1
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Cui YN, Tian N, Luo YH, Zhao JJ, Bi CF, Gou Y, Liu J, Feng K, Zhang JF. High-dose Vitamin C injection ameliorates against sepsis-induced myocardial injury by anti-apoptosis, anti-inflammatory and pro-autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR signaling pathways in rats. Aging (Albany NY) 2024; 16:6937-6953. [PMID: 38643461 PMCID: PMC11087106 DOI: 10.18632/aging.205735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
AIMS This study aimed to evaluate the effects of VC on SIMI in rats. METHODS In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/β in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ya-Nan Cui
- Medical Records and Statistics Room, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yan-Hai Luo
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ji-Jun Zhao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yi Gou
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ke Feng
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
3
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
4
|
Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. LIVER RESEARCH 2023; 7:304-320. [DOI: 10.1016/j.livres.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology. Thromb Res 2023; 231:170-181. [PMID: 36058760 PMCID: PMC10286736 DOI: 10.1016/j.thromres.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT 59718, USA.
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Pulmonary Medicine and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Huang M, Yu Y, Tang X, Dong R, Li X, Li F, Jin Y, Gong S, Wang X, Zeng Z, Huang L, Yang H. 3-Hydroxybutyrate ameliorates sepsis-associated acute lung injury by promoting autophagy through the activation of GPR109α in macrophages. Biochem Pharmacol 2023; 213:115632. [PMID: 37263300 DOI: 10.1016/j.bcp.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Sepsis is a systemic inflammatory disease caused by multiple pathogens, with the most commonly affected organ being the lung. 3-Hydroxybutyrate plays a protective role in inflammatory diseases through autophagy promotion; however, the exact mechanism remains unexplored. METHOD Our study used the MIMIC-III database to construct a cohort of ICU sepsis patients and figure out the correlation between the level of ketone bodies and clinical prognosis in septic patients. In vivo and in vitro models of sepsis were used to reveal the role and mechanism of 3-hydroxybutyrate in sepsis-associated acute lung injury (sepsis-associated ALI). RESULT Herein, we observed a strong correlation between the levels of ketone bodies and clinical prognosis in patients with sepsis identified using the MIMIC- III database. In addition, exogenous 3-hydroxybutyrate supplementation improved the survival rate of CLP-induced sepsis in mice by promoting autophagy. Furthermore, 3-hydroxybutyrate treatment protected against sepsis-induced lung damage. We explored the mechanism underlying these effects. The results indicated that 3-hydroxybutyrate upregulates autophagy levels by promoting the transfer of transcription factor EB (TFEB) to the macrophage nucleus in a G-protein-coupled receptor 109 alpha (GPR109α) dependent manner, upregulating the transcriptional level of ultraviolet radiation resistant associated gene (UVRAG) and increasing the formation of autophagic lysosomes. CONCLUSION 3-Hydroxybutyrate can serve as a beneficial therapy for sepsis-associated ALI through the upregulation of autophagy. These results may provide a basis for the development of promising therapeutic strategies for sepsis-associated ALI.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Yiqin Yu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Xuheng Tang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Rui Dong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Xiaojie Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Fen Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Yongxin Jin
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xingmin Wang
- Department of Pathology, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China.
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China; The Third Clinical College of Southern Medical University, Guangzhou 510665, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China.
| |
Collapse
|
8
|
Cheng J, Ding C, Tang H, Zhou H, Wu M, Chen Y. An Autophagy-Associated MITF-GAS5-miR-23 Loop Attenuates Vascular Oxidative and Inflammatory Damage in Sepsis. Biomedicines 2023; 11:1811. [PMID: 37509452 PMCID: PMC10376991 DOI: 10.3390/biomedicines11071811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Sepsis induces GAS5 expression in the vascular endothelium, but the molecular mechanism is unclear, as is the role of GAS5 in sepsis. METHODS AND RESULTS We observed that GAS5 expression in the endothelium was significantly upregulated in a sepsis mouse model. ChIP-PCR and EMSA confirmed that the oxidative stress (OS)-activated MiT-TFE transcription factor (MITF, TFE3, and TFEB)-mediated GAS5 transcription. In vitro, GAS5 overexpression attenuated OS and inflammation in endothelial cells (ECs) while maintaining the structural and functional integrity of mitochondria. In vivo, GAS5 reduced tissue ROS levels, maintained vascular barrier function to reduce leakage, and ultimately attenuated sepsis-induced lung injury. Luciferase reporter assays revealed that GAS5 protected MITF from degradation by sponging miR-23, thereby forming a positive feedback loop consisting of MITF, GAS5, and miR-23. Despite the fact that the OS-activated MITF-GAS5-miR-23 loop boosted MITF-mediated p62 transcription, ECs do not need to increase mitophagy to exert mitochondrial quality control since MITF-mediated Nrf2 transcription exists. Compared to mitophagy, MITF-transcribed p62 prefers to facilitate the autophagic degradation of Keap1 through a direct interaction, thereby relieving the inhibition of Nrf2 by Keap1, indicating that MITF can upregulate Nrf2 at both the transcriptional and posttranscriptional levels. Following this, ChIP-PCR demonstrated that Nrf2 can also transcribe MITF, revealing that there is a reciprocal positive regulatory association between MITF and Nrf2. CONCLUSION In sepsis, the ROS-activated MITF-GAS5-miR-23 loop integrated the antioxidant and autophagy systems through MITF-mediated transcription of Nrf2 and p62, which dynamically regulate the level and type of autophagy, as well as exert antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Junning Cheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chang Ding
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400013, China
| | - Huying Tang
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Haonan Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingdong Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Bi CF, Liu J, Hao SW, Xu ZX, Ma X, Kang XF, Yang LS, Zhang JF. Xuebijing injection protects against sepsis induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging (Albany NY) 2023; 15:204740. [PMID: 37219401 DOI: 10.18632/aging.204740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Apoptosis and autophagy are significant factors of sepsis induced myocardial injury (SIMI). XBJ improves SIMI by PI3K/AKT/mTOR pathway. Present study is devised to explore the protective mechanism of XBJ in continuous treatment of SIMI caused by CLP. METHODS Rat survival was first recorded within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and XBJ group. The animals in each group were divided into 12 h group, 1 d, 2 d, 3 d and 5 d according to the administration time of 12 hours, 1 day, 2 days, 3 days or 5 days, respectively. Echocardiography, myocardial injury markers and H&E staining were used to detect cardiac function and injury. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis was assayed by TUNEL staining. Apoptosis and autophagy related proteins regulated by the PI3K/AKT/mTOR signaling pathway were tested using western blot. RESULTS XBJ increased the survival rate in CLP-induced septic Rat. First of all, the results of echocardiography, H&E staining and myocardial injury markers (cTnI, CK, and LDH levels) showed that XBJ could effectively improve the myocardial injury caused by CLP with the increase of treatment time. Moreover, XBJ significantly decreased the levels of serum inflammatory cytokines IL-1β, IL-6 and TNF-α in SIMI rats. Meanwhile, XBJ downregulated the expression of apoptosis-related proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-PARP, while upregulated the protein levels of Bcl-2 in SIMI rats. And, XBJ upregulated the expression of autophagy related protein Beclin-1 and LC3-II/LC3-I ratio in SIMI rats, whereas downregulated the expression of P62. Finally, XBJ administration downregulated the phosphorylation levels of proteins PI3K, AKT and mTOR in SIMI rats. CONCLUSIONS Our results showed that XBJ has a good protective effect on SIMI after continuous treatment, and it was speculated that it might be through inhibiting apoptosis and promoting autophagy via, at least partially, activating PI3K/AKT/mTOR pathway in the early stage of sepsis, as well as promoting apoptosis and inhibiting autophagy via suppressing PI3K/AKT/mTOR pathway in the late stage of sepsis.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Shao-Wen Hao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Zhi-Xia Xu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
10
|
Cao YY, Qiao Y, Wang ZH, Chen Q, Qi YP, Lu ZM, Wang Z, Lu WH. The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction During Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:296-312. [PMID: 36509119 DOI: 10.1016/j.ajpath.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yang Qiao
- Department of Anesthesiology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Han Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Qun Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yu-Peng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Zi-Meng Lu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Wei-Hua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China.
| |
Collapse
|
11
|
Tsoporis JN, Amatullah H, Gupta S, Izhar S, Ektesabi AM, Vaswani CM, Desjardins JF, Kabir G, Teixera Monteiro AP, Varkouhi AK, Kavantzas N, Salpeas V, Rizos I, Marshall JC, Parker TG, Leong-Poi H, Dos Santos CC. DJ-1 Deficiency Protects against Sepsis-Induced Myocardial Depression. Antioxidants (Basel) 2023; 12:antiox12030561. [PMID: 36978809 PMCID: PMC10045744 DOI: 10.3390/antiox12030561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress is considered one of the early underlying contributors of sepsis-induced myocardial depression. DJ-1, also known as PARK7, has a well-established role as an antioxidant. We have previously shown, in a clinically relevant model of polymicrobial sepsis, DJ-1 deficiency improved survival and bacterial clearance by decreasing ROS production. In the present study, we investigated the role of DJ-1 in sepsis-induced myocardial depression. Here we compared wildtype (WT) with DJ-1 deficient mice at 24 and 48 h after cecal ligation and puncture (CLP). In WT mice, DJ-1 was increased in the myocardium post-CLP. DJ-1 deficient mice, despite enhanced inflammatory and oxidative responses, had an attenuated hypertrophic phenotype, less apoptosis, improved mitochondrial function, and autophagy, that was associated with preservation of myocardial function and improved survival compared to WT mice post-CLP. Collectively, these results identify DJ-1 as a regulator of myocardial function and as such, makes it an attractive therapeutic target in the treatment of early sepsis-induced myocardial depression.
