1
|
Tian Y, Li M, Cheng R, Chen X, Xu Z, Yuan J, Diao Z, Hao L. Human adipose mesenchymal stem cell-derived exosomes alleviate fibrosis by restraining ferroptosis in keloids. Front Pharmacol 2024; 15:1431846. [PMID: 39221144 PMCID: PMC11361945 DOI: 10.3389/fphar.2024.1431846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background Keloid is a fibroproliferative disease with unsatisfactory therapeutic effects and a high recurrence rate. exosomes produced by adipose-derived mesenchymal stem cells (ADSC-Exos) have attracted significant interest due to their ability to treat fibrosis. However, the molecular mechanisms of ADSC-Exos in keloids remain inconclusive. Objective Our study revealed the relationship between ferroptosis and fibrosis in keloids. Subsequently, this study aimed to explore further the anti-fibrotic effect of ADSC-Exos on keloids through ferroptosis and the potential underlying mechanisms. Methods To investigate the impact of ferroptosis on keloid fibrosis, Erastin and ferrostatin-1 (fer-1) were utilized to treat keloid fibroblast. Keloid keloids treated with Erastin and fer-1 were cocultured with ADSC-Exos to validate the impact of ferroptosis on the effect of ADSC-Exos on keloid anti-ferrotic protein, peroxidase 4 (GPX4) and anti-fibrotic effects in vivo and in vitro by Western blot, as well as variations in iron metabolite expression, malondialdehyde (MDA), liposomal peroxidation (LPO) and glutathione (GSH) were analyzed. The effect of solute carrier family 7-member 11 (SLC7A11) silencing on ADSC-Exo-treated keloid fibroblast was investigated. Results Iron metabolite dysregulation was validated in keloids. Fibrosis progression is enhanced by Erastin-induced ferroptosis. The anti-fibrotic effects of ADSC-Exos and fer-1 are related to their ability to prevent iron metabolism. ADSC-Exos effectively suppressed keloid fibrosis progression and increased GSH and GPX4 gene expression. Additionally, the use of Erastin limits the effect of ADSC-Exos in keloids. Furthermore, the effect of ADSC-Exos on keloids was associated with SLC7A11-GPX4 signaling pathway. Conclusion We demonstrated a new potential mechanism by which anti-ferroptosis inhibits the progression of keloid fibrosis and identified an ADSC-Exo-based keloid therapeutic strategy. Resisting the occurrence of ferroptosis and the existence of the SLC7A11-GPX4 signaling pathway might serve as a target for ADSC-Exos.
Collapse
|
2
|
Liang Q, Zhou D, Ge X, Song P, Chu W, Xu J, Shen Y. Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis. Mol Cell Endocrinol 2024; 588:112213. [PMID: 38556162 DOI: 10.1016/j.mce.2024.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Difficult-to-heal wound is a prevalent and significant complication of diabetes, characterized by impaired functionality of epithelial cells such as fibroblasts. This study aims to investigate the potential mechanism of ADSC-Exos promoting diabetic wound healing by regulating fibroblast function. MATERIALS AND METHODS ADSC-Exos were confirmed through TEM, NTA, and Western Blot techniques. The study conducted on rat skin fibroblasts (RSFs) exposed to 33 mmol/L glucose in vitro. We used cck-8, EDU, transwell, and scratch assays to verify the proliferation and migration of RSFs. Furthermore, levels of TGF-β1 and α-SMA proteins were determined by immunofluorescence and Western Blot. RSFs were transfected with miR-128-1-5p mimics and inhibitors, followed by quantification of TGF-β1, α-SMA, Col I and Smad2/3 protein levels using Western Blot. In vivo, the effects of ADSC-Exos on diabetic wounds were assessed using digital imaging, histological staining, as well as Western Blot analysis. RESULTS In vitro, ADSC-Exos significantly enhanced proliferation and migration of RSFs while reducing the expression of TGF-β1 and α-SMA. In vivo, ADSC-Exos effectively promoted diabetic wound healing and mitigated scar fibrosis. Additionally, ADSC-Exos exhibited elevated levels of miR-128-1-5p, which targets TGF-β1, resulting in a notable reduction in TGF-β1, α-SMA, Col I and smad2/3 phosphorylation in RSFs. CONCLUSION In conclusion, our results demonstrated that ADSC-Exos promoted diabetic wound healing, and inhibited skin fibrosis by regulating miR-128-1-5p/TGF-β1/Smad signaling pathway, which provides a promising innovative treatment for diabetic wound healing.
