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK.
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Xu W, Deng M, Zhang L, Zhang P, Gao Q, Tao X, Zhen Y, Liu X, Jin N, Chen W, Xie W, Liu M. Qualification of Ventricular Flow in Patients With Precapillary Pulmonary Hypertension With 4-dimensional Flow Magnetic Resonance Imaging. J Thorac Imaging 2023; 38:00005382-990000000-00068. [PMID: 37199439 PMCID: PMC10597405 DOI: 10.1097/rti.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
PURPOSE Our goal was to study both right and left ventricular blood flow in patients with precapillary pulmonary hypertension (pre-PH) with 4-dimensional (4D) flow magnetic resonance imaging (MRI) and to analyze their correlation with cardiac functional metrics on cardiovascular magnetic resonance (CMR) and hemodynamics from right heart catheterization (RHC). MATERIALS AND METHODS 129 patients (64 females, mean age 47 ± 13 y) including 105 patients with pre-PH (54 females, mean age 49 ± 13 y) and 24 patients without PH (10 females, mean age 40 ± 12 y) were retrospectively included. All patients underwent CMR and RHC within 48 hours. 4D flow MRI was acquired using a 3-dimensional retrospectively electrocardiograph-triggered, navigator-gated phase contrast sequence. Right and left ventricular flow components including the percentages of direct flow (PDF), retained inflow (PRI), delayed ejection flow (PDE), and residual volume (PRVo) were respectively quantified. The ventricular flow components between patients with pre-PH and non-PH were compared and correlations of flow components with CMR functional metrics and hemodynamics measured with RHC were analyzed. Biventricular flow components were compared between survivors and deceased patients during the perioperative period. RESULTS Right ventricular (RV) PDF and PDE significantly correlated with RVEDV and RV ejection fraction. RV PDF negatively correlated with pulmonary arterial pressure (PAP) and pulmonary vascular resistance. When the RV PDF was <11%, the sensitivity and specificity of RV PDF for predicting mean PAP ≥25 mm Hg were 88.6% and 98.7%, respectively, with an area under the curve value of 0.95 ± 0.02. When RV PRVo was more than 42%, the sensitivity and specificity of RV PRVo for predicting mean PAP ≥25 mm Hg were 85.7% and 98.5%, respectively, with an area under the curve value of 0.95 ± 0.01. Nine patients died during the perioperative period. Biventricular PDF, RV PDE, and PRI of survivors were higher than nonsurvivors whereas RV PRVo increased in deceased patients. CONCLUSIONS Biventricular flow analysis with 4D flow MRI provides comprehensive information about the severity and cardiac remodeling of PH and may be a predictor of perioperative death of patients with pre-PH.
Collapse
Affiliation(s)
- Wenqing Xu
- Peking University China-Japan Friendship School of Clinical Medicine
| | - Mei Deng
- Chinese Academy of Medical Sciences and Peking Union Medical College
| | | | | | - Qian Gao
- Department of Pulmonary and Critical Care Medicine
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ning Jin
- Siemens Medical Solution, Chicago, IL, USA
| | - Wenhui Chen
- Department of Pulmonary and Critical Care Medicine
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine
| | | |
Collapse
|
6
|
Knight DS, Karia N, Cole AR, Maclean RH, Brown JT, Masi A, Patel RK, Razvi Y, Chacko L, Venneri L, Kotecha T, Martinez-Naharro A, Kellman P, Scott-Russell AM, Schreiber BE, Ong VH, Denton CP, Fontana M, Coghlan JG, Muthurangu V. Distinct cardiovascular phenotypes are associated with prognosis in systemic sclerosis: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2023; 24:463-471. [PMID: 35775814 PMCID: PMC10029850 DOI: 10.1093/ehjci/jeac120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiovascular involvement in systemic sclerosis (SSc) is heterogeneous and ill-defined. This study aimed to: (i) discover cardiac phenotypes in SSc by cardiovascular magnetic resonance (CMR); (ii) provide a CMR-based algorithm for phenotypic classification; and (iii) examine for associations between phenotypes and mortality. METHODS AND RESULTS A retrospective, single-centre, observational study of 260 SSc patients who underwent clinically indicated CMR including native myocardial T1 and T2 mapping from 2016 to 2019 was performed. Agglomerative hierarchical clustering using only CMR variables revealed five clusters of SSc patients with shared CMR characteristics: dilated right hearts with right ventricular failure (RVF); biventricular failure dilatation and dysfunction (BVF); and normal function with average cavity (NF-AC), normal function with small cavity (NF-SC), and normal function with large cavity (NF-LC) sizes. Phenotypes did not co-segregate with clinical or antibody classifications. A CMR-based decision tree for phenotype classification was created. Sixty-three (24%) patients died during a median follow-up period of 3.4 years. After adjustment for age and presence of pulmonary hypertension (PH), independent CMR predictors of all-cause mortality were native T1 (P < 0.001) and right ventricular ejection fraction (RVEF) (P = 0.0032). NF-SC and NF-AC groups had more favourable prognoses (P≤0.036) than the other three groups which had no differences in prognoses between them (P > 0.14). Hazard ratios (HR) were statistically significant for RVF (HR = 8.9, P < 0.001), BVF (HR = 5.2, P = 0.006), and NF-LC (HR = 4.9, P = 0.002) groups. The NF-LC group remained significantly predictive of mortality after adjusting for RVEF, native T1, and PH diagnosis (P = 0.0046). CONCLUSION We identified five CMR-defined cardiac SSc phenotypes that did not co-segregate with clinical data and had distinct outcomes, offering opportunities for a more precision-medicine based management approach.
Collapse
Affiliation(s)
- Daniel S Knight
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Karia
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alice R Cole
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Rory H Maclean
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - James T Brown
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ambra Masi
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Rishi K Patel
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Yousuf Razvi
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Liza Chacko
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Lucia Venneri
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Tushar Kotecha
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ana Martinez-Naharro
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institute of Health, 31 Center Dr, Bethesda, MD 20892, USA
| | - Ann M Scott-Russell
- Department of Rheumatology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY, UK
| | - Benjamin E Schreiber
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Marianna Fontana
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - J Gerry Coghlan
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Vivek Muthurangu
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Cardiac inflammation and fibrosis patterns in systemic sclerosis, evaluated by magnetic resonance imaging: An update. Semin Arthritis Rheum 2023; 58:152126. [PMID: 36434895 DOI: 10.1016/j.semarthrit.2022.152126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Systemic sclerosis (SSc) presents high morbidity/mortality, due to internal organ fibrosis, including the heart. Cardiac magnetic resonance (CMR) can perform myocardial function and tissue characterization in the same examination. The Lake Louise criteria (LLC) can identify recent myocardial inflammation using CMR. Abnormal values include: (a) myocardial over skeletal muscle ratio in STIRT2-W images >2, (b) early gadolinium enhancement values >4, (c) epicardial/intramyocardial late gadolinium enhancement (LGE). The diagnosis of myocarditis using LLC is considered if 2/3 criteria are positive. Parametric imaging including T2, native T1 mapping and extracellular volume fraction (ECV) has been recently used to diagnose inflammatory cardiomyopathy. According to expert recommendations, myocarditis should be considered if at least 2 indices, one T2 and one T1 parameter are positive, whereas native T1 mapping and ECV assess diffuse fibrosis or oedema, even in the absence of LGE. Moreover, transmural/subendocardial fibrosis following the distribution of coronary arteries and diffuse subendocardial fibrosis not related with epicardial coronary arteries are indicative of epicardial and micro-vascular coronary artery disease, respectively. To conclude, CMR can identify acute/active myocardial inflammation and myocardial infarction using classic and parametric indices in parallel with ventricular function evaluation.