Collapse
Affiliation(s)
- James N Tsoporis
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Hajera Amatullah
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shehla Izhar
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chirag M Vaswani
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Francois Desjardins
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Golam Kabir
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ana Paula Teixera Monteiro
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Nikolaos Kavantzas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasileios Salpeas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Rizos
- 2nd Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece
| | - John C Marshall
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas G Parker
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard Leong-Poi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2022; 18:1534-1550. [PMID: 34689707 PMCID: PMC9298447 DOI: 10.1080/15548627.2021.1990669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Platelets mediate central aspects of host responses during sepsis, an acute profoundly systemic inflammatory response due to infection. Macroautophagy/autophagy, which mediates critical aspects of cellular responses during inflammatory conditions, is known to be a functional cellular process in anucleate platelets, and is essential for normal platelet functions. Nevertheless, how sepsis may alter autophagy in platelets has never been established. Using platelets isolated from septic patients and matched healthy controls, we show that during clinical sepsis, the number of autophagosomes is increased in platelets, most likely due to an accumulation of autophagosomes, some containing mitochondria and indicative of mitophagy. Therefore, autophagy induction or early-stage autophagosome formation (as compared to decreased later-stage autophagosome maturation or autophagosome-late endosome/lysosome fusion) is normal or increased. This was consistent with decreased fusion of autophagosomes with lysosomes in platelets. EPG5 (ectopic P-granules autophagy protein 5 homolog), a protein essential for normal autophagy, expression did increase, while protein-protein interactions between EPG5 and MAP1LC3/LC3 (which orchestrate the fusion of autophagosomes and lysosomes) were significantly reduced in platelets during sepsis. Furthermore, data from a megakaryocyte model demonstrate the importance of TLR4 (toll like receptor 4), LPS-dependent signaling for regulating this mechanism. Similar phenotypes were also observed in platelets isolated from a patient with Vici syndrome: an inherited condition caused by a naturally occurring, loss-of-function mutation in EPG5. Together, we provide evidence that autophagic functions are aberrant in platelets during sepsis, due in part to reduced EPG5-LC3 interactions, regulated by TLR4 engagement, and the resultant accumulation of autophagosomes.Abbreviations: ACTB: beta actin; CLP: cecal ligation and puncture; Co-IP: co-immunoprecipitation; DAP: death associated protein; DMSO: dimethyl sulfoxide; EPG5: ectopic P-granules autophagy protein 5 homolog; ECL: enhanced chemiluminescence; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; ICU: intensive care unit; LPS: lipopolysaccharide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MKs: megakaryocytes; PFA: paraformaldehyde; PBS: phosphate-buffered saline; PLA: proximity ligation assay; pRT-PCR: quantitative real-time polymerase chain reaction; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TLR4: toll like receptor 4; TEM: transmission electron microscopy; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Work Wellness Clinic, University of Utah, Salt Lake City, UT, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT, USA
- Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT, USA
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Irina Portier
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alicia S. Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Iowa in Iowa City, IA, USA
| | - Karin Chen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Hospital, Seattle, WA, USA
| | - Matthew T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, Salt Lake City, UT84112, USA
| |
Collapse
|
13
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
14
|
Zhang Y, Chen L, Luo Y, Wang K, Liu X, Xiao Z, Zhao G, Yao Y, Lu Z. Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis. Inflammation 2022; 45:1374-1387. [PMID: 35129770 DOI: 10.1007/s10753-022-01628-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) are vital antigen-presenting cells (APCs) in the immune system, whose apoptosis is closely related to the development of sepsis. Mitophagy is one of the necessary forms of selective autophagy that removes damaged or dysfunctional mitochondria to regulate immunity and inflammation. However, its effect on the apoptosis of DC in sepsis remains unknown. Here, we showed that sepsis activated the apoptosis and mitophagy of DC, and mitophagy had an anti-apoptotic effect on sepsis-induced DC apoptosis. In this study, we used cecal ligation and puncture (CLP) to simulate the pathophysiological state of sepsis. Apoptosis and mitophagy of DC were significantly enhanced in CPL mice compared with controls, and in the Pink1-KO (Pink1-knockout) mice CLP model, the level of apoptosis in DC was further increased while the level of mitophagy was decreased. In addition, more severe mitochondrial dysfunction was exhibited in DC of Pink1-KO mice CLP model compared to wild-type (WT) mice. The results suggest that Pink1/Parkin-mediated mitophagy is activated during sepsis and has an anti-apoptotic effect on DC, which regulates immune functions.
Collapse
Affiliation(s)
- Yaolu Zhang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Longwang Chen
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinan Luo
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kang Wang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyong Liu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong Xiao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangju Zhao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongming Yao
- Trauma Research Center, Fourth Medical of the Chinese PLA General Hospital, Beijing, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Emergency & Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Liu X, Zheng X, Lu Y, Chen Q, Zheng J, Zhou H. TFEB Dependent Autophagy-Lysosomal Pathway: An Emerging Pharmacological Target in Sepsis. Front Pharmacol 2021; 12:794298. [PMID: 34899355 PMCID: PMC8664376 DOI: 10.3389/fphar.2021.794298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening syndrome induced by aberrant host response towards infection. The autophagy-lysosomal pathway (ALP) plays a fundamental role in maintaining cellular homeostasis and conferring organ protection. However, this pathway is often impaired in sepsis, resulting in dysregulated host response and organ dysfunction. Transcription factor EB (TFEB) is a master modulator of the ALP. TFEB promotes both autophagy and lysosomal biogenesis via transcriptional regulation of target genes bearing the coordinated lysosomal expression and regulation (CLEAR) motif. Recently, increasing evidences have linked TFEB and the TFEB dependent ALP with pathogenetic mechanisms and therapeutic implications in sepsis. Therefore, this review describes the existed knowledge about the mechanisms of TFEB activation in regulating the ALP and the evidences of their protection against sepsis, such as immune modulation and organ protection. In addition, TFEB activators with diversified pharmacological targets are summarized, along with recent advances of their potential therapeutic applications in treating sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Zhang S, Huang X, Xiu H, Zhang Z, Zhang K, Cai J, Cai Z, Chen Z, Zhang Z, Cui W, Zhang G, Xiang M. The attenuation of Th1 and Th17 responses via autophagy protects against methicillin-resistant Staphylococcus aureus-induced sepsis. Microbes Infect 2021; 23:104833. [PMID: 33930602 DOI: 10.1016/j.micinf.2021.104833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Whether autophagy affects methicillin-resistant Staphylococcus aureus (MRSA)-induced sepsis and the associated mechanisms are largely unknown. This study investigated the role of autophagy in MRSA-induced sepsis. The levels of microtubule-associated protein light chain 3 (LC3)-II/I, Beclin-1 and p62 after USA300 infection were examined by Western blotting and immunohistochemical staining. Bacterial burden analysis, hematoxylin-eosin staining, and Kaplan-Meier analysis were performed to evaluate the effect of autophagy on MRSA-induced sepsis. IFN-γ and IL-17 were analyzed by ELISA, and CD4+ T cell differentiation was assessed by flow cytometry. Our results showed that LC3-II/I and Beclin-1 were increased, while p62 was decreased after infection. Survival rates were decreased in the LC3B-/- and Beclin-1+/- groups, accompanied by worsened organ injuries and increased IFN-γ and IL-17 levels, whereas rapamycin alleviated organ damage, decreased IFN-γ and IL-17 levels, and improved the survival rate. However, there was no significant difference in bacterial burden. Flow cytometric analysis showed that rapamycin treatment decreased the frequencies of Th1 and Th17 cells, whereas these cells were upregulated in the LC3B-/- and Beclin-1+/- groups. Therefore, autophagy plays a protective role in MRSA-induced sepsis, which may be partly associated with the alleviation of organ injuries via the downregulation of Th1 and Th17 responses. These results provide a nonantibiotic treatment strategy for sepsis.