Collapse
Affiliation(s)
- Qiu Liang
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Danlian Zhou
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Xiuyu Ge
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Peijun Song
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Weiwei Chu
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Jing Xu
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, 233000, China.
| | - Yan Shen
- Department of Prevention and Health Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
3
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
4
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
5
|
Li N, Hu L, Li J, Ye Y, Bao Z, Xu Z, Chen D, Tang J, Gu Y. The Immunomodulatory effect of exosomes in diabetes: a novel and attractive therapeutic tool in diabetes therapy. Front Immunol 2024; 15:1357378. [PMID: 38720885 PMCID: PMC11076721 DOI: 10.3389/fimmu.2024.1357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
Collapse
Affiliation(s)
- Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Lingli Hu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyang Li
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhengyang Bao
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Gu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
- Department of Obstetrics, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Jafarzadeh A, PourMohammad A, Goodarzi A. A systematic review of the efficacy, safety and satisfaction of regenerative medicine treatments, including platelet-rich plasma, stromal vascular fraction and stem cell-conditioned medium for hypertrophic scars and keloids. Int Wound J 2024; 21:e14557. [PMID: 38126221 PMCID: PMC10961894 DOI: 10.1111/iwj.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The primary objective of this study is to examine the efficiency of various regenerative medicine approaches, such as platelet-rich plasma, cell therapy, stromal vascular fraction, exosomes and stem cell-conditioned medium, in the process of healing hypertrophic and keloid scars. Major databases including PubMed, Scopus and Web of Science were systematically searched, and based on the content of the articles and the inclusion and exclusion criteria, eight articles were selected. Out of these eight articles, there were two non-randomized clinical trial studies (25%), one randomized, single-blinded comparative study (12.5%), one retrospective clinical observational study (12.5%) and four randomized clinical trial studies (50%). We employed EndNote X8 and Google Sheets to conduct article reviews and extract relevant data. Following the review phase, the studies underwent analysis and categorization. In all eight reviewed studies, the effectiveness of regenerative medicine in treating hypertrophic scars and keloids has been proven. Out of these studies, five (62.5%) focused on the effectiveness of platelet-rich plasma, two study (25%) examined the effectiveness of stromal vascular fraction and one study (12.5%) explored the efficacy of stem cell-conditioned medium. In two studies (25%), the treatment methods were added to standard treatment, while in six studies (75%), regenerative medicine was used as the sole treatment method and compared with standard treatment. The use of these treatment methods did not result in any serious side effects for the patients. Regenerative medicine is an effective method with minimal side effects for the treatment of hypertrophic scars and keloids. It can be used as a monotherapy or in combination with other treatment methods. However, further studies are needed to thoroughly evaluate the effectiveness of all sub-branches of this method.
Collapse
Affiliation(s)
- Alireza Jafarzadeh
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of MedicineIran University of Medical Sciences (IUMS)TehranIran
| | | | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of MedicineIran University of Medical Sciences (IUMS)TehranIran
| |
Collapse
|
7
|
Kohlhauser M, Tuca A, Kamolz LP. The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cell Mol Biol Lett 2024; 29:10. [PMID: 38182971 PMCID: PMC10771009 DOI: 10.1186/s11658-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Burn injuries can be associated with prolonged healing, infection, a substantial inflammatory response, extensive scarring, and eventually death. In recent decades, both the mortality rates and long-term survival of severe burn victims have improved significantly, and burn care research has increasingly focused on a better quality of life post-trauma. However, delayed healing, infection, pain and extensive scar formation remain a major challenge in the treatment of burns. ADSCs, a distinct type of mesenchymal stem cells, have been shown to improve the healing process. The aim of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries. METHODS A systematic review of the literature was conducted using the electronic databases PubMed, Web of Science and Embase. The basic research question was formulated with the PICO framework, whereby the usage of ADSCs in the treatment of burns in vivo was determined as the fundamental inclusion criterion. Additionally, pertinent journals focusing on burns and their treatment were screened manually for eligible studies. The review was registered in PROSPERO and reported according to the PRISMA statement. RESULTS Of the 599 publications screened, 21 were considered relevant to the key question and were included in the present review. The included studies were almost all conducted on rodents, with one exception, where pigs were investigated. 13 of the studies examined the treatment of full-thickness and eight of deep partial-thickness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs exhibit immunomodulatory effects during the inflammatory response. 