Collapse
|
8
|
Stącel T, Sybila P, Mędrala A, Ochman M, Latos M, Zawadzki F, Pióro A, Pasek P, Przybyłowski P, Hrapkowicz T, Mroczek E, Kuczaj A, Kopeć G, Fiszer R, Pawlak S, Stanjek-Cichoracka A, Urlik M. Novel Hybrid Treatment for Pulmonary Arterial Hypertension with or without Eisenmenger Syndrome: Double Lung Transplantation with Simultaneous Endovascular or Classic Surgical Closure of the Patent Ductus Arteriosus (PDA). J Cardiovasc Dev Dis 2022; 9:jcdd9120457. [PMID: 36547454 PMCID: PMC9783473 DOI: 10.3390/jcdd9120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with pulmonary arterial hypertension (PAH) become candidates for lung or lung and heart transplantation when the maximum specific therapy is no longer effective. The most difficult challenge is choosing one of the above options in the event of symptoms of right ventricular failure. Here, we present two female patients with PAH: (1) a 21-year-old patient with Eisenmenger syndrome, caused by a congenital defect-patent ductus arteriosus (PDA); and (2) a 39-year-old patient with idiopathic PAH and coexistent PDA. Their common denominator is PDA and the hybrid surgery performed: double lung transplantation with simultaneous PDA closure. The operation was performed after pharmacological bridging (conditioning) to transplantation that lasted for 33 and 70 days, respectively. In both cases, PDA closure effectiveness was 100%. Both patients survived the operation (100%); however, patient no. 1 died on the 2nd postoperative day due to multi-organ failure; while patient no. 2 was discharged home in full health. The authors did not find a similar description of the operation in the available literature and PubMed database. Hence, we propose this new treatment method for its effectiveness and applicability proven in our practice.
Collapse
Affiliation(s)
- Tomasz Stącel
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: (T.S.); (A.M.); Tel.: +48-691-045-785 (T.S.); +48-731-832-083 (A.M.)
| | - Paweł Sybila
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agata Mędrala
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: (T.S.); (A.M.); Tel.: +48-691-045-785 (T.S.); +48-731-832-083 (A.M.)
| | - Marek Ochman
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Latos
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Fryderyk Zawadzki
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Pióro
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac Anaesthesia and Intensive Care, Medical University of Silesia, 40-055 Katowice, Poland
| | - Piotr Pasek
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Piotr Przybyłowski
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
- First Department of General Surgery, Collegium Medicum of Jagiellonian University, 30-688 Krakow, Poland
| | - Tomasz Hrapkowicz
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ewa Mroczek
- Institute of Heart Diseases, University Clinical Hospital Mikulicz Radecki in Wroclaw, ul. Borowska 213, 50-558 Wroclaw, Poland
| | - Agnieszka Kuczaj
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Roland Fiszer
- Silesian Centre for Heart Diseases in Zabrze, Department of Congenital Heart Defects and Pediatric Cardiology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Szymon Pawlak
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anita Stanjek-Cichoracka
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Maciej Urlik
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery, and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:997469. [PMID: 36386383 PMCID: PMC9650365 DOI: 10.3389/fcvm.2022.997469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2023] Open
Abstract
In recent years, the mechanism of cell death has become a hotspot in research on the pathogenesis and treatment of cardiovascular disease (CVD). Different cell death modes, including autophagy, apoptosis, and pyroptosis, are mosaic with each other and collaboratively regulate the process of CVD. This review summarizes the interaction and crosstalk of key pathways or proteins which play a critical role in the entire process of CVD and explores the specific mechanisms. Furthermore, this paper assesses the interrelationships among these three cell deaths and reviews how they regulate the pathogenesis of CVD. By understanding how these three cell death modes go together we can learn about the pathogenesis of CVD, which will enable us to identify new targets for preventing, controlling, and treating CVD. It will not only reduce mortality but also improve the quality of life.
Collapse
Affiliation(s)
- Lin Cong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
The Balance between the Left and Right Ventricular Deformation Evaluated by Speckle Tracking Echocardiography Is a Great Predictor of the Major Adverse Cardiac Event in Patients with Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12092266. [PMID: 36140667 PMCID: PMC9497475 DOI: 10.3390/diagnostics12092266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular failure is one of the most relevant causes of death in pulmonary hypertension (PH). With progressive increases of right ventricular (RV) afterload in PH patients, both RV and left ventricular (LV) function impair and RV–LV dyssynchrony develop in parallel. We aimed to analyze the balance between the left and right ventricular deformation to assess the outcome of patients with pulmonary hypertension by means of speckle tracking echocardiography. In this prospective study, 54 patients with invasively diagnosed pulmonary hypertension, and 26 healthy volunteers were included and underwent a broad panel of noninvasive assessment including 2D-echocardiography, 2D speckle tracking, 6-minute walking test and BNP. Patients were followed up for 338.7 ± 131.1 (range 60 to 572) days. There were significant differences in |LVGLS/RVFLS-1| and |LASc/RASc-1| between PH patients and the control group. During the follow up, 13 patients experienced MACEs, which included 7 patients with cardiac death and 6 patients with re-admitted hospital due to right ventricular dysfunction. In the multivariate Cox model analysis, |LVGLS/RVFLS-1| remained independent prognosis of markers (HR = 4.03). Our study findings show that |LVGLS/RVFLS-1| is of high clinical and prognostic relevance in pulmonary hypertension patients and reveal the importance of the balance between the left and right ventricular deformation.