Collapse
Affiliation(s)
- Shufang Zhang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Xiaofang Huang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhijian Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Chen
- Clinical Research Center, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 510004, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
17
|
Zhao S, Chen F, Wang D, Han W, Zhang Y, Yin Q. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 2021; 44:1815-1831. [PMID: 32918635 DOI: 10.1007/s10143-020-01387-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Fan Chen
- Department of Neurosurgery, University of Medicine Greifswald, Greifswald, Germany
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Nikouee A, Kim M, Ding X, Sun Y, Zang QS. Beclin-1-Dependent Autophagy Improves Outcomes of Pneumonia-Induced Sepsis. Front Cell Infect Microbiol 2021; 11:706637. [PMID: 34211859 PMCID: PMC8239405 DOI: 10.3389/fcimb.2021.706637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective We previously demonstrated that promoting Beclin-1–dependent autophagy is cardiac protective during endotoxemia shock, suggesting that autophagy-based approaches may become a promising therapeutic strategy for sepsis. In this study, we applied both genetic and pharmacological approaches to evaluate whether Beclin-1 activation improves sepsis outcomes in a model of pneumonia-induced sepsis. Methods Sepsis was induced in mice by Klebsiella pneumoniae infection via intubation, and outcomes of clinical sickness scores, systemic infection, inflammation, survival, and pulmonary pathology were examined. Evaluation of Beclin-1 activation was achieved by comparing strains of C57BL/6J wild type and Becn1F121A that carries a transgenic expression of Beclin-1–active mutant F121A, and by comparing animal groups treated with Beclin-1–activating peptide, Tat-beclin-1 peptide (TB-peptide), or with vehicle control. The status of autophagy in the lung tissue was examined in autophagy reporter mice, CAG-RFP-EGFP-LC3, by fluorescence microscopy. Results Pulmonary infection by K. pneumoniae produced an insufficient, maladaptive autophagy in the lung. Activation of Beclin-1 by forced expression of active mutant Becn1F121A or by treatment with TB-peptide enhanced autophagy and significantly reduced sickness scores, systemic infection, and circulating and pulmonary cytokine production. Both approaches demonstrated notable benefits in limiting post-infection pathogenesis in the lung, such as decreases in alveolar congestion, hemorrhage, infiltration of inflammatory cells, and alveolar wall thickness. Conclusion Data suggest that targeted activation of Beclin-1 alleviates adverse outcomes of pneumonia-induced sepsis, and thus, possess a therapeutic potential.
Collapse
Affiliation(s)
- Azadeh Nikouee
- Burn & Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Matthew Kim
- Burn & Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Xiangzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Yuxiao Sun
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qun S Zang
- Burn & Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
19
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc+10.3389/fcell.2021.664896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2024] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc 10.3389/fcell.2021.664896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,*Correspondence: Jia-feng Wang,
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,Xiao-ming Deng,
| |
Collapse
|
21
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Asnaashari S, Amjad E, Sokouti B. A comprehensive investigation on liver regeneration: a meta-analysis and systems biology approach. Clin Exp Hepatol 2021; 7:183-190. [PMID: 34295986 PMCID: PMC8284170 DOI: 10.5114/ceh.2021.107564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIM OF THE STUDY Liver regeneration is one of the essential fields of regenerative medicine as a branch of tissue engineering and molecular biology that draws global researchers' attention. This study aims to conduct a systematic review and meta-analysis on the high-throughput gene expression microarray dataset of liver regeneration on the NCBI-GEO database to identify the significant genes and signaling pathways and confirm the genes from literature studies on associated diseases. MATERIAL AND METHODS We thoroughly searched the NCBI-GEO database to retrieve and screen the GEO microarray datasets' contents. Due to the inclusion of different species in eligible GEO datasets in the meta-analysis, the list of significant genes for the random-effects model were identified. Moreover, we carried out detailed gene analyses for three main gene ontology components and the KEGG signaling pathway. Furthermore, we investigated the possibility of genes' association with liver cancer through the Kaplan-Meier plot. RESULTS The random-effects model from six eligible GEO datasets identified 71 genes with eight down-regulated and 63 up-regulated genes. The target genes are involved in various cellular functions such as cell proliferation, cell death, and cell cycle control. Finally, we noted that 58 out of 71 genes are associated with different types of diseases related explicitly to other liver and inflammation diseases. CONCLUSIONS The current study assessed various GEO datasets at the early stages of liver regeneration with promising results. The present systematic review and meta-analysis results are beneficial for future novel drug design and discovery specifically for patients in the liver transplantation process.
Collapse
Affiliation(s)
| | | | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Yu Q, Zou L, Yuan X, Fang F, Xu F. Dexmedetomidine Protects Against Septic Liver Injury by Enhancing Autophagy Through Activation of the AMPK/SIRT1 Signaling Pathway. Front Pharmacol 2021; 12:658677. [PMID: 33981237 PMCID: PMC8109052 DOI: 10.3389/fphar.2021.658677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Liver injury is one of the serious complications of sepsis. Previous studies suggested that dexmedetomidine (DEX) could alleviate cecal ligation and puncture (CLP)-induced liver injury. However, it is unclear whether the protective effect of DEX on sepsis-induced liver injury is related to autophagy. Methods: Mice (n = 105) were randomly divided into the following groups: (i) CON group (Sham); (ii) CLP group (CLP-induced liver injury + saline); (iii) CLP + DEX group (CLP-induced liver injury + DEX). Mouse models of sepsis-induced liver injury were established using CLP. DEX or normal saline was administered by intraperitoneal injection at 0, 2, and 4 h after CLP surgery. The mortality rate within 120 h was calculated. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and inflammatory cytokines were measured at 6, 12, and 24 h in each group. Hematoxylin and eosin staining assay was carried out to detect the morphological changes of mouse liver cells in each group. The levels of autophagy-associated proteins LC3II, Beclin-1, p62, and LAMP-2 were detected in three groups of mice using western blotting. The expression of LC3II was detected using immunofluorescence. Transmission electron microscopy (TEM) of liver tissue was used to observe autophagosomes and autophagosome–lysosomes. Lastly, the effect of DEX on the AMPK/SIRT1 pathway-associated protein levels were detected using western blotting. Meanwhile, we used L0-2 cells infected with mRFP-GFP-LC3 adenovirus to further analyze the role of SIRT1 in DEX-induced autophagy in liver injury model in vitro. Results: DEX significantly improved the survival rate of septic mice at the early stage and ameliorated the pathology of sepsis-induced liver injury. The level of autophagy-associated proteins, phosphorylated (p)-AMPK/AMPK, and SIRT1 in the liver of CLP-induced sepsis mice peaked at 12 h post-CLP and decreased significantly at 24 h. In the CLP + DEX group, the levels of autophagy-associated proteins, p-AMPK/AMPK, and SIRT1 increased, whereas inflammatory cytokines decreased at 24 h. The autophagosome structure was clearly observed at different time points in the CLP + DEX group. In the in vitro hepatocyte injury model, the SIRT1 inhibitor significantly increased intracellular ROS levels and reversed the effect of DEX on autophagy flux. Conclusion: We demonstrated a novel mechanism in which DEX protects against CLP-induced liver injury. DEX enhances autophagy, which alleviates the inflammatory responses in CLP-induced liver injury by regulating the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Qing Yu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liying Zou
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiu Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fang Fang
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Yu Y, Guo H, Jiang W, Zhang C, Xing C, Chen D, Xu C, Su L. Cyclic GMP-AMP promotes the acute phase response and protects against Escherichia coli infection in mice. Biochem Pharmacol 2021; 188:114541. [PMID: 33812857 DOI: 10.1016/j.bcp.2021.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
The acute phase response, as a component of the innate immune system, is part of the first line of defense against invading pathogens. The Stimulator of Interferon Genes (STING) pathway initiates innate immune responses upon recognition of exogenous bacterial and viral DNA. However, whether STING signaling pathway plays any roles in regulating acute phase response during bacterial infection remains unknown. In this study, we used STING-deficient (Tmem173gt) and wildtype mice to investigate acute phase responses to bacterial infection (Escherichia coli, E. coli) and test the effect of exogenous cyclic GMP-AMP (cGAMP, a STING agonist) treatment. Bacterial infection of STING-deficient mice resulted in an increase in mortality and bacterial dissemination. Also, inflammation-induced acute phase response was drastically reduced in STING-deficient mice, showing significant reduction in expression of cytokine TNF-α and acute phase proteins. In contrast, exogenous cGAMP treatment enhanced inflammation-induced acute phase response by increasing the expression of TNF-α and acute phase proteins. Also, cGAMP accelerated bacterial clearance and improved survival rate of wildtype mice, but not STING-deficient mice. Interestingly, cGAMP treatment mitigated bacterial infection induced liver injury in both wildtype and STING-deficient mice. Further in vitro evidence showed that cGAMP treatment retarded TNF-α-mediated hepatocyte apoptosis, potentially accelerating autophagy. Taken together, our results indicated that cGAMP/STING signaling pathway is critical for organism to initiate blood-borne innate immune-responses to defend bacterial infection, and cGAMP is envisaged as a drug candidate for further clinical trial.