16 studies have shown improved neovascularisation with the use of ADSCs. 14 studies report positive influences of ADSCs on granulation tissue formation, while 11 studies highlight their efficacy in promoting re-epithelialisation. 11 trials demonstrated an improvement in outcomes during the remodelling phase. CONCLUSION In conclusion, it appears that adipose-derived stem cells demonstrate remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs in the treatment of burns is still at an early experimental stage, and further investigations are required in order to examine the potential usage of ADSCs in future clinical burn care.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | - Alexandru Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Department of Surgery, State Hospital Güssing, Güssing, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
8
|
Ahmadpour F, Salim MM, Esmailinejad MR, Razei A, Talebi S, Rasouli HR. Comparison of the effects of human fetal umbilical cord-derived hyaluronic acid and fibroblast-derived exosomes on wound healing in rats. Burns 2023; 49:1983-1989. [PMID: 37357060 DOI: 10.1016/j.burns.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Exosomes and hyaluronic acid influence tissue regeneration and may be used as an alternative to more conventional wound treatment methods. This study compared how well hyaluronic acid from the human umbilical cord and exosomes from fibroblast cells heal burn wounds in a preclinical model. METHODS Ninety-six male Westar rats were used and allocated into four groups: The treatment group received 10% hyaluronic acid (HA); the treatment group received 300 l of exosome solution (EX); the treatment group received phenytoin (PC); the negative control group received no treatment (NC). The wound healing process was evaluated after 3, 6, 9, and 12 days. Histopathological analysis was done on the skin biopsy taken from the wounds. Re-epithelialization, inflammatory cells (PMNs), lymphocytes (LYMs), granulation tissue, collagen maturation (fibrosis), and eschar formation parameters were assessed for histopathological evaluation. On a scale from 0 to 4, each parameter received a score. RESULTS Compared to the PC and NC groups, the median score for re-epithelialization was greater in the HA and EX groups (P < 0.05). At three days, PMN abundance distinguished the PC and NC groups from the HA and EX groups (P < 0.01). Compared to the PC and NC groups, the HA and EX groups had a lower median LYM score (P < 0.01). We found no statistical difference between the four groups for granulation tissue and fibrosis (P > 0.05). The EX group had a lower average score for eschar formation than the PC, NC, and HA groups (P < 0.01). The HA and EX groups demonstrated faster healing in the clinical and microscopic examinations than the NC and PC groups. CONCLUSION The results showed that hyaluronic acid and exosomes improved wound healing. Also, the study demonstrated that hyaluronic acid has better effects in the re-epithelization. The exosome was more effective than HA in eschar formation. Both compounds were more influential in the PMNs and LYMs parameters than other groups. The combination of both compounds should be assessed further to achieve better therapeutic effects on wound healing.
Collapse
Affiliation(s)
- Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Esmailinejad
- Molecular Biology Research Center, System Biology and Poising Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Razei
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Talebi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Li J, Yin Y, Zou J, Zhang E, Li Q, Chen L, Li J. The adipose-derived stem cell peptide ADSCP2 alleviates hypertrophic scar fibrosis via binding with pyruvate carboxylase and remodeling the metabolic landscape. Acta Physiol (Oxf) 2023; 238:e14010. [PMID: 37366253 DOI: 10.1111/apha.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
AIM The purpose of this study was to investigate the function and mechanism of a novel peptide derived from adipose-derived stem cell-conditioned medium (ADSC-CM). METHODS Mass spectrometry was applied to identify expressed peptides in ADSC-CM obtained at different time points. The cell counting kit-8 assay and quantitative reverse transcription polymerase chain reactions were performed to screen the functional peptides contained within ADSC-CM. RNA-seq, western blot, a back skin excisional model of BALB/c mice, the peptide pull-down assay, rescue experiments, untargeted metabolomics, and mixOmics analysis were performed to thoroughly understand the functional mechanism of selected peptide. RESULTS A total of 93, 827, 1108, and 631 peptides were identified in ADSC-CM at 0, 24, 48, and 72 h of conditioning, respectively. A peptide named ADSCP2 (DENREKVNDQAKL) derived from ADSC-CM inhibited collagen and ACTA2 mRNAs in hypertrophic scar fibroblasts. Moreover, ADSCP2 facilitated wound healing and attenuated collagen deposition in a mouse model. ADSCP2 bound with the pyruvate carboxylase (PC) protein and inhibited PC protein expression. Overexpressing PC rescued the reduction in collagen and ACTA2 mRNAs caused by ADSCP2. Untargeted metabolomics identified 258 and 447 differential metabolites in the negative and positive mode, respectively, in the ADSCP2-treated group. The mixOmics analysis, which integrated RNA-seq and untargeted metabolomics data, provided a more holistic view of the functions of ADSCP2. CONCLUSION Overall, a novel peptide derived from ADSC-CM, named ADSCP2, attenuated hypertrophic scar fibrosis in vitro and in vivo, and the novel peptide ADSCP2 might be a promising drug candidate for clinical scar therapy.