Collapse
|
11
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| |
Collapse
|
12
|
Rajiah PS, Kalisz K, Broncano J, Goerne H, Collins JD, François CJ, Ibrahim ES, Agarwal PP. Myocardial Strain Evaluation with Cardiovascular MRI: Physics, Principles, and Clinical Applications. Radiographics 2022; 42:968-990. [PMID: 35622493 DOI: 10.1148/rg.210174] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial strain is a measure of myocardial deformation, which is a more sensitive imaging biomarker of myocardial disease than the commonly used ventricular ejection fraction. Although myocardial strain is commonly evaluated by using speckle-tracking echocardiography, cardiovascular MRI (CMR) is increasingly performed for this purpose. The most common CMR technique is feature tracking (FT), which involves postprocessing of routinely acquired cine MR images. Other CMR strain techniques require dedicated sequences, including myocardial tagging, strain-encoded imaging, displacement encoding with stimulated echoes, and tissue phase mapping. The complex systolic motion of the heart can be resolved into longitudinal strain, circumferential strain, radial strain, and torsion. Myocardial strain metrics include strain, strain rate, displacement, velocity, torsion, and torsion rate. Wide variability exists in the reference ranges for strain dependent on the imaging technique, analysis software, operator, patient demographics, and hemodynamic factors. In anticancer therapy cardiotoxicity, CMR myocardial strain can help identify left ventricular dysfunction before the decline of ejection fraction. CMR myocardial strain is also valuable for identifying patients with left ventricle dyssynchrony who will benefit from cardiac resynchronization therapy. CMR myocardial strain is also useful in ischemic heart disease, cardiomyopathies, pulmonary hypertension, and congenital heart disease. The authors review the physics, principles, and clinical applications of CMR strain techniques. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Kevin Kalisz
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Jordi Broncano
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Harold Goerne
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Jeremy D Collins
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Christopher J François
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - El-Sayed Ibrahim
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Prachi P Agarwal
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| |
Collapse
|
13
|
Hayashi H, Oda S, Emoto T, Kidoh M, Nagayama Y, Nakaura T, Sakabe D, Tokuyasu S, Hirakawa K, Takashio S, Yamamoto E, Tsujita K, Hirai T. Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: Comparison with cardiac MRI. Eur J Radiol 2022; 153:110386. [PMID: 35661458 DOI: 10.1016/j.ejrad.2022.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Myocardial extracellular volume (ECV) measured by cardiac magnetic resonance imaging (MRI) has been suggested as a marker of disease severity in pulmonary hypertension (PH). However, consistency between ECVs quantified by computed tomography (CT) and MRI has not been sufficiently investigated in (PH). We investigated the utility of CT-ECV in PH, using MRI-ECV as a reference standard. METHOD We evaluated 20 patients with known or suspected PH who underwent dual-energy CT, cardiac MRI, and right heart catheterization. We used Pearson correlation analysis to investigate correlations between CT-ECV and MRI-ECV. We also assessed correlations between ECV and mean pulmonary artery pressure (mPAP). RESULTS CT-ECV showed a very strong correlation with MRI-ECV at the anterior (r = 0.83) and posterior right ventricular insertion points (RVIPs) (r = 0.84). CT-ECV and MRI-ECV were strongly correlated in the septum and left ventricular free wall (r = 0.79-0.73) but weakly correlated in the right ventricular free wall (r = 0.26). CT-ECV showed a strong correlation with mPAP in the anterior RVIP (r = 0.64) and a moderate correlation in the posterior RVIP and septum (r = 0.50-0.42). Compared with CT-ECV, MRI-ECV had a higher correlation with mPAP; however, the difference was not significant (anterior RVIP, r = 0.72 [MRI-ECV] vs. 0.64 [CT-ECV], p = 0.663; posterior RVIP, r = 0.67 vs. 0.50, p = 0.446). CONCLUSION Dual-energy CT can quantify myocardial ECV and yield results comparable to those obtained using cardiac MRI. CT-ECV in the anterior RVIP could be a noninvasive surrogate marker of disease severity in PH.
Collapse
Affiliation(s)
- Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Takafumi Emoto
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shinichi Tokuyasu
- CT Clinical Science, Philips Japan, Kohnan 2-13-37, Minato-ku, Tokyo 108-8507, Japan
| | - Kyoko Hirakawa
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
14
|
Wang H, Ding L, Tian L, Tian Y, Liao L, Zhao J. Empagliflozin reduces diffuse myocardial fibrosis by extracellular volume mapping: A meta-analysis of clinical studies. Front Endocrinol (Lausanne) 2022; 13:917761. [PMID: 36034443 PMCID: PMC9404239 DOI: 10.3389/fendo.2022.917761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of empagliflozin on diffuse myocardial fibrosis by cardiac magnetic resonance (CMR) T1 mapping. RESEARCH METHODS AND PROCEDURES Databases including PubMed, Cochrane library, Embase, and Sinomed for clinical studies of empagliflozin on myocardial fibrosis were searched. Two authors extracted the data and evaluated study quality independently. Weighted mean difference (WMD) and 95% confidence intervals (CI) were used for continuous variables. Review Manager 5.3 was used to performed the analysis. RESULTS Six studies were included in this meta-analysis. One of the six studies was assessed as poor quality by the assessment of methodological quality; however, the remaining five studies were considered good. The WMD value of △extracellular volume (ECV) was merged by the fixed-effect model, and the pooled effect size was -1.48 (95% CI -1.76 to -1.21, P < 0.00001), which means in favor of empagliflozin. Heterogeneity analysis did not find any heterogeneity (chi2 = 0.39, P = 0.82, I 2 = 0%). In addition, empagliflozin had a tendency to reduce ECV compared to treatment before with no statistical significance (WMD = -0.29, 95% CI -1.26 to 0.67, P = 0.55; heterozygosity test, chi2 = 2.66, P = 0.45, I 2 = 0%). The WMD value of △native T1 was also merged by the fixed-effect model, but the pooled effect size showed neither statistical difference between empagliflozin and placebo treatment (WMD = -5.40, 95% CI -21.63 to 10.83, P = 0.51) nor heterogeneity (chi2 = 0.05, P = 0.83, I 2 = 0%). CONCLUSIONS Empagliflozin has cardiovascular benefits by reducing diffuse myocardial fibrosis. ECV could act as a non-invasive imaging tool to assess diffuse myocardial fibrosis and monitor disease progression. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=324804, identifier: CRD42022324804.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, China
| | - Lin Ding
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Tian
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Ji’nan, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| |
Collapse
|
15
|
Krishnamachary B, Mahajan A, Kumar A, Agarwal S, Mohan A, Chen L, Hsue PY, Chalise P, Morris A, Dhillon NK. Extracellular Vesicle TGF-β1 Is Linked to Cardiopulmonary Dysfunction in Human Immunodeficiency Virus. Am J Respir Cell Mol Biol 2021; 65:413-429. [PMID: 34014809 PMCID: PMC8525206 DOI: 10.1165/rcmb.2021-0010oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators in cell-cell communication; however, their relevance in pulmonary hypertension (PH) secondary to human immunodeficiency virus (HIV) infection is yet to be explored. Considering that circulating monocytes are the source of the increased number of perivascular macrophages surrounding the remodeled vessels in PH, this study aimed to identify the role of circulating small EVs and EVs released by HIV-infected human monocyte-derived macrophages in the development of PH. We report significantly higher numbers of plasma-derived EVs carrying higher levels of TGF-β1 (transforming growth factor-β1) in HIV-positive individuals with PH compared with individuals without PH. Importantly, levels of these TGF-β1-loaded, plasma-derived EVs correlated with pulmonary arterial systolic pressures and CD4 counts but did not correlate with the Dl CO or viral load. Correspondingly, enhanced TGF-β1-dependent pulmonary endothelial injury and smooth muscle hyperplasia were observed. HIV-1 infection of monocyte-derived macrophages in the presence of cocaine resulted in an increased number of TGF-β1-high EVs, and intravenous injection of these EVs in rats led to increased right ventricle systolic pressure accompanied by myocardial injury and increased levels of serum ET-1 (endothelin-1), TNF-α, and cardiac troponin-I. Conversely, pretreatment of rats with TGF-β receptor 1 inhibitor prevented these EV-mediated changes. Findings define the ability of macrophage-derived small EVs to cause pulmonary vascular modeling and PH via modulation of TGF-β signaling and suggest clinical implications of circulating TGF-β-high EVs as a potential biomarker of HIV-associated PH.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Priscilla Y. Hsue
- Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alison Morris
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| |
Collapse
|
16
|
Gong C, He S, Chen X, Wang L, Guo J, He J, Yin L, Chen C, Han Y, Chen Y. Diverse Right Ventricular Remodeling Evaluated by MRI and Prognosis in Eisenmenger Syndrome With Different Shunt Locations. J Magn Reson Imaging 2021; 55:1478-1488. [PMID: 34152058 DOI: 10.1002/jmri.27791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Congenital shunt location is related to Eisenmenger syndrome (ES) survival. Moreover, right ventricular (RV) remodeling is associated with poor survival in pulmonary hypertension. PURPOSE To investigate RV remodeling using comprehensive magnetic resonance imaging (MRI) techniques and identify its relationship with prognosis in ES subgroups classified by shunt location. STUDY TYPE Prospective observational study. POPULATION Fifty-four adults with ES (16 with pre-tricuspid shunt and 38 with post-tricuspid shunt). FIELD STRENGTH/SEQUENCE 3.0 T/cine MRI with balanced steady-state free precession sequence, late gadolinium enhancement with inversion recovery segmented gradient echo sequence and phase-sensitive reconstruction, and T1 mapping with modified Look-Locker inversion recovery sequence. ASSESSMENT Demographics, clinical characteristics, hemodynamics, RV remodeling features (morphology, systolic function, RV-pulmonary artery (PA) coupling and myocardial fibrosis), and prognosis were compared between ES subgroups. The adverse endpoint was all-cause mortality or readmission for heart failure. STATISTICAL TESTS The independent samples t-test, Fisher's exact test or Chi-squared test, and the Kaplan-Meier method were used. P < 0.05 was considered significant. RESULTS Compared to patients with post-tricuspid shunt, patients with pre-tricuspid shunt were significantly older and had higher N-terminal pro-B-type natriuretic peptide concentrations and poorer exercise tolerance. Pre-tricuspid shunt showed significantly larger RV dimensions (end-diastolic volume index: 185.81 ± 37.49 vs. 98.20 ± 36.26 mL/m2 ), worse RV ejection fraction (23.54% ± 12.35% vs. 40.82% ± 10.77%), and RV-PA decoupling (0.35 ± 0.31 vs. 0.72 ± 0.29). Biventricular myocardial fibrosis was significantly more severe in pre-tricuspid shunt than post-tricuspid shunt (extracellular volume, left ventricle: 35.85% ± 2.58% vs. 29.10% ± 5.20%; RV free wall: 30.93% ± 5.65% vs. 26.75% ± 5.15%). In addition, pre-tricuspid shunt demonstrated a significantly increased risk of adverse endpoint (hazard ratio: 2.938, 95% confidence interval: 1.204-7.172). DATA CONCLUSION ES with pre-tricuspid shunt might be a unique subtype with worse clinically decompensated RV remodeling and poor prognosis. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 5.
Collapse
Affiliation(s)
- Chao Gong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shuai He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoling Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lili Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiajuan Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Juan He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lidan Yin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chen Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
17
|
Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. Recent Findings New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. Summary CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.
Collapse
|
18
|
Alabed S, Saunders L, Garg P, Shahin Y, Alandejani F, Rolf A, Puntmann VO, Nagel E, Wild JM, Kiely DG, Swift AJ. Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: A systematic review and meta-analysis. Magn Reson Imaging 2021; 79:66-75. [PMID: 33745961 DOI: 10.1016/j.mri.2021.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Elevated myocardial T1-mapping and extracellular volume (ECV) measured on cardiac MR (CMR) imaging is associated with myocardial abnormalities such as oedema or fibrosis. This meta-analysis aims to provide a summary of T1-mapping and ECV values in pulmonary arterial hypertension (PAH) and compare their values with controls. METHODS We searched CENTRAL, MEDLINE, Embase, and Web of Science in August 2020. We included CMR studies reporting T1-mapping or ECV values in adults with any type of PAH. We calculated the mean difference of T1-values and ECV between PAH and controls. RESULTS We included 12 studies with 674 participants. T1-values were significantly higher in PAH with the highest mean difference (MD) recorded at the RV insertion points (RVIP) (108 milliseconds (ms), 95% confidence intervals (CI) 89 to 128), followed by the RV free wall (MD 91 ms, 95% CI 56 to 126). The pooled mean T1-value in PAH at the RVIP was 1084, 95% CI (1071 to 1097) measured using 1.5 Tesla Siemens systems. ECV was also higher in PAH with an MD of 7.5%, 95% CI (5.9 to 9.1) at the RV free wall. CONCLUSION T1 mapping values in PAH patients are on average 9% higher than healthy controls when assessed under the same conditions including the same MRI system, magnetic field strength or sequence used for acquisition. The highest T1 and ECV values are at the RVIP. T1 mapping and ECV values in PH are higher than the values reported in cardiomyopathies and were associated with poor RV function and RV dilatation.
Collapse
Affiliation(s)
- Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Laura Saunders
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andreas Rolf
- Department of Cardiology, Kerckhoff-Heart Center, Bad Nauheim, Germany
| | - Valentina O Puntmann
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; INSIGNEO, Institute for in silico medicine, University of Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
19
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
20
|
Sjögren H, Kjellström B, Bredfelt A, Steding-Ehrenborg K, Rådegran G, Hesselstrand R, Arheden H, Ostenfeld E. Underfilling decreases left ventricular function in pulmonary arterial hypertension. Int J Cardiovasc Imaging 2021; 37:1745-1755. [PMID: 33502652 PMCID: PMC8105202 DOI: 10.1007/s10554-020-02143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
To evaluate the association between impaired left ventricular (LV) longitudinal function and LV underfilling in patients with pulmonary arterial hypertension (PAH). Thirty-nine patients with PAH and 18 age and sex-matched healthy controls were included. LV volume and left atrial volume (LAV) were delineated in short-axis cardiac magnetic resonance (CMR) cine images. LV longitudinal function was assessed from atrio-ventricular plane displacement (AVPD) and global longitudinal strain (GLS) was assessed using feature tracking in three long-axis views. LV filling was assessed by LAV and by pulmonary artery wedge pressure (PAWP) using right heart catheterisation. Patients had a smaller LAV, LV volume and stroke volume as well as a lower LV-AVPD and LV-GLS than controls. PAWP was 6 [IQR 5––9] mmHg in patients. LV ejection fraction did not differ between groups. LV stroke volume correlated with LV-AVPD (r = 0.445, p = .001), LV-GLS (r = − 0.549, p < 0.0001) and LAVmax (r = .585, p < 0.0001). Furthermore, LV-AVPD (r = .598) and LV-GLS (r = − 0.675) correlated with LAVmax (p < 0.0001 for both). Neither LV-AVPD, LV-GLS, LAVmax nor stroke volume correlated with PAWP. Impaired LV longitudinal function was associated with low stroke volume, low PAWP and a small LAV in PAH. Small stroke volumes and LAV, together with normal LA pressure, implies that the mechanism causing reduced LV longitudinal function is underfilling rather than an intrinsic LV dysfunction in PAH.