Collapse
Affiliation(s)
- Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, The Faculty of Basic Medical Science, Second Military Medical University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
25
|
Roychowdhury S, Gandhirajan A, Kibler C, Wang X, Vachharajani V. Sirtuin 2 Dysregulates Autophagy in High-Fat-Exposed Immune-Tolerant Macrophages. Cells 2021; 10:731. [PMID: 33810233 PMCID: PMC8066127 DOI: 10.3390/cells10040731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity increases morbidity and resource utilization in sepsis patients. The immune response in sepsis transitions from an endotoxin-responsive hyper- to an endotoxin-tolerant hypo-inflammatory phase. The majority of sepsis mortality occurs during hypo-inflammation. We reported prolonged hypo-inflammation with increased sirtuin 2 (SIRT2) expression in obese-septic mice. The effect of direct exposure to high-fat/free fatty acid (FFA) and the role of SIRT2 in immune cells during the transition to hypo-inflammation is not well-understood. Autophagy, a degradation process of damaged protein/organelles, is dysregulated during sepsis. Here, we investigated the effect of direct FFA exposure and the role of SIRT2 expression on autophagy as macrophages transition from hyper-to hypo-inflammation. We found, FFA-exposed RAW 264.7 cells with lipopolysaccharide (LPS) stimulation undergo endotoxin-sensitive ("sensitive") hyper- followed by endotoxin tolerant ("tolerant") hypo-inflammatory phases; SIRT2 expression increases significantly in tolerant cells. Autophagy proteins LC3b-II, and beclin-1 increase in FFA-sensitive and decrease in tolerant cells; p62 expressions continue to accumulate in tolerant cells. We observed that SIRT2 directly deacetylates α-tubulin and impairs autophagy clearance. Importantly, we find SIRT2 inhibitor AK-7 treatment during endotoxin tolerant phase reverses autophagy dysregulation with improved autophagy clearance in FFA-tolerant cells. Thus, we report impaired autophagosome formation and autophagy clearance via increased SIRT2 expression in FFA-exposed tolerant macrophages.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (S.R.); (A.G.); (C.K.)
| | - Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (S.R.); (A.G.); (C.K.)
| | - Christopher Kibler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (S.R.); (A.G.); (C.K.)
| | - Xianfeng Wang
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (S.R.); (A.G.); (C.K.)
- Department of Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Protective Role of Coenzyme Q10 in Acute Sepsis-Induced Liver Injury in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7598375. [PMID: 33381582 PMCID: PMC7762638 DOI: 10.1155/2020/7598375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Sepsis increases the risk of the liver injury development. According to the research works, coenzyme Q10 exhibits hepatoprotective properties in vivo as well as in vitro. Current work aimed at investigating the protective impacts of coenzyme Q10 against liver injury in septic BALB/c mice. The male BALB/c mice were randomly segregated into 4 groups: the control group, the coenzyme Q10 treatment group, the puncture and cecal ligation group, and the coenzyme Q10+cecal ligation and puncture group. Cecal ligation and puncture was conducted after gavagaging the mice with coenzyme Q10 during two weeks. Following 48 h postcecal ligation and puncture, we estimated hepatic biochemical parameters and histopathological changes in hepatic tissue. We evaluated the expression of factors associated with autophagy, pyroptosis, and inflammation. Findings indicated that coenzyme Q10 decreased the plasma levels in alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase in the cecal ligation and puncture group. Coenzyme Q10 significantly inhibited the elevation of sequestosome-1, interleukin-1β, oligomerization domain-like receptor 3 and nucleotide-binding, interleukin-6, and tumor necrosis factor-α expression levels; coenzyme Q10 also increased beclin 1 levels. Coenzyme Q10 might be a significant agent in the treatment of liver injury induced by sepsis.
Collapse
|
27
|
Therapeutic Potential of Rhododendron arboreum Polysaccharides in an Animal Model of Lipopolysaccharide-Inflicted Oxidative Stress and Systemic Inflammation. Molecules 2020; 25:molecules25246045. [PMID: 33371296 PMCID: PMC7767231 DOI: 10.3390/molecules25246045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component.
Collapse
|
28
|
Shao L, Xiong X, Zhang Y, Miao H, Ren Y, Tang X, Song J, Wang C. IL-22 ameliorates LPS-induced acute liver injury by autophagy activation through ATF4-ATG7 signaling. Cell Death Dis 2020; 11:970. [PMID: 33177520 PMCID: PMC7658242 DOI: 10.1038/s41419-020-03176-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Uncontrollable inflammatory response acts as a driver of sepsis-associated liver injury (SALI). IL-22 plays an important role in regulating inflammatory responses, but its role in SALI remains unknown. The aim of the study was to assess the association of serum IL-22 with SALI in pediatric patients and to enclose the underlying mechanisms of IL-22 involved in lipopolysaccharide (LPS) - induced acute liver injury (ALI) in mice. Serum IL-22 levels in patients with SALI were significantly lower than in septic patients without liver injury, and the area under receiver operating characteristic (ROC) curve of IL-22 for discriminating SALI was 0.765 (95% CI: 0.593-0.937). Pre-administration of recombinant murine IL-22 alleviated LPS-induced ALI in mice, and serum IL-6 levels and the mRNA levels of TNF-α, IL-1β, and IL-6 in livers were decreased in response to IL-22 pre-treatment in mice. More importantly, IL-22 pre-treatment activated hepatic autophagy mediated by activating transcription factor 4 (ATF4)-autophagy-related gene 7 (ATG7) signaling in vivo and in vitro in response to LPS administration. Moreover, knockdown of ATF4 in mice aggravated LPS-induced ALI, which was associated with suppressed ATG7-related autophagy. In addition, the protective effects of IL-22 on LPS-induced ALI was partially blocked by ATF4 knockdown, which was associated with lower expression of LC3II/I in the livers of ATF4 knockdown (HT or Atf4+/-) mice compared with wild-type mice (WT or Atf4+/+) mice. In conclusion, low serum IL-22 level is associated with SALI occurrence, and IL-22 pre-administration activates autophagy in hepatocytes and protects mice against LPS-induced ALI partially related to ATF4-ATG7 signaling pathway.