Collapse
Affiliation(s)
- Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yiliang Yin
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Enyuan Zhang
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jun Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
11
|
Qian Q, Zhu N, Li W, Wan S, Wu D, Wu Y, Liu W. Human Umbilical Mesenchymal Stem Cells-Derived Microvesicles Attenuate Formation of Hypertrophic Scar through Multiple Mechanisms. Stem Cells Int 2023; 2023:1-15. [DOI: 10.1155/2023/9125265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Mesenchymal stem cells and the derived extracellular microvesicles are potential promising therapy for many disease conditions, including wound healing. Since current therapeutic approaches do not satisfactorily attenuate or ameliorate formation of hypertrophic scars, it is necessary to develop novel drugs to achieve better outcomes. In this study, we investigated the effects and the underlying mechanisms of human umbilical mesenchymal stem cells (HUMSCs)-derived microvesicles (HUMSCs-MVs) on hypertrophic scar formation using a rabbit ear model and a human foreskin fibroblasts (HFF) culture model. The results showed that HUMSCs-MVs reduced formation of hypertrophic scar tissues in the rabbit model based on appearance observation, and hematoxylin and eosin (H&E), Masson, and immunohistochemical stainings. HUMSCs-MVs inhibited invasion of HFF cells and decreased the levels of the α-SMA, N-WASP, and cortacin proteins. HUMSCs-MVs also inhibited cell proliferation of HFF cells. The MMP-1, MMP-3, and TIMP-3 mRNA levels were significantly increased, and the TIMP-4 mRNA level and the NF-kB p65/β-catenin protein levels were significantly decreased in HFF cells after HUMSCs-MVs treatment. The p-SMAD2/3 levels and the ratios of p-SMAD2/3/SMAD2/3 were significantly decreased in both the wound healing tissues and HFF cells after HUMSCs-MVs treatment. CD34 levels were significantly decreased in both wound healing scar tissues and HFF cells after HUMSCs-MVs treatment. The VEGF-A level was also significantly decreased in HFF cells after HUMSCs-MVs treatment. The magnitudes of changes in these markers by HUMSCs-MVs were mostly higher than those by dexamethasone. These results suggested that HUMSCs-MVs attenuated formation of hypertrophic scar during wound healing through inhibiting proliferation and invasion of fibrotic cells, inflammation and oxidative stress, Smad2/3 activation, and angiogenesis. HUMSCs-MVs is a potential promising drug to attenuate formation of hypertrophic scar during wound healing.
Collapse
Affiliation(s)
- Qun Qian
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Ni Zhu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wenzhe Li
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Songlin Wan
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15:342-353. [PMID: 37342214 PMCID: PMC10277960 DOI: 10.4252/wjsc.v15.i5.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Sheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yang-Dan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
13
|
Han F, Wang K, Shen K, Wang J, Han S, Hu D, Wu G. Extracellular vesicles from Lactobacillus druckerii inhibit hypertrophic scar fibrosis. J Nanobiotechnology 2023; 21:113. [PMID: 36978136 PMCID: PMC10053340 DOI: 10.1186/s12951-023-01861-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Hypertrophic scars (HS) affect millions of people each year and require better treatment strategies. Bacterial extracellular vesicles (EVs) are advantaged by low cost and high yield which was commonly used in the treatment of diseases. Here, we investigated the therapeutic efficacy of EVs obtained from Lactobacillus druckerii in hypertrophic scar. In vitro, the effects of Lactobacillus druckerii-derived EVs (LDEVs) on Collagen I/III and α-SMA in fibroblasts obtained from HS. In vivo, a scleroderma mouse model was used to investigate the effects of LDEVs on fibrosis. The impact of LDEVs on excisional wound healing was explored. The different proteins between PBS and LDEVs treated fibroblasts derived from hypertrophic scar were studied by untargeted proteomic analysis. RESULTS In vitro, LDEVs treatment significantly inhibited the expression of Collagen I/III and α-SMA and cell proliferation of fibroblasts derived from HS. In vivo, LDEVs withdrawn the hypertrophic scar formation in scleroderma mouse model and decreased the expression of α-SMA. LDEVs promoted the proliferation of skin cells, new blood vessel formation and wound healing in excisional wound healing mice model. Moreover, proteomics has shown that LDEVs inhibit hypertrophic scar fibrosis through multiple pathways. CONCLUSIONS Our results indicated that Lactobacillus druckerii-derived EVs has the potential application in the treatment of hypertrophic scars and any other fibrosis diseases.