Collapse
Affiliation(s)
- Hannah Sjögren
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden
| | - Barbro Kjellström
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden.,Cardiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bredfelt
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden.,Department of Health Sciences, Physiotherapy, Lund University, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, and the Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund University, Lund, Sweden
| | - Roger Hesselstrand
- Department of Clinical Sciences Lund, Rheumatology, The Clinic for Rheumatology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden. .,Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
21
|
Yamasaki Y, Abe K, Kamitani T, Sagiyama K, Hida T, Hosokawa K, Matsuura Y, Hioki K, Nagao M, Yabuuchi H, Ishigami K. Right Ventricular Extracellular Volume with Dual-Layer Spectral Detector CT: Value in Chronic Thromboembolic Pulmonary Hypertension. Radiology 2021; 298:589-596. [PMID: 33497315 DOI: 10.1148/radiol.2020203719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Right ventricular (RV) extracellular volumes (ECVs), as a surrogate for histologic fibrosis, have not been sufficiently investigated. Purpose To evaluate and compare RV and left ventricular (LV) ECVs obtained with dual-layer spectral detector CT (DLCT) in chronic thromboembolic pulmonary hypertension (CTEPH) and investigate the clinical importance of RV ECV. Materials and Methods Retrospective analysis was performed on data from 31 patients with CTEPH (17 were not treated with pulmonary endarterectomy [PEA] or balloon pulmonary angioplasty [BPA] and 14 were) and eight control subjects who underwent myocardial delayed enhancement (MDE) DLCT from January 2019 to June 2020. The ECVs in the RV and LV walls were calculated by using iodine density as derived from spectral data pertaining to MDE. Statistical analyses were performed with one-way repeated analysis of variance with the Tukey post hoc test or the Kruskal-Wallis test with the Steel-Dwass test and linear regression analysis. Results The PEA- and BPA-naive group showed significantly higher ECVs than the PEA- or BPA-treated group and control group in the septum (28.2% ± 2.9 vs 24.3% ± 3.6, P = .005), anterior right ventricular insertion point (RVIP) (32.9% ± 4.6 vs 25.3% ± 3.6, P < .001), posterior RVIP (35.2% ± 5.2 vs 27.3% ± 4.2, P < .001), mean RVIP (34.0% ± 4.2 vs 26.3% ± 3.4, P < .001), RV free wall (29.5% ± 3.3 vs 25.9% ± 4.1, P = .036), and mean RV wall (29.1% ± 3.0 vs 26.1% ± 3.1, P = .029). There were no significant differences between the PEA- or BPA-treated group and control subjects in these segments (septum, P = .93; anterior RVIP, P = .38; posterior RVIP, P = .52; mean RVIP, P = .36; RV free wall, P = .97; and mean RV, P = .33). There were significant correlations between ECV and mean pulmonary artery pressure (PAP) or brain natriuretic peptide (BNP) in the mean RVIP (mean PAP: R = 0.66, P < .001; BNP: R = 0.44, P = .014) and the mean RV (mean PAP: R = 0.49, P = .005; BNP: R = 0.44, P = .013). Conclusion Right ventricular and right ventricular insertion point extracellular volumes could be noninvasive surrogate markers of disease severity and reverse tissue remodeling in chronic thromboembolic pulmonary hypertension. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Sandfort and Bluemke in this issue.
Collapse
Affiliation(s)
- Yuzo Yamasaki
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kohtaro Abe
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Takeshi Kamitani
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Koji Sagiyama
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Tomoyuki Hida
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kazuya Hosokawa
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Yuko Matsuura
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kazuhito Hioki
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Michinobu Nagao
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Hidetake Yabuuchi
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kousei Ishigami
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| |
Collapse
|
22
|
Alabed S, Garg P, Johns CS, Alandejani F, Shahin Y, Dwivedi K, Zafar H, Wild JM, Kiely DG, Swift AJ. Cardiac Magnetic Resonance in Pulmonary Hypertension-an Update. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020; 13:30. [PMID: 33184585 PMCID: PMC7648000 DOI: 10.1007/s12410-020-09550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW This article reviews advances over the past 3 years in cardiac magnetic resonance (CMR) imaging in pulmonary hypertension (PH). We aim to bring the reader up-to-date with CMR applications in diagnosis, prognosis, 4D flow, strain analysis, T1 mapping, machine learning and ongoing research. RECENT FINDINGS CMR volumetric and functional metrics are now established as valuable prognostic markers in PH. This imaging modality is increasingly used to assess treatment response and improves risk stratification when incorporated into PH risk scores. Emerging techniques such as myocardial T1 mapping may play a role in the follow-up of selected patients. Myocardial strain may be used as an early marker for right and left ventricular dysfunction and a predictor for mortality. Machine learning has offered a glimpse into future possibilities. Ongoing research of new PH therapies is increasingly using CMR as a clinical endpoint. SUMMARY The last 3 years have seen several large studies establishing CMR as a valuable diagnostic and prognostic tool in patients with PH, with CMR increasingly considered as an endpoint in clinical trials of PH therapies. Machine learning approaches to improve automation and accuracy of CMR metrics and identify imaging features of PH is an area of active research interest with promising clinical utility.
Collapse
Affiliation(s)
- Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - Christopher S. Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Hamza Zafar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
| | - James M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Glossop Road, Sheffield, S10 2JF UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Sree Raman K, Shah R, Stokes M, Walls A, Woodman RJ, Ananthakrishna R, Walker JG, Proudman S, Steele PM, De Pasquale CG, Celermajer DS, Selvanayagam JB. Left ventricular ischemia in pre-capillary pulmonary hypertension: a cardiovascular magnetic resonance study. Cardiovasc Diagn Ther 2020; 10:1280-1292. [PMID: 33224752 DOI: 10.21037/cdt-20-698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Prognosis in pulmonary arterial hypertension (PAH) is largely dependent on right ventricular (RV) function. However, recent studies have suggested the presence of left ventricular (LV) dysfunction in PAH patients. The potential role of LV ischemia, as a contributor to progressive LV dysfunction, has not been systematically studied in PAH. We aim to assess the presence and extent of LV myocardial ischemia in patients with known PH and without obstructive coronary artery disease (CAD), using oxygen-sensitive (OS) cardiovascular magnetic resonance (CMR) and stress/rest CMR T1 mapping. Methods We prospectively recruited 28 patients with right heart catheter-proven PH and no significant CAD, 8 patients with known CAD and 11 normal age-matched controls (NC). OS-CMR images were acquired using a T2* sequence and T1 maps were acquired using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) at rest and adenosine-induced stress vasodilatation; ΔOS-CMR signal intensity (SI) index (stress/rest SI) and ΔT1 reactivity (stress-rest/rest T1 mapping) were calculated. Results Global LV ΔOS SI index was significantly lower in PH patients compared with controls (11.1%±6.7% vs. 20.5%±10.5%, P=0.016), as was ΔT1 reactivity (5.2%±4.5% vs. 8.0%±2.9%, P=0.047). The ischemic segments of CAD patients had comparable ΔOS SI (10.3%±6.4% vs. 11.1%±6.7%, P=0.773) to PH patients, but lower ΔT1 reactivity (1.1%±4.2% vs. 5.2%±4.5%, P=0.036). Conclusions Decreased OS-CMR SI and T1 reactivity signify the presence of impaired myocardial oxygenation and vasodilatory response in PH patients. Given their unobstructed epicardial coronary arteries, this is likely secondary to coronary microvascular dysfunction (CMD).