Collapse
Affiliation(s)
- Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yuqian Ren
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Jia Song
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
29
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
30
|
Zhang S, Liu F, Wu Z, Xie J, Yang Y, Qiu H. Contribution of m6A subtype classification on heterogeneity of sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:306. [PMID: 32355750 PMCID: PMC7186660 DOI: 10.21037/atm.2020.03.07] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Sepsis is a highly heterogeneous syndrome with diverse immune status and varied bioprocesses among individuals. The heterogeneity of sepsis could be associated with N6-methyladenosine (m6A) RNA methylation, due to m6A as a common and reversible posttranscriptional RNA modification involved in the regulation of whole bioprocesses. Therefore, we aim to identify m6A induced molecular subtypes of sepsis and furthermore explore the probable mechanism. Methods Gene expression datasets with 479 consecutive patients admitted for sepsis to the intensive care unit (ICU) in the Amsterdam Academic Medical Center were included in present study at first. Secondly, twelve m6A methylation regulatory genes were determined via systematic review in published researches. Furthermore, we utilized unsupervised clustering (consensus k means clustering) to identify m6A induced molecular subtypes in sepsis based on m6A prognostic molecular, and assess the association of these subtypes with clinical traits and survival outcomes. Moreover, the probable mechanism and regulatory relationship of m6A in sepsis was also explored through Gene Set Enrichment Analysis (GSEA), Weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) analysis and Co-expression analysis. Results Three m6A subtypes with different outcome were identified in sepsis cohort through unsupervised clustering on m6A prognostic molecular, designated Cluster 1/2/3 (log-rank P=0.004). The best outcome was found for patients classified as having cluster 3, and at 28 days, 21 of 144 people with cluster 3 had died [hazard ratio (HR) vs. all other clusters 5.42 (95% CI: 0.359–0.819); P=0.011], compared with 57 of 224 people with cluster 1 (HR 0.579, 95% CI: 0.364–0.920; P=0.037), and 36 of 112 people with cluster 2 (HR 0.477, 95% CI: 0.272–0.833; P=0.003). For exploration of the relationship between m6A subtypes and immunity, the GSEA found that patients in cluster 1 suffered from hyper-activated immunocompetent status; patients in cluster 2 indicated immunosuppressive status; and patients in cluster 3 showed the moderate immune activity (P<0.05). Co-expression analysis furthermore identified 82 immune molecules and 40 autophagy-related molecules could be regulated by prognostic m6A RNA methylation regulators (P<0.05) and correlation coefficient >0.6. In addition, WGCNA and GO analysis indicated that autophagy was significantly and widely activated in patients with cluster 3 (P<0.05). Conclusions According to the heterogeneity in m6A methylation regulatory genes, three distinct subtypes in sepsis were identified with different RNA epigenetics, immune status, biological processes and outcomes, which initially uncovered that heterogeneity of sepsis may be largely caused by m6A RNA methylation.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feng Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zongsheng Wu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
31
|
Kikuchi S, Piraino G, O'Connor M, Wolfe V, Ridings K, Lahni P, Zingarelli B. Hepatocyte-Specific Deletion of AMPKα1 Results in Worse Outcomes in Mice Subjected to Sepsis in a Sex-Specific Manner. Front Immunol 2020; 11:210. [PMID: 32117320 PMCID: PMC7031478 DOI: 10.3389/fimmu.2020.00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Alterations in the energy homeostasis contribute to sepsis-mediated multiple organ failure. The liver plays a central role in metabolism and participates to the innate immune and inflammatory responses of sepsis. Several clinical and experimental studies have suggested that females are less susceptible to the adverse outcome of sepsis. However, underlying mechanisms of organ damage in sepsis remain largely undefined. AMP-activated protein kinase (AMPK) is an important regulator of mitochondrial quality control. The AMPK catalytic α1 isoform is abundantly expressed in the liver. Here, we determined the role of hepatocyte AMPKα1 in sepsis by using hepatocyte-specific AMPKα1 knockout mice (H-AMPKα1 KO) generated with Cre-recombinase expression under the control of the albumin promoter. Using a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP), we observed that male H-AMPKα1 KO mice had higher plasma levels of tumor necrosis factor-α and interleukin-6 and exhibited a more severe liver and lung injury than male H-AMPKα1 WT mice, as evaluated by histology and neutrophil infiltration at 18 h after CLP. Plasma levels of interleukin-10 and the keratinocyte-derived chemokine were similarly elevated in both KO and WT male mice. At transmission electron microscopy analysis, male H-AMPKα1 KO mice exhibited higher liver mitochondrial damage, which was associated with a significant decrease in liver ATP levels when compared to WT mice at 18 h after sepsis. Mortality rate was significantly higher in the male H-AMPKα1 KO group (91%) when compared to WT mice (60%) at 7 days after CLP. Female H-AMPKα1 WT mice exhibited a similar degree of histological liver and lung injury, but significantly milder liver mitochondrial damage and higher autophagy when compared to male WT mice after CLP. Interestingly, H-AMPKα1 KO female mice had lower organ neutrophil infiltration, lower liver mitochondrial damage and lower levels of cytokines than WT female mice. There was no significant difference in survival rate between WT and KO mice in the female group. In conclusion, our study demonstrates that AMPKα1 is a crucial hepatoprotective enzyme during sepsis. Furthermore, our results suggest that AMPK-dependent liver metabolic functions may influence the susceptibility to multiple organ injury in a sex-dependent manner.
Collapse
Affiliation(s)
- Satoshi Kikuchi
- Department of Emergency Medicine, Ehime University, Toon, Japan
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Kiana Ridings
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
32
|
Zheng C, Zhou Y, Huang Y, Chen B, Wu M, Xie Y, Chen X, Sun M, Liu Y, Chen C, Pan J. Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS-induced septic AKI. Exp Ther Med 2019; 18:4707-4717. [PMID: 31777559 PMCID: PMC6862447 DOI: 10.3892/etm.2019.8115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to explore the role of ataxia-telangiectasia mutated (ATM) in lipopolysaccharide (LPS)-induced in vitro model of septic acute kidney injury (AKI) and the association between ATM, tubular epithelial inflammatory response and autophagy. The renal tubular epithelial cell HK-2 cell line was cultured and passaged, with HK-2 cell injury induced by LPS. The effects of LPS on HK-2 cell morphology, viability, ATM expression and inflammation were observed. Lentiviral vectors encoding ATM shRNA were constructed to knock down ATM expression in HK-2 cells. The efficiency of ATM knockdown in HK-2 cells was detected by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). HK-2 cells transfected with the ATM shRNA lentivirus were used for subsequent experiments. Following ATM knockdown, corresponding controls were set up, and the effects of ATM on inflammation and autophagy were detected in HK-2 cells using RT-qPCR, western blotting and ELISA. After LPS stimulation, the HK-2 cells were rounded into a slender or fusiform shape with poorly defined outlines. LPS treatment reduced cell viability in a partly dose-dependent manner. LPS increased the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6, with the levels reaching its highest value at 10 µg/ml. IL-6 and IL-1β expression increased with increasing LPS concentration. These findings suggest that LPS reduced HK-2 cell viability whilst increasing the expression of inflammatory factors. Following transfection with ATM shRNA, expression levels of key autophagy indicators microtubule associated protein 1 light chain 3α I/II ratio and beclin-1 in the two ATM shRNA groups were also significantly reduced compared with the NC shRNA group. In summary, downregulation of ATM expression in HK-2 cells reduced LPS-induced inflammation and autophagy in sepsis-induced AKI in vitro, suggesting that LPS may induce autophagy in HK-2 cells through the ATM pathway leading to the upregulation of inflammatory factors.
Collapse
Affiliation(s)
- Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Minmin Wu
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yue Xie
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mei Sun
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
Kumar V. Sepsis roadmap: What we know, what we learned, and where we are going. Clin Immunol 2019; 210:108264. [PMID: 31655168 DOI: 10.1016/j.clim.2019.108264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening condition originating as a result of systemic blood infection causing, one or more organ damage due to the dysregulation of the immune response. In 2017, the world health organization (WHO) declared sepsis as a disease of global health priority, needing special attention due to its high prevalence and mortality around the world. Most of the therapeutics targeting sepsis have failed in the clinics. The present review highlights the history of the sepsis, its immunopathogenesis, and lessons learned after the failure of previously used immune-based therapies. The subsequent section, where to go describes in details the importance of the complement system (CS), autophagy, inflammasomes, and microbiota along with their targeting to manage sepsis. These systems are interconnected to each other, thus targeting one may affect the other. We are in an urgent need for a multi-targeting therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
34
|
de Koning MSLY, Koekkoek WACK, Kars JCNH, van Zanten ARH. Association of PROtein and CAloric Intake and Clinical Outcomes in Adult SEPTic and Non-Septic ICU Patients on Prolonged Mechanical Ventilation: The PROCASEPT Retrospective Study. JPEN J Parenter Enteral Nutr 2019; 44:434-443. [PMID: 31172544 PMCID: PMC7078979 DOI: 10.1002/jpen.1663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
Background The optimal nutritional support for critically ill septic patients remains unknown. This study evaluates the associations of macronutrient intake during the first week of intensive care unit (ICU) admission and long‐term clinical outcomes in septic and non‐septic patients. Methods Prolonged mechanically ventilated patients were retrospectively studied. The association of protein (low: <0.8 g/kg/d, medium: 0.8–1.2 g/kg/d, high >1.2 g/kg/d) and energy intake (<80%, 80%–110%, 110% of target) during days 1–3 and 4–7 after ICU admission and 6‐month mortality was analyzed for septic and non‐septic patients separately. Results A total of 423 patients were investigated. Of these, 297 had sepsis. In the sepsis group, medium protein
intake at days 4–7 was associated with lower 6‐month mortality (hazard ratio [HR]: 0.646, 95% confidence interval [CI]: 0.418‐0.996, P=0.048) compared with high intake. In the non‐sepsis group, early high and late low protein intake were associated with higher 6‐month mortality (HR: 3.902, 95% CI: 1.505‐10.115, P=0.005; HR: 2.642, 95% CI: 1.128‐6.189, P=0.025) compared with low and high protein intake, respectively. For energy intake, late energy intake of >110% was associated with decreased mortality in septic patients (HR: 0.400, 95% CI: 0.222‐0.721, P=0.002), whereas in non‐septic patients, late medium energy intake (80%–110%) was associated with better survival (HR: 0.379, 95% CI: 0.175‐0.820, P=0.014), both compared with low energy intake. Conclusion Divergent associations of macronutrient intake were found; early high protein intake in non‐septic patients, but not in septic patients, was found to be associated with higher 6‐month mortality.