Collapse
Affiliation(s)
- Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Wang
- Department of Nursing, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci 2023; 24:ijms24043888. [PMID: 36835295 PMCID: PMC9962639 DOI: 10.3390/ijms24043888] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.
Collapse
|
15
|
Liu JL, Kang DL, Mi P, Xu CZ, Zhu L, Wei BM. Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Nanomedicine for Cutaneous Wound Treatment. ACS Biomater Sci Eng 2023; 9:531-541. [PMID: 36607315 DOI: 10.1021/acsbiomaterials.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A skin wound represents a rupture caused by external damage or the existence of underlying pathological conditions. Sometimes, skin wound healing processes may place a heavy burden on patients, families, and society. Wound healing processes mainly consist of several continuous, dynamic, but overlapping stages, namely, the coagulation stage, inflammation stage, proliferation stage, and remodeling stage. Bacterial infection, excessive inflammation, impaired angiogenesis, and scar formation constitute the four significant factors impeding the recovery efficacy of skin wounds. This encourages scientists to develop multifunctional nanomedicines to meet challenging needs. As we know, mesenchymal stem cells (MSCs) have been widely explored for wound repair owing to their unique capability for self-renewal and multipotency. However, problems including immune concerns and legal restrictions should be properly resolved before MSC-based therapeutics are safely and widely used in clinics. Besides, maintaining the high viability/proliferation capability of MSCs during administration processes and therapy procedures is also one of the biggest technical bottlenecks. Extracellular vesicles (EVs) are cell-derived nanovesicles, that not only possess the basic characteristics and functions of their corresponding maternal cells but also contain several outstanding advantages including abundant sources, excellent biocompatibility, and convenient administration routes. Furthermore, the membrane surface and cavity are easy to flexibly modify to meet versatile application needs. Recently, MSC-derived EVs have emerged as promising therapeutics for skin wound repair. However, current reviews are too broad and rarely focused on the specific roles of EVs in the different stages of wound recovery. Therefore, it is quite necessary to demonstrate the significance of stem cell-derived EVs in promoting wound healing from several specific aspects. Here, this review primarily tries to provide critical comments on current advances in EVs derived from MSCs for wound repair, particularly elaborating on their impressive roles in effectively eliminating infections, inhibiting inflammation, promoting angiogenesis, and reducing scar formation. Last but not least, current limitations and future prospects of EVs derived from MSCs in the areas of wound repair are also objectively analyzed.
Collapse
Affiliation(s)
- Jia-Lin Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - De-Lai Kang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Peng Mi
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Cheng-Zhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Ben-Mei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| |
Collapse
|
16
|
Almeria C, Kreß S, Weber V, Egger D, Kasper C. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci 2022; 12:51. [PMID: 35501833 PMCID: PMC9063275 DOI: 10.1186/s13578-022-00786-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/10/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractExtracellular vesicles (EVs) are cell-derived membrane structures exerting major effects in physiological as well as pathological processes by functioning as vehicles for the delivery of biomolecules to their target cells. An increasing number of effects previously attributed to cell-based therapies have been recognized to be actually mediated by EVs derived from the respective cells, suggesting the administration of purified EVs instead of living cells for cell-based therapies. In this review, we focus on the heterogeneity of EVs derived from mesenchymal stem/stromal cells (MSC) and summarize upstream process parameters that crucially affect the resulting therapeutic properties and biological functions. Hereby, we discuss the effects of the cell source, medium composition, 3D culture, bioreactor culture and hypoxia. Furthermore, aspects of the isolation and storage strategies influences EVs are described. Conclusively, optimization of upstream process parameters should focus on controlling MSC-derived EV heterogeneity for specific therapeutic applications.
Graphical Abstract
Collapse
|
17
|
Subhan BS, Ki M, Verzella A, Shankar S, Rabbani PS. Behind the Scenes of Extracellular Vesicle Therapy for Skin Injuries and Disorders. Adv Wound Care (New Rochelle) 2022; 11:575-597. [PMID: 34806432 PMCID: PMC9419953 DOI: 10.1089/wound.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.
Collapse
Affiliation(s)
- Bibi S. Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Michelle Ki
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Alexandra Verzella
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Shruthi Shankar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani NAA, Witwer KW, Law JX. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics 2022; 12:6455-6508. [PMID: 36185607 PMCID: PMC9516230 DOI: 10.7150/thno.73436] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022] Open
Abstract
Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.