Collapse
Affiliation(s)
- Karthigesh Sree Raman
- College of Medicine and Public Health, Flinders University, Flinders, Australia.,Flinders Medical Centre, Flinders, Australia.,Cardiac Imaging Research, South Australian Health & Medical Research Institute, Australia.,Whangarei Hospital, Northland District Health Board, Whangarei, New Zealand.,Department of Medicine (Northland Campus), Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ranjit Shah
- College of Medicine and Public Health, Flinders University, Flinders, Australia.,Flinders Medical Centre, Flinders, Australia.,Cardiac Imaging Research, South Australian Health & Medical Research Institute, Australia
| | - Michael Stokes
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angela Walls
- Clinical Research and Imaging Centre, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Richard J Woodman
- Flinders Centre of Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, Flinders, Australia
| | - Rajiv Ananthakrishna
- College of Medicine and Public Health, Flinders University, Flinders, Australia.,Flinders Medical Centre, Flinders, Australia.,Cardiac Imaging Research, South Australian Health & Medical Research Institute, Australia
| | | | - Susanna Proudman
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Peter M Steele
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Carmine G De Pasquale
- College of Medicine and Public Health, Flinders University, Flinders, Australia.,Flinders Medical Centre, Flinders, Australia
| | - David S Celermajer
- Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph B Selvanayagam
- College of Medicine and Public Health, Flinders University, Flinders, Australia.,Flinders Medical Centre, Flinders, Australia.,Cardiac Imaging Research, South Australian Health & Medical Research Institute, Australia
| |
Collapse
|
24
|
Broncano J, Bhalla S, Gutierrez FR, Vargas D, Williamson EE, Makan M, Luna A. Cardiac MRI in Pulmonary Hypertension: From Magnet to Bedside. Radiographics 2020; 40:982-1002. [PMID: 32609599 DOI: 10.1148/rg.2020190179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a disease characterized by progressive rise of pulmonary artery (PA) pressure, which can lead to right ventricular (RV) failure. It is usually diagnosed late because of the nonspecificity of its symptoms. RV performance and adaptation to an increased afterload, reflecting the interaction of the PA and RV as a morphofunctional unit, constitute a critical determinant of morbidity and mortality in these patients. Therefore, early detection of dysfunction may prevent treatment failure. Cardiac MRI constitutes one of the most complete diagnostic modalities for diagnosing PH. It allows evaluation of the morphology and hemodynamics of the PA and RV. Several cine steady-state free-precession (SSFP)-derived parameters (indexed RV end-diastolic volume or RV systolic volume) and phase-contrast regional area change have been suggested as powerful biomarkers for prognosis and treatment. Recently, new cardiac MRI sequences have been added to clinical protocols for PH evaluation, providing brand-new information. Strain analysis with myocardial feature tracking can help detect early RV dysfunction, even with preserved ejection fraction. Four-dimensional flow cardiac MRI can enhance assessment of advanced RV and PA hemodynamics. Late gadolinium enhancement (LGE) imaging may allow detection of replacement fibrosis in PH patients, which is associated with poor outcome. T1 mapping may help detect interstitial fibrosis, even with normal LGE imaging results. The authors analyze the imaging workup of PH with a focus on the role of morphologic and functional cardiac MRI in diagnosis and management of PH, including some of the newer techniques. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Fernando R Gutierrez
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Eric E Williamson
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Majesh Makan
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, RESSALTA HT Médica, Avenida el Brillante 36, 14012 Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.R.G.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.E.W.); Cardiovascular Division, Barnes Jewish Heart and Vascular Center, St Louis, Mo (M.M.); and MRI Section, Department of Radiology, Clínica Las Nieves, SERCOSA HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
25
|
Muthulakshmi M, Kavitha G. Cardiovascular Disorder Severity Detection Using Myocardial Anatomic Features Based Optimized Extreme Learning Machine Approach. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Fu S, Li Y, Wu Y, Yue Y, Yang D. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis. ACTA ACUST UNITED AC 2019; 72:227-235. [PMID: 31820448 DOI: 10.1111/jphp.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We aimed to investigate the effects of icariside II (ICS II) on myocardial fibrosis in spontaneously hypertensive rats (SHRs) and to explore the possible mechanisms. METHODS We used SHRs as animal models, and we administered ICS II (4, 8 or 16 mg/kg) orally by gavage for 12 consecutive weeks (Fu et al., Biomed Pharmacother 2018; 100: 64). The left ventricular morphology of the rats was observed using haematoxylin-eosin (HE) staining. The occurrence of myocardial interstitial fibrosis was detected by Masson's trichrome staining. The protein levels of alpha smooth muscle actin (α-SMA), Collagen I, III, matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively), tissue inhibitor of metalloproteinase 1 (TIMP-1), transforming growth factor-β1 (TGF-β1), phospho-Smad2 (p-Smad2), phospho-Smad3 (p-Smad3) and phospho-p38 (p-p38) were examined by Western blotting. KEY FINDINGS The results suggested that ICS II improved myocardial interstitial and perivascular collagen deposition and decreased Collagen I/III and α-SMA expression. ICS II (8 and 16 mg/kg) downregulated the expression of MMP-2 and MMP9 and upregulated the expression of TIMP1. In addition, the protein levels of p-Smad2/3, TGF-β1 and p-p38 were decreased by ICS II treatment. CONCLUSIONS The results suggest that ICS II can inhibit the expression of Collagen I and Collagen III through the MMP/TIMP-1 and TGF-β1/Smad2,3/p-p38 signalling pathways and that it has therapeutic effects on myocardial fibrosis.
Collapse
Affiliation(s)
- Shu Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuting Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Yue
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Vo HQ, Marwick TH, Negishi K. Pooled summary of native T1 value and extracellular volume with MOLLI variant sequences in normal subjects and patients with cardiovascular disease. Int J Cardiovasc Imaging 2019; 36:325-336. [DOI: 10.1007/s10554-019-01717-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
|
28
|
Abstract
The role of right ventricular (RV) fibrosis in pulmonary hypertension (PH) remains a subject of ongoing discussion. Alterations of the collagen network of the extracellular matrix may help prevent ventricular dilatation in the pressure-overloaded RV. At the same time, fibrosis impairs cardiac function, and a growing body of experimental data suggests that fibrosis plays a crucial role in the development of RV failure. In idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, the RV is exposed to a ≈5 times increased afterload, which makes these conditions excellent models for studying the impact of pressure overload on RV structure. With this review, we present clinical evidence of RV fibrosis in idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, explore the correlation between fibrosis and RV function, and discuss the clinical relevance of RV fibrosis in patients with PH. We postulate that RV fibrosis has a dual role in patients with pressure-overloaded RVs of idiopathic pulmonary arterial hypertension and chronic thromboembolic PH: as part of an adaptive response to prevent cardiomyocyte overstretch and to maintain RV shape for optimal function, and as part of a maladaptive response that increases diastolic stiffness, perturbs cardiomyocyte excitation-contraction coupling, and disrupts the coordination of myocardial contraction. Finally, we discuss potential novel therapeutic strategies and describe more sensitive techniques to quantify RV fibrosis, which may be used to clarify the causal relation between RV fibrosis and RV function in future research.