Collapse
|
35
|
Xue R, Yang J, Jia L, Zhu X, Wu J, Zhu Y, Meng Q. Mitofusin2, as a Protective Target in the Liver, Controls the Balance of Apoptosis and Autophagy in Acute-on-Chronic Liver Failure. Front Pharmacol 2019; 10:601. [PMID: 31231215 PMCID: PMC6561379 DOI: 10.3389/fphar.2019.00601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: Acute-on-chronic liver failure (ACLF) is closely related to mitochondrial dysfunction. Previous studies showed the vital role of mitofusin2 (Mfn2) in the regulation of mitochondrial function. However, the effect of Mfn2 on ACLF remains unknown. As one of mitochondrial-related pathways, BNIP3-mediated pathway controls the balance between apoptosis and autophagy. However, the relationship between Mfn2 and BNIP3-mediated pathway in ACLF is still obscure. The aim of our study is to clarify the effect of Mfn2 and potential molecular mechanisms in ACLF. Methods: We collected liver tissue from ACLF patients and constructed an ACLF animal model and a hepatocyte autophagy injury model, using adenovirus and lentivirus to deliver Mfn2 and Mfn2-siRNA to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. We explored the biological mechanisms of Mfn2-induced autophagy and apoptosis of ACLF through Western blotting, Quantitative Real-Time PCR (RT-PCR), transmission electron microscopy, immunofluorescence, immunohistochemical staining, and hematoxylin–eosin staining. Results: Compared with the normal liver tissue, the expressions of Mfn2, Atg5, Beclin1, and LC3-II/I were significantly decreased and the expression of P62 was much higher in patients with ACLF. Mfn2 significantly attenuated ACLF, characterized via microscopic histopathology and reduced serum AST and ALT levels. Mfn2 promoted the expressions of ATP synthase β, Atg5, Beclin1, LC3-II/I, and Bcl2 and reduced the expressions of P62, Bax, and BNIP3. Conclusions: Mfn2 plays a protective role in the progression of ACLF. BNIP3-mediated signaling pathway is not the only factor associated with Mfn2 controlling the balance of apoptosis and autophagy in ACLF. Mfn2 will provide a promising therapeutic target for patients with ACLF.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Lin Jia
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xuemin Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Uncoupling Protein 2 Drives Myocardial Dysfunction in Murine Models of Septic Shock. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9786101. [PMID: 31080837 PMCID: PMC6475535 DOI: 10.1155/2019/9786101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Abstract
Cardiac dysfunction is a major component of sepsis-induced multiorgan failure in critical care units. Uncoupling protein 2 (UCP2) involves immune response, regulation of oxidative stress, and maintenance of mitochondrial membrane potential as well as energy production. However, whether and how UCP2 plays roles in the development of septic cardiac dysfunction are largely unknown. Here, intraperitoneal injection of LPS significantly activated UCP2 expression accompanied by a significant decrease of cardiac function and caused a significantly lower survival rate in mice. Of note, knockdown of UCP2 through a cardiotropic adenoassociated viral vector carrying a short hairpin RNA (shRNA) specifically targeting the UCP2 evoked resistance to LPS-triggered septic cardiac dysfunction and lethality in vivo. Moreover, UCP2 deficiency ameliorated the reduced levels of intracellular ATP in the LPS-challenged heart tissues and preserved mitochondrial membrane potential loss in primary adult mouse cardiomyocytes in LPS-challenged animals. Mechanistically, we confirmed that the inhibition of UCP2 promoted autophagy in response to LPS, as shown by an increase in LC3II and a decrease in p62. At last, the autophagy inhibitor 3-MA abolished UCP2 knockdown-afforded cardioprotective effects. Those results indicate that UCP2 drives septic cardiac dysfunction and that the targeted induction of UCP2-mediated autophagy may have important therapeutic potential.
Collapse
|
37
|
Wu Y, Yao YM, Lu ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl) 2019; 97:451-462. [PMID: 30788535 DOI: 10.1007/s00109-019-01756-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/24/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a dysregulated response to severe infection characterized by life-threatening organ failure and is the leading cause of mortality worldwide. Multiple organ failure is the central characteristic of sepsis and is associated with poor outcome of septic patients. Ultrastructural damage to the mitochondria and mitochondrial dysfunction are reported in sepsis. Mitochondrial dysfunction with subsequent ATP deficiency, excessive reactive oxygen species (ROS) release, and cytochrome c release are all considered to contribute to organ failure. Consistent mitochondrial dysfunction leads to reduced mitochondrial quality control capacity, which eliminates dysfunctional and superfluous mitochondria to maintain mitochondrial homeostasis. Mitochondrial quality is controlled through a series of processes including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and transport processes. Several studies have indicated that multiple organ failure is ameliorated by restoring mitochondrial quality control mechanisms and is further amplified by defective quality control mechanisms. This review will focus on advances concerning potential mechanisms in regulating mitochondrial quality control and impacts of mitochondrial quality control on the progression of sepsis.
Collapse
Affiliation(s)
- You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yong-Ming Yao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China.
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,College of Nursing, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
38
|
Sun Y, Cai Y, Zang QS. Cardiac Autophagy in Sepsis. Cells 2019; 8:cells8020141. [PMID: 30744190 PMCID: PMC6406743 DOI: 10.3390/cells8020141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a leading cause of death in intensive care units, and cardiac dysfunction is an identified serious component of the multi-organ failure associated with this critical condition. This review summarized the current discoveries and hypotheses of how autophagy changes in the heart during sepsis and the underlying mechanisms. Recent investigations suggest that specific activation of autophagy initiation factor Beclin-1 has a potential to protect cardiac mitochondria, attenuate inflammation, and improve cardiac function in sepsis. Accordingly, pharmacological interventions targeting this pathway have a potential to become an effective approach to control sepsis outcomes. The role of autophagy during sepsis pathogenesis has been under intensive investigation in recent years. It is expected that developing therapeutic approaches with specificities targeting at autophagy regulatory factors may provide new opportunities to alleviate organ dysfunction caused by maladaptive autophagy during sepsis.
Collapse
Affiliation(s)
- Yuxiao Sun
- Departments of Surgery, University of Texas Southwestern Medical Center, 75390 Dallas, TX, USA.
| | - Ying Cai
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| | - Qun S Zang
- Departments of Surgery, University of Texas Southwestern Medical Center, 75390 Dallas, TX, USA.
| |
Collapse
|
39
|
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS. Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation 2018; 138:2247-2262. [PMID: 29853517 PMCID: PMC6274625 DOI: 10.1161/circulationaha.117.032821] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac dysfunction is a major component of sepsis-induced multiorgan failure in critical care units. Changes in cardiac autophagy and its role during sepsis pathogenesis have not been clearly defined. Targeted autophagy-based therapeutic approaches for sepsis are not yet developed. METHODS Beclin-1-dependent autophagy in the heart during sepsis and the potential therapeutic benefit of targeting this pathway were investigated in a mouse model of lipopolysaccharide (LPS)-induced sepsis. RESULTS LPS induced a dose-dependent increase in autophagy at low doses, followed by a decline that was in conjunction with mammalian target of rapamycin activation at high doses. Cardiac-specific overexpression of Beclin-1 promoted autophagy, suppressed mammalian target of rapamycin signaling, improved cardiac function, and alleviated inflammation and fibrosis after LPS challenge. Haplosufficiency for beclin 1 resulted in opposite effects. Beclin-1 also protected mitochondria, reduced the release of mitochondrial danger-associated molecular patterns, and promoted mitophagy via PTEN-induced putative kinase 1-Parkin but not adaptor proteins in response to LPS. Injection of a cell-permeable Tat-Beclin-1 peptide to activate autophagy improved cardiac function, attenuated inflammation, and rescued the phenotypes caused by beclin 1 deficiency in LPS-challenged mice. CONCLUSIONS These results suggest that Beclin-1 protects the heart during sepsis and that the targeted induction of Beclin-1 signaling may have important therapeutic potential.