Collapse
Affiliation(s)
- Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | | | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Revatyambigai Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Wang Y, Cheng L, Zhao H, Li Z, Chen J, Cen Y, Zhang Z. The Therapeutic Role of ADSC-EVs in Skin Regeneration. Front Med (Lausanne) 2022; 9:858824. [PMID: 35755023 PMCID: PMC9218955 DOI: 10.3389/fmed.2022.858824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Large skin defects caused by burns, unhealing chronic wounds, and trauma, are still an intractable problem for clinicians and researchers. Ideal skin regeneration includes several intricate and dynamic stages of wound repair and regeneration of skin physiological function. Adipose-derived stem cells (ADSCs), a type of mesenchymal stem cells (MSCs) with abundant resources and micro-invasive extraction protocols, have been reported to participate in each stage of promoting skin regeneration via paracrine effects. As essential products secreted by ADSCs, extracellular vesicles (EVs) derived from ADSCs (ADSC-EVs) inherit such therapeutic potential. However, ADSC-EVs showed much more clinical superiorities than parental cells. ADSC-EVs carry various mRNAs, non-coding RNAs, proteins, and lipids to regulate the activities of recipient cells and eventually accelerate skin regeneration. The beneficial role of ADSCs in wound repair has been widely accepted, while a deep comprehension of the mechanisms of ADSC-EVs in skin regeneration remains unclear. In this review, we provided a basic profile of ADSC-EVs. Moreover, we summarized the latest mechanisms of ADSC-EVs on skin regeneration from the aspects of inflammation, angiogenesis, cell proliferation, extracellular matrix (ECM) remodeling, autophagy, and oxidative stress. Hair follicle regeneration and skin barrier repair stimulated by ADSC-EVs were also reviewed. The challenges and prospects of ADSC-EVs-based therapies were discussed at the end of this review.
Collapse
Affiliation(s)
- Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Cheng
- Department of Central Sterile Supply, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Extracellular Vesicles in Facial Aesthetics: A Review. Int J Mol Sci 2022; 23:ijms23126742. [PMID: 35743181 PMCID: PMC9223821 DOI: 10.3390/ijms23126742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs’ latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs’ underlying mechanism of action to improve their efficacy.
Collapse
|
21
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
22
|
Menchaca AD, Style CC, Olutoye OO. A Review of Hypertrophic Scar and Keloid Treatment and Prevention in the Pediatric Population: Where Are We Now? Adv Wound Care (New Rochelle) 2022; 11:255-279. [PMID: 34030473 DOI: 10.1089/wound.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significance: This body of work gives a concise and comprehensive overview for the clinician and scientist on the latest treatment modalities for hypertrophic scars (HTS) and keloids in the pediatric population, as well as the most promising methods of prevention currently being investigated. This review will serve as a guide to the clinician for treatment selection and as an efficient tool for the scientist to achieve a comprehensive overview of the scientific literature to guide their future experiments aimed at pathologic scar prevention. Recent Advances: Current studies in the literature suggest carbon dioxide (CO2) laser and E-light (bipolar radiofrequency, intense pulsed light, and cooling) are two of the most effective treatment modalities for HTS, while surgical excision+CO2 laser+triamcinolone injection was one of the most successful treatments for keloids. In animal models, drug impregnated electrospun nanofiber dressings offer encouraging results for HTS prevention, while Kelulut honey showed promising results for keloid prevention. Critical Issues: Treatment outcome reproducibility is hindered by small cohorts of patients, inadequate-follow up, and variability in assessment tools. Prevention studies show multiple ways of achieving the same result, yet fall short of complete prevention. Furthermore, some studies that have purported full prevention have not been validated. Future Directions: To establish a standard of care, large clinical trials of the most successful modalities in small cohorts are needed. The key for prevention will be validation in animal models of the most successful methods, followed by translational and clinical studies.
Collapse
Affiliation(s)
- Alicia D. Menchaca
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of General Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Candace C. Style
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Oluyinka O. Olutoye
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041303. [PMID: 35209095 PMCID: PMC8879284 DOI: 10.3390/molecules27041303] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Until thirty years ago, it was believed that extracellular vesicles (EVs) were used to remove unnecessary compounds from the cell. Today, we know about their enormous potential in diagnosing and treating various diseases. EVs are essential mediators of intercellular communication, enabling the functional transfer of bioactive molecules from one cell to another. Compared to laboratory-created drug nanocarriers, they are stable in physiological conditions. Furthermore, they are less immunogenic and cytotoxic compared to polymerized vectors. Finally, EVs can transfer cargo to particular cells due to their membrane proteins and lipids, which can implement them to specific receptors in the target cells. Recently, new strategies to produce ad hoc exosomes have been devised. Cells delivering exosomes have been genetically engineered to overexpress particular macromolecules, or transformed to release exosomes with appropriate targeting molecules. In this way, we can say tailor-made therapeutic EVs are created. Nevertheless, there are significant difficulties to solve during the application of EVs as drug-delivery agents in the clinic. This review explores the diversity of EVs and the potential therapeutic options for exosomes as natural drug-delivery vehicles in oncology, neurology, and dermatology. It also reflects future challenges in clinical translation.