Collapse
Affiliation(s)
| | | | | | - Frances S de Man
- Amsterdam UMC, Vrije Universiteit, The Netherlands (A.V.N., F.S.d.M)
| |
Collapse
|
29
|
Pulmonary Hypertension Parameters Assessment by Electrocardiographically Gated Computed Tomography. J Thorac Imaging 2019; 34:329-337. [DOI: 10.1097/rti.0000000000000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Andersen S, Birkmose Axelsen J, Ringgaard S, Randel Nyengaard J, Holm Nielsen S, Genovese F, Asser Karsdal M, Adler Hyldebrandt J, Brandt Sørensen C, de Man FS, Jan Bogaard H, Erik Nielsen-Kudsk J, Andersen A. Pressure overload induced right ventricular remodeling is not attenuated by the anti-fibrotic agent pirfenidone. Pulm Circ 2019; 9:2045894019848659. [PMID: 30997866 PMCID: PMC6540527 DOI: 10.1177/2045894019848659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiac fibrosis contributes to the development of heart failure in pulmonary hypertension. We aimed to assess the development of fibrosis and the effects of treatment with the anti-fibrotic agent pirfenidone in pressure overload induced right ventricular (RV) failure. Wistar rat weanlings were randomized to pulmonary trunk banding (PTB) or sham surgery. One week after the procedure, PTB rats were randomized into two groups with either six weeks on standard chow or treatment with pirfenidone mixed in chow (700 mg/kg/day). RV hemodynamic effects were evaluated by echocardiography, cardiac magnetic resonance imaging (MRI), and pressure-volume measurements. Sections from the isolated RV, left ventricle, and septum were sampled systematically; stereological point grids and the nucleator were used to estimate volume of fibrosis and cardiac hypertrophy, respectively. PTB caused RV failure in all rats subjected to the procedure. The volume fraction of fibrosis in the RV increased threefold in PTB rats corresponding to a sixfold increase in total volume of RV fibrosis. Volume fraction of fibrosis and total volume of fibrosis also increased in the septum and in the left ventricle. Pirfenidone reduced body weight but did not improve RV hemodynamics or reduce cardiac fibrosis. RV cardiomyocyte profile area was increased twofold in PTB rats without any effect of pirfenidone. RV pressure overload after PTB induced not only RV but also septal and left ventricular fibrosis assessed by stereology. Treatment with pirfenidone reduced body weight but did not reduce the development of cardiac fibrosis or delay the progression of RV failure.
Collapse
Affiliation(s)
- Stine Andersen
- 1 Department of Cardiology, Aarhus University Hospital, Denmark
| | | | | | - Jens Randel Nyengaard
- 3 Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine; Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Denmark
| | - Signe Holm Nielsen
- 4 Fibrosis Biology and Biomarkers Research, Nordic Bioscience A/S, Herlev, Denmark.,5 Deparment of Biomedicine and Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Federica Genovese
- 4 Fibrosis Biology and Biomarkers Research, Nordic Bioscience A/S, Herlev, Denmark
| | - Morten Asser Karsdal
- 4 Fibrosis Biology and Biomarkers Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | - Charlotte Brandt Sørensen
- 1 Department of Cardiology, Aarhus University Hospital, Denmark.,7 Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | - Asger Andersen
- 1 Department of Cardiology, Aarhus University Hospital, Denmark
| |
Collapse
|
31
|
Reiter U, Reiter C, Kräuter C, Fuchsjäger M, Reiter G. Cardiac magnetic resonance T1 mapping. Part 2: Diagnostic potential and applications. Eur J Radiol 2018; 109:235-247. [PMID: 30539759 DOI: 10.1016/j.ejrad.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Non-invasive identification and differentiation of myocardial diseases represents the primary objectives of cardiac magnetic resonance (CMR) longitudinal relaxation time (T1) and extracellular volume (ECV) mapping. Given the fact that myocardial T1 and ECV values overlap throughout and within left ventricular phenotypes, a central issue to be addressed is whether and to what extent myocardial T1 and ECV mapping provides additional or superior diagnostic information to standard CMR imaging, and whether native T1 mapping could be employed as a non-contrast alternative to late gadolinium enhancement (LE) imaging. The present review aims to summarize physiological and pathophysiological alterations in native T1 and ECV values and summarized myocardial T1 and ECV alterations associated with cardiac diseases to support the translation of research findings into routine CMR imaging.
Collapse
Affiliation(s)
- Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 19/P, 8036 Graz, Austria.
| | - Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 19/P, 8036 Graz, Austria.
| | - Corina Kräuter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 19/P, 8036 Graz, Austria; Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, 8010 Graz, Austria.
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 19/P, 8036 Graz, Austria.
| | - Gert Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 19/P, 8036 Graz, Austria; Research & Development, Siemens Healthcare Diagnostics GmbH, Strassgangerstrasse 315, 8054 Graz, Austria.
| |
Collapse
|
32
|
Avazmohammadi R, Mendiola EA, Soares JS, Li DS, Chen Z, Merchant S, Hsu EW, Vanderslice P, Dixon RAF, Sacks MS. A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat. Ann Biomed Eng 2018; 47:138-153. [PMID: 30264263 DOI: 10.1007/s10439-018-02130-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement via the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental-computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.
Collapse
Affiliation(s)
- Reza Avazmohammadi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Emilio A Mendiola
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - João S Soares
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - David S Li
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zhiqiang Chen
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Samer Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Edward W Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Richard A F Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
33
|
Liu M, Liu W, Zhang P, An J, Wang G. Left ventricular myocardial T1 mapping and strain analysis evaluate cardiac abnormality in hypothyroidism. Int J Cardiovasc Imaging 2018; 35:507-515. [DOI: 10.1007/s10554-018-1456-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
34
|
Nakamori S, Nezafat M, Ngo LH, Manning WJ, Nezafat R. Left Atrial Epicardial Fat Volume Is Associated With Atrial Fibrillation: A Prospective Cardiovascular Magnetic Resonance 3D Dixon Study. J Am Heart Assoc 2018; 7:JAHA.117.008232. [PMID: 29572324 PMCID: PMC5907571 DOI: 10.1161/jaha.117.008232] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies demonstrated a strong association between atrial fibrillation (AF) and epicardial fat around the left atrium (LA). We sought to assess whether epicardial fat volume around the LA is associated with AF, and to determine the additive value of LA-epicardial fat measurements to LA structural remodeling for identifying patients with AF using 3-dimensional multi-echo Dixon fat-water separated cardiovascular magnetic resonance. METHODS AND RESULTS A total of 105 subjects were studied: 53 patients with a history of AF and 52 age-matched patients with other cardiovascular diseases but no history of AF. The 3-dimensional multi-echo Dixon fat-water separated sequence was performed for LA-epicardial fat measurements. AF patients had significantly greater LA-epicardial fat (28.9±12.3 and 14.2±7.3 mL for AF and non-AF, respectively; P<0.001) and LA volume (110.8±38.2 and 89.7±30.3 mL for AF and non-AF, respectively; P=0.002). LA-epicardial fat adjusted for LA volume was still higher in patients with AF compared with those without AF (P<0.001). LA-epicardial fat and hypertension were independently associated with the risk of AF (odds ratio, 1.17; 95% confidence interval, 1.10%-1.25%, P<0.001, and odds ratio, 3.29; 95% confidence interval, 1.17%-9.27%, P=0.03, respectively). In multivariable logistic regression analysis adjusted for body surface area, LA-epicardial fat remained significant and an increase per mL was associated with a 42% increase in the odds of AF presence (odds ratio, 1.42; 95% confidence interval, 1.23%-1.62%, P<0.001). Combined assessment of LA-epicardial fat and LA volume provided greater discriminatory performance for detecting AF than LA volume alone (c-statistic=0.88 and 0.74, respectively, DeLong test; P<0.001). CONCLUSIONS Cardiovascular magnetic resonance 3-dimensional Dixon-based LA-epicardial fat volume is significantly increased in AF patients. LA-epicardial fat measured by 3-dimensional Dixon provides greater performance for detecting AF beyond LA structural remodeling.