Collapse
Affiliation(s)
- Yuxiao Sun
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Xiao Yao
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Qing-Jun Zhang
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Min Zhu
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Zhi-Ping Liu
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Bo Ci
- Clinical Science, Quantitative Biomedical Research Center (B.C., Y.X.), University of Texas Southwestern Medical Center, Dallas
| | - Yang Xie
- Clinical Science, Quantitative Biomedical Research Center (B.C., Y.X.), University of Texas Southwestern Medical Center, Dallas
| | - Deborah Carlson
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A Rothermel
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station (Y.S.)
| | - Beth Levine
- Internal Medicine, Center for Autophagy Research, Howard Hughes Medical Institute (B.L.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Steven E Wolf
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph P Minei
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Qun S Zang
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
40
|
Abdellatif M, Sedej S, Madeo F, Kroemer G. Cardioprotective effects of autophagy induction in sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S61. [PMID: 30613636 PMCID: PMC6291539 DOI: 10.21037/atm.2018.10.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023]
Affiliation(s)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Sunahara S, Watanabe E, Hatano M, Swanson PE, Oami T, Fujimura L, Teratake Y, Shimazui T, Lee C, Oda S. Influence of autophagy on acute kidney injury in a murine cecal ligation and puncture sepsis model. Sci Rep 2018; 8:1050. [PMID: 29348412 PMCID: PMC5773584 DOI: 10.1038/s41598-018-19350-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022] Open
Abstract
The role of autophagy in the maintenance of renal homeostasis during sepsis is not well understood. We therefore aimed to determine the influence of autophagy on kidney during sepsis using a murine sepsis model, i.e. cecal ligation and puncture (CLP). In CLP treated animals, the number of autolysosomes observed by electron microscopy increased over time. The number of autophagosomes in CLP animals decreased relative sham operated controls at 24 hrs after CLP, indicating that autophagy flux is already diminishing by that time. Moreover, CLP induced an increase in LC3-II/LC3-I ratio at 6-8 hrs, demonstrated in western blots, as well as an increase in GFP-LC3 dots at 6-8 hrs and 24 hrs, using immunofluorescence and anti-LC3 and LAMP1 antibodies on tissue sections from GFP-LC3 transgenic mice. LC3-II/LC3-I ratio and the number of co-localized GFP-LC3 dots and LAMP1 signals (GFP LC3 + LAMP1 dots) in CLP mice at 24 hrs were significantly reduced compared with data obtained at 6-8 hrs. Notably, acceleration of autophagy by rapamycin resulted in improvement of renal function that was associated with improvement in the histologic severity of tubular epithelial injury in CLP treated animals. Autophagy in the kidney was significantly slowed in the kidney during the acute phase of sepsis; nonetheless, autophagy in kidney appears to play a protective role against sepsis.
Collapse
Affiliation(s)
- Satoshi Sunahara
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Masahiko Hatano
- Biomedical Research Center, Chiba University, Chiba, Japan.,Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Paul E Swanson
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Takehiko Oami
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba, Japan
| | | | - Takashi Shimazui
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chiwei Lee
- Department of Nephrology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Inata Y, Kikuchi S, Samraj RS, Hake PW, O'Connor M, Ledford JR, O'Connor J, Lahni P, Wolfe V, Piraino G, Zingarelli B. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway. FASEB J 2018; 32:728-741. [PMID: 28974562 DOI: 10.1096/fj.201700576r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Age is an independent risk factor of multiple organ failure in patients with sepsis. However, the age-related mechanisms of injury are not known. AMPK is a crucial regulator of energy homeostasis, which controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-α (PGC-1α) and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation might contribute to age-dependent liver injury in young (2-3 mo) and mature male mice (11-13 mo) subjected to sepsis. Liver damage was higher in mature mice than in young mice and was associated with impairment of hepatocyte mitochondrial function, structure, and biogenesis and reduced autophagy. At molecular analysis, there was a time-dependent nuclear translocation of the active phosphorylated catalytic subunits AMPKα1/α2 and PGC-1α in young, but not in mature, mice after sepsis. Treatment with the AMPK activator 5-amino-4-imidazolecarboxamide riboside-1-β-d-ribofuranoside (AICAR) improved liver mitochondrial structure in both age groups compared with vehicle. In loss-of-function studies, young knockout mice with systemic deficiency of AMPKα1 exhibited greater liver injury than did wild-type mice after sepsis. Our study suggests that AMPK is important for liver metabolic recovery during sepsis. Although its function may diminish with age, pharmacological activation of AMPK may be of therapeutic benefit.-Inata, Y., Kikuchi, S., Samraj, R. S., Hake, P. W., O'Connor, M., Ledford, J. R., O'Connor, J., Lahni, P., Wolfe, V., Piraino, G., Zingarelli, B. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway.
Collapse
Affiliation(s)
- Yu Inata
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Satoshi Kikuchi
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ravi S Samraj
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul W Hake
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael O'Connor
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - John R Ledford
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - James O'Connor
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vivian Wolfe
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Giovanna Piraino
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Mitofusin 2 Promotes Apoptosis of CD4 + T Cells by Inhibiting Autophagy in Sepsis. Mediators Inflamm 2017; 2017:4926205. [PMID: 29358849 PMCID: PMC5735308 DOI: 10.1155/2017/4926205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/11/2017] [Indexed: 01/13/2023] Open
Abstract
Apoptosis of CD4+ T cells is a primary pathophysiological mechanism of immune dysfunction in the pathogenesis of sepsis. Mitofusin 2 (Mfn2), an integral mitochondrial outer membrane protein, has been confirmed to be associated with cellular metabolism, proliferation, and apoptosis. The function of Mfn2 in CD4+ T cell apoptosis in sepsis is poorly understood. Here, we discovered increased in vivo Mfn2 expression, autophagy deficiency, and elevated cell apoptosis in murine splenic CD4+ T cells after cecal ligation and puncture (CLP). We also observed almost identical results in splenic CD4+ T cells upon lipopolysaccharide (LPS) stimulation in vitro. Furthermore, overexpression of Mfn2 resulted in impaired autophagy and increased apoptosis in Jurkat cells. Pharmacological inhibition of autophagy with 3-methyladenine enhanced Mfn2 overexpression-induced cell apoptosis. In addition, overexpression of Mfn2 downregulated phorbol myristate acetate (PMA)/ionomycin-, rapamycin- and starvation-induced autophagy in Jurkat T cells. Taken together, these data indicate a critical role of Mfn2 in CD4+ T cell apoptosis in sepsis and the underlying mechanism of autophagy deficiency.
Collapse
|
44
|
Association between genetic polymorphisms in the autophagy-related 5 gene promoter and the risk of sepsis. Sci Rep 2017; 7:9399. [PMID: 28839236 PMCID: PMC5570943 DOI: 10.1038/s41598-017-09978-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies demonstrated significant roles of autophagy in the pathogenesis of sepsis, but few studies focused on the effect of autophagy-related SNPs on sepsis susceptibility. In this present study, five polymorphisms of ATG5/ATG16L1 were investigated for the possible risk on sepsis in a Chinese Han population. Our results showed that ATG5 expression levels decreased with the severity of sepsis, and rs506027 T > C and rs510432 G > A were associated with sepsis progression and mortality. Moreover, the rs506027 TT and rs510432 GG carriers also exhibited increased expression levels of ATG5. Functional assays showed that ATG5 knockdown elevated the secretion of pro-inflammatory cytokines in THP-1 cells, and the extracted mononuclear cell of the risk C-A carriers exhibited decreased ATG5 expression levels, leading to enhanced releases of TNF-α and IL-1β under LPS stimulation in vitro. Furthermore, ATG5 T-G haplotype mutation showed higher promoter activities compared to C-A haplotype mutation, suggesting the effect of these SNPs on ATG5 gene transcription. Taken together, these results above indicated that these two ATG5 promoter polymorphisms may be functional and clinically significant for sepsis progression, underscoring its potentially therapeutic implications for sepsis and other inflammatory diseases.