Collapse
|
24
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
25
|
Sutthiwanjampa C, Shin BH, Ryu NE, Kang SH, Heo CY, Park H. Assessment of human adipose-derived stem cell on surface-modified silicone implant to reduce capsular contracture formation. Bioeng Transl Med 2022; 7:e10260. [PMID: 35111952 PMCID: PMC8780897 DOI: 10.1002/btm2.10260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 11/07/2022] Open
Abstract
Medical devices made from poly(dimethylsiloxane) (PDMS)-based silicone implants have been broadly used owing to their inert properties, biocompatibility, and low toxicity. However, long-term implantation is usually associated with complications, such as capsular contracture due to excessive local inflammatory response, subsequently requiring implant removal. Therefore, modification of the silicone surface to reduce a risk of capsular contracture has attracted increasing attention. Human adipose-derived stem cells (hASCs) are known to provide potentially therapeutic applications for tissue engineering, regenerative medicine, and reconstructive surgery. Herein, hASCs coating on a PDMS (hASC-PDMS) or itaconic acid (IA)-conjugated PDMS (hASC-IA-PDMS) surface is examined to determine its biocompatibility for reducing capsular contracture on the PDMS surface. In vitro cell cytotoxicity evaluation showed that hASCs on IA-PDMS exhibit higher cell viability than hASCs on PDMS. A lower release of proinflammatory cytokines is observed in hASC-PDMS and hASC-IA-PDMS compared to the cells on plate. Multiple factors, including in vivo mRNA expression levels of cytokines related to fibrosis; number of inflammatory cells; number of macrophages and myofibroblasts; capsule thickness; and collagen density following implantation in rats for 60 days, indicate that incorporated coating hASCs on PDMSs most effectively reduces capsular contracture. This study demonstrates the potential of hASCs coating for the modification of PDMS surfaces in enhancing surface biocompatibility for reducing capsular contracture of PDMS-based medical devices.
Collapse
Affiliation(s)
| | - Byung Ho Shin
- Department of Biomedical EngineeringCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Na Eun Ryu
- School of Integrative Engineering, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive SurgeryChung‐Ang University HospitalSeoulRepublic of Korea
| | - Chan Yeong Heo
- Department of Biomedical EngineeringCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamRepublic of Korea
- Interdisciplinary Program for BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgeryCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung‐Ang UniversitySeoulRepublic of Korea
| |
Collapse
|
26
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|
27
|
Kim H, Lee JW, Han G, Kim K, Yang Y, Kim SH. Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics 2021; 13:pharmaceutics13050760. [PMID: 34065468 PMCID: PMC8161370 DOI: 10.3390/pharmaceutics13050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by cells, act as mediators for communication between cells. They are transported to the recipient cells along with cargoes such as nucleic acids, proteins, and lipids that reflect the changes occurring within the parent cells. Thus, EVs have been recognized as potential theranostic agents for diagnosis, treatment, and prognosis. In particular, the evidence accumulated to date suggests an important role of EVs in the initiation and progression of skin aging and various skin diseases, including psoriasis, systemic lupus erythematosus, vitiligo, and chronic wounds. This review highlights recent research that investigates the role of EVs and their potential as biomarkers and therapeutic agents for skin diseases and aging.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
28
|
Dalirfardouei R, Gholoobi A, Vahabian M, Mahdipour E, Afzaljavan F. Therapeutic role of extracellular vesicles derived from stem cells in cutaneous wound models: A systematic review. Life Sci 2021; 273:119271. [PMID: 33652035 DOI: 10.1016/j.lfs.2021.119271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence has shown that extracellular vesicles can be efficient as experimental therapeutics in pre-clinical models of skin wounds, but there is a significant unmet need to translate this to clinical utilization. The objectives of the current systematic review were to identify the strength of the therapeutic effects of EVs derived from stem cells in cutaneous wounds and to assess which EV-mediated mechanisms could be involved in the therapeutic response. PubMed, ISI Web of Science, and Scopus databases were systematically searched. We retrieved English-language articles published through June 2020. In vivo studies which applied stem cell-derived EVs were included for further analysis. The Risk of bias was assessed by the SYRCLE tool. We identified thirty-nine pre-clinical studies that evaluated the effects of EVs on the wound healing process. The included studies varied greatly in EVs isolation techniques, route of administration, EVs producing cells, and follow-up time. In vivo application revealed beneficial effects of EVs on accelerating wound closure and re-epithelialization in a dose-dependent manner. Elevated angiogenesis was reported in twelve eligible studies through multiple signaling pathways such as PI3K/Akt, MAPK/ERK, and JAK/STAT. The well-known signaling pathway to inhibit scar formation was TGF-β2/SMAD2. However, all included studies were not blinded enough which may have introduced bias. Therefore, the transition of EV's efficacy into the clinics is deeply rooted in the following important factors: 1) pre-clinical studies with a lower risk of bias and longer follow-up time, and 2) consistent, reproducible, and feasible manufacturing of EVs production in a large-scale commercial program.