Collapse
Affiliation(s)
- Shiro Nakamori
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Maryam Nezafat
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Long H Ngo
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Warren J Manning
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.,Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Reza Nezafat
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Xiao Y, Ye J, Zhou Y, Huang J, Liu X, Huang B, Zhu L, Wu B, Zhang G, Cai Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch Biochem Biophys 2018; 640:37-46. [PMID: 29331689 DOI: 10.1016/j.abb.2018.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways. It has been shown that activation of AMPK could inhibit fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby suppressing cardiac fibrosis. Baicalin, the major component found in skullcap, possesses multiple protective effects on the cardiovascular system. However, little is known about the effect of baicalin on cardiac fibrosis and the molecular mechanism by which baicalin exerts its anti-fibrotic effects has not been investigated. In this study, we revealed that baicalin could inhibit cell proliferation, collagen synthesis, fibronectin (FN) and Connective tissue growth factor (CTGF) protein expression in cardiac fibroblasts induced by angiotensin Ⅱ (Ang Ⅱ). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, baicalin inhibited transforming growth factor-β (TGF-β)/Smads signaling pathway stimulated with Ang Ⅱ through activating AMPK. Subsequently, we also demonstrated that baicalin attenuated Ang Ⅱ-induced Smad3 nuclear translocation, and interaction with transcriptional coactivator p300, but promoted the interaction of p300 and AMPK. Taken together, these results provide the first evidence that the effect of baicalin against cardiac fibrosis may be attributed to its regulation on AMPK/TGF-β/Smads signaling, suggesting the therapeutic potential of baicalin on the prevention of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yichuan Xiao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Biyun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Liu Zhu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Genshui Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| |
Collapse
|
36
|
Crowe T, Jayasekera G, Peacock AJ. Non-invasive imaging of global and regional cardiac function in pulmonary hypertension. Pulm Circ 2017; 8:2045893217742000. [PMID: 29064323 PMCID: PMC5753990 DOI: 10.1177/2045893217742000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive illness characterized by elevated pulmonary artery pressure; however, the main cause of mortality in PH patients is right ventricular (RV) failure. Historically, improving the hemodynamics of pulmonary circulation was the focus of treatment; however, it is now evident that cardiac response to a given level of pulmonary hemodynamic overload is variable but plays an important role in the subsequent prognosis. Non-invasive tests of RV function to determine prognosis and response to treatment in patients with PH is essential. Although the right ventricle is the focus of attention, it is clear that cardiac interaction can cause left ventricular dysfunction, thus biventricular assessment is paramount. There is also focus on the atrial chambers in their contribution to cardiac function in PH. Furthermore, there is evidence of regional dysfunction of the two ventricles in PH, so it would be useful to understand both global and regional components of dysfunction. In order to understand global and regional cardiac function in PH, the most obvious non-invasive imaging techniques are echocardiography and cardiac magnetic resonance imaging (CMRI). Both techniques have their advantages and disadvantages. Echocardiography is widely available, relatively inexpensive, provides information regarding RV function, and can be used to estimate RV pressures. CMRI, although expensive and less accessible, is the gold standard of biventricular functional measurements. The advent of 3D echocardiography and techniques including strain analysis and stress echocardiography have improved the usefulness of echocardiography while new CMRI technology allows the measurement of strain and measuring cardiac function during stress including exercise. In this review, we have analyzed the advantages and disadvantages of the two techniques and discuss pre-existing and novel forms of analysis where echocardiography and CMRI can be used to examine atrial, ventricular, and interventricular function in patients with PH at rest and under stress.
Collapse
Affiliation(s)
- Tim Crowe
- 41444 Cardiac and Vascular Imaging Group, Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Geeshath Jayasekera
- 41444 Cardiac and Vascular Imaging Group, Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Andrew J Peacock
- 41444 Cardiac and Vascular Imaging Group, Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
37
|
Interrelations of Epicardial Fat Volume, Left Ventricular T1-Relaxation Times and Myocardial Strain in Hypertensive Patients. J Thorac Imaging 2017; 32:169-175. [DOI: 10.1097/rti.0000000000000264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Chen YY, Yun H, Jin H, Kong DH, Long YL, Fu CX, Yang S, Zeng MS. Association of native T1 times with biventricular function and hemodynamics in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 2017; 33:1179-1189. [PMID: 28315014 DOI: 10.1007/s10554-017-1095-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
In precapillary pulmonary hypertension (PH) patients, we sought to (1) investigate the relationship between ventricular insertion point (VIP) T1 times, hemodynamic parameters, and biventricular function, and (2) determine the predictors of anterior and inferior VIP T1 time. Twenty-two patients with precapillary PH underwent 1.5-T cardiac MR, right heart catheterization (RHC), and echocardiography. A group of 10 healthy age- and sex-matched volunteers served as controls. Biventricular function, morphology and mass were obtained from short-axis cine images. Native T1 times at anterior, inferior VIP, septum and LV lateral wall were respectively derived from all subjects. Mixed venous oxygen saturation (SvO2) was the strongest hemodynamic parameters correlating with anterior (rp = -0.67, P = 0.001) and inferior VIP T1 time (rp = -0.81, P < 0.001). Elevated VIP T1 times were associated with reduced right ventricular (RV) ejection fraction, RV longitudinal and transverse motion, and increased RV end-diastolic and end-systolic volume index. LV diastolic function, quantified as mitral E velocity, was negatively correlated with anterior, inferior VIP (rp = -0.55, P = 0.01) and septal T1 times (rp = -0.50, P = 0.02), and positively correlated with RV systolic function and wall motion. In multivariate linear regression analyses, systolic eccentricity index (sEI) was the independent predictor of average VIPs T1 time (β= 0.47, P < 0.01), and remained significant correlation after adjustment of RHC and demographic parameters. In patients with precapillary PH, VIP T1 times are associated with biventricular function and hemodynamic parameters. Among all the parameters, sEI acts as a determinant of average VIPs T1 time.
Collapse
Affiliation(s)
- Yin Yin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Medical Imaging, Shanghai Medical school, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai, China
| | - Hong Yun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Medical Imaging, Shanghai Medical school, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Medical Imaging, Shanghai Medical school, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai, China
| | - De Hong Kong
- Department of Echocardiography, Zhongshan Hospital, Fudan University, 180#, Fenglin Road, Shanghai, China
| | - Yu Liang Long
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180#, Fenglin Road, Shanghai, China
| | - Cai Xia Fu
- Siemens Shenzhen Magnetic Resonance (C.F.), Shenzhen, China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Medical Imaging, Shanghai Medical school, Fudan University, Shanghai, China. .,Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai, China.
| | - Meng Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Medical Imaging, Shanghai Medical school, Fudan University, Shanghai, China. .,Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai, China.
| |
Collapse
|