Collapse
Affiliation(s)
- Razieh Dalirfardouei
- Research center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Aida Gholoobi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrangiz Vahabian
- Department of English Language and Persian Literature, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Vu NB, Nguyen HT, Palumbo R, Pellicano R, Fagoonee S, Pham PV. Stem cell-derived exosomes for wound healing: current status and promising directions. Minerva Med 2020; 112:384-400. [PMID: 33263376 DOI: 10.23736/s0026-4806.20.07205-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing, especially of chronic wounds, is still an unmet therapeutic area since assessment and management are extremely complicated. Although many efforts have been made to treat wounds, all strategies have achieved limited results for chronic wounds. Stem cell-based therapy is considered a promising approach for complex wounds such as those occurring in diabetics. Mesenchymal stem cell transplantation significantly improves wound closure, angiogenesis and wound healing. However, cell therapy is complex, expensive and time-consuming. Recent studies have shown that stem cell-derived exosomes can be an exciting approach to treat wounds. Exosomes derived from mesenchymal stem cells can induce benefit in almost all stages of wound healing, including control of immune responses, inhibition of inflammation, promoting cell proliferation and angiogenesis, while reducing scar formation during the wound healing process. This review aimed at offering an updated overview of the use of exosomes in biological applications, such as wound healing, and addresses not only current applications but also new directions for this next-generation approach in wound healing.
Collapse
Affiliation(s)
- Ngoc B Vu
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Hoa T Nguyen
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Rosanna Palumbo
- Institute of Biostructure and Bioimaging (CNR), Naples, Italy
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Phuc V Pham
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam - .,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam.,Laboratory of Stem Cell Research and Application, Ho Chi Minh, Vietnam
| |
Collapse
|
30
|
Hu J, Chen Y, Huang Y, Su Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp Mol Pathol 2020; 115:104468. [PMID: 32445750 DOI: 10.1016/j.yexmp.2020.104468] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Exosomes originated from mesenchymal stem cells (MSCs) benefit wound healing. This study investigated effects of exosomes originated from human umbilical cord MSCs (hUC-MSCs) on dermal fibroblasts-myofibroblasts transition via the TGF-β1/Smad2/3 signaling pathway. METHODS Firstly, hUC-MSCs were collected and identified. Alizarin red, oil red O staining and toluidine blue staining were used to determine the osteogenic, adipogenic and chondrogenic differentiation abilities of hUC-MSCs. Then exosomes from hUC-MSCs were extracted and identified. To figure out the roles of exosomes and TGF-β1 in dermal fibroblasts-myofibroblasts transition, dermal fibroblasts were treated with TGF-β1 or/and exosomes at different concentrations. RT-qPCR, Western blot analyses were employed to examine levels of Collagen I, Collagen III, α-smooth muscle actin (α-SMA), and Smad2/3 phosphorylation, and immunofluorescence was employed to test α-SMA content and the localization and nucleation of Smad2/3 protein in cells. RESULTS hUC-MSCs and exosomes were successfully cultured and extracted. Levels of Collagen I, Collagen III, α-SMA, and Smad2/3, and Smad2/3 phosphorylation in fibroblasts treated with exosomes decreased markedly. After treatment with exosomes and TGF-β1 together, levels of Collagen I, Collagen III, α-SMA, and Smad2/3, and Smad2/3 phosphorylation in fibroblasts decreased significantly as compared to TGF-β1-treated fibroblasts. Exosome treatment reduced the entry of Smad2/3 into fibroblasts. CONCLUSION Our data suggested that hUC-MSCs-derived exosomes could inhibit dermal fibroblasts-myofibroblasts transition by inhibiting the TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Jian Hu
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yuanwen Chen
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yubin Huang
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yongsheng Su
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China.
| |
Collapse
|