Collapse
|
45
|
Araújo LA, Melo-Reis PR, Mrue F, Gomes CM, Oliveira MAP, Silva HM, Alves MM, Silva-Júnior NJ. Protein from Hevea brasiliensis “Hev b 13” latex attenuates systemic inflammatory response and lung lesions in rats with sepsis. BRAZ J BIOL 2017; 78:271-280. [DOI: 10.1590/1519-6984.06316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Abstract Sepsis induces a severe systemic inflammatory response that may result in multiple organ dysfunction and death. Studies using a protein derived from natural Hevea brasiliensis (rubber tree) latex, denominated Hev b 13, have demonstrated important anti-inflammatory effects, but no data have been published regarding its effects on sepsis. The aim of this study was to investigate the effects of Hev b 13 on the inflammatory response and lung lesions of septal rats. Male Wistar rats were submitted to cecal ligation and puncture (CLP), randomized into groups and treated with subcutaneously administered doses of 0.5/2.0/3.0 mg/Kg of Hev b 13. Next, animals were subdivided into three different points in time (1, 6 and 24 hours after treatments) for collection of blood samples and euthanasia accompanied by organ removal. Total and differential leukocyte counts, cytokine dosage and histological assessment were analyzed. Treatment with Hev b 13 resulted in a significant decline in total and differential leukocytes as well as suppression of TNF-α and IL-6 production, associated with the increase in IL-10 and IL-4 in plasma and lung tissue. Moreover, it reduced morphological and pathological changes found in the lungs, including neutrophil infiltration, edema and alveolar thickening. The present study concluded that Hev b 13 exerts anti-inflammatory effects and attenuates lung lesions in septal rats, showing potential for clinical application.
Collapse
Affiliation(s)
| | - P. R. Melo-Reis
- Pontifícia Universidade Católica de Goiás, Brazil; Pontifícia Universidade Católica de Goiás, Brazil
| | - F. Mrue
- Pontifícia Universidade Católica de Goiás, Brazil
| | - C. M. Gomes
- Pontifícia Universidade Católica de Goiás, Brazil
| | | | | | - M. M. Alves
- Pontifícia Universidade Católica de Goiás, Brazil
| | - N. J. Silva-Júnior
- Pontifícia Universidade Católica de Goiás, Brazil; Pontifícia Universidade Católica de Goiás, Brazil
| |
Collapse
|
46
|
Delta opioid receptor agonist attenuates lipopolysaccharide-induced myocardial injury by regulating autophagy. Biochem Biophys Res Commun 2017. [PMID: 28647372 DOI: 10.1016/j.bbrc.2017.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous studies have described the protective effects of DADLE on myocardial injury in sepsis. Recently, autophagy has been shown to be an innate defense mechanism in sepsis-related myocardial injury. However, whether DADLE has an pro-autophagic effect is yet to be elucidated. The present study aimed to investigate the effect of DADLE on the regulation of autophagy during sepsis. METHODS Male mice were subjected to LPS or vehicle intraperitoneal injection. After LPS injection, mice received either DADLE, Naltrindole or vehicle. ELISA and JC-1 were used to evaluate the level cTnI and Mitochondrial membrane potential. Cardiac ultrastructural and autophagosomes were visualized by transmission electron microscopy. The relative protein levels were analyzed by Western blot. RESULTS The results showed that treatment with DADLE both immediately or 4 h after LPS intraperitoneal injection could improve the survival rate of mice with endotoxemic. DADLE could ease myocardium ultrastructure injury induced by LPS, this cardioprotective effect was also seen in increased MMP levels, and decreased cTnI levels. Through observation of transmission electron microscopy and Western blot we have discovered that the amount of autophagosome and the expression of autophagy related protein LC3II, Beclin1 were significantly increased with DADLE treatment. DADLE promoted LPS-induced autophagosome maturation as indicated by the increased LAMP-1 protein level and decreased SQSTM1/p62 protein level. The selective δ-opioid receptor antagonist Naltrindole play an opposite effects. CONCLUSIONS DADLE could improve the survival and protect myocardial dysfunction in mice with LPS-induced endotoxemia. This effect was related to the increase of autophagy.
Collapse
|
47
|
Yan HF, Sun HW, Wang P, Zhang SL, Yang JW, Xu BX, Zhou JL, Li CL, Cui Y. Effect of lipopolysaccharide on proliferation, secretion and ultrastructure of murine liver Kupffer cells under high glucose conditions. Shijie Huaren Xiaohua Zazhi 2017; 25:412-419. [DOI: 10.11569/wcjd.v25.i5.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of lipopolysaccharide (LPS) on the proliferation, secretion and ultrastructure of liver Kupffer cells (KCs) under high glucose conditions.
METHODS Murine liver KCs were cultured, amplified, and then randomly divided into a high glucose group [(HG), 25.0 mmol/L D-glucose], a normal glucose group [(CON), 11.1 mmol/L D-glucose], a LPS + high glucose group [(LPS-HG), 25.0 mmol/L D-glucose], and a LPS + normal glucose group [(LPS-CON), 11.1 mmol/L D-glucose)]. The KCs in each group were cultured for 24 h, and then LPS was added for the LPS-HG and LPS-CON groups. After 6 h of continuous cultivation, cell proliferation and cell cycle were detected by MTT colorimetric assay and flow cytometry, respectively. Cell supernatants were collected to determine the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β and IL-6 by Luminex xMAP technique. The ultrastructure of KCs was observed by transmission electron microscopy (TEM).
RESULTS MTT colorimetric assay showed that the optical density (OD) of murine liver KCs treated with LPS for 6 h under high glucose conditions increased significantly, but the OD values decreased significantly in the HG and LPS-HG groups compared with those of the CON and LPS-CON groups (P < 0.05). Flow cytometry revealed that high glucose arrested the cell cycle in G0/G1 phase; the percentage of G0/G1 phase cells decreased and that of S + G2/M phase cells increased significantly (P < 0.01) after KCs were treated with LPS for 6. The Luminex xMAP assay showed that the levels of TNF-α, IL-1β and IL-6 increased significantly after murine liver KCs were treated with LPS for 6 h under high glucose conditions, and the changes in TNF-α and IL-1β were more obvious. TEM revealed obvious ultrastructural alterations of KCs treated with LPS for 6 h under high glucose conditions. A large number of autophagosomes were observed in the LPS-HG group, and only few were noted in the HG group. Only vacuolar degenerations were visible in the CON and LPS-CON groups.
CONCLUSION LPS can activate and enhance the proliferation and secretion of murine liver Kupffer cells under high glucose conditions. Both LPS and hyperglycemia can induce ultrastructural alterations of KCs including autophagy.
Collapse
|
48
|
Abd El-Latif AAEA, Sayed AA, Soliman AM, Fahmy SR. Exploration of the therapeutic potential effect of Sepia officinalis in animal model of sepsis induced by cecal ligation and puncture. Injury 2016; 47:2709-2717. [PMID: 27743598 DOI: 10.1016/j.injury.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present investigation explored the therapeutic potential effect of Sepia officinalis body tissue (SOBT) and Sepia officinalis polysaccharide (SOP) extracts, in animal model of sepsis [induced by cecal ligation and puncture (CLP)]. MATERIALS AND METHODS Experimental animals were divided into 4 groups, Group 1: Sham control rats. Group 2: Septic rats. Group 3: Septic rats treated with methanolic extract of Sepia officinalis body tissue (SOBT) (500mg/kg body weight) for 2days. Group 4: Septic rats treated with Sepia officinalis polysaccharide (SOP) extract (200mg/kg body weight) for 2days. RESULTS The antioxidant activity of SOBT and SOP was proven by DPPH test. CLP-induced liver and kidney toxicities showed by an increase in the ALAT, ASAT, γGT, ALP, creatinine, BUN and uric acid concentrations in serum. Moreover, CLP-induced oxidative stress in liver and kidney evidenced by the increase of MDA levels, decrease in GSH concentrations and decrease in the enzymatic antioxidants (SOD, CAT, GST). In addition, CLP caused decrease in CYP1A2 content in liver. CONCLUSIONS Our findings demonstrate the therapeutic efficacy of SOBT and SOP in liver and kidney disorders. Therefore this study suggests that SOBT and SOP could be a potential therapeutic agents for sepsis treatment.
Collapse
Affiliation(s)
| | - Amany Ahmed Sayed
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | | | | |
Collapse
|
49
|
Wan SX, Shi B, Lou XL, Liu JQ, Ma GG, Liang DY, Ma S. Ghrelin protects small intestinal epithelium against sepsis-induced injury by enhancing the autophagy of intestinal epithelial cells. Biomed Pharmacother 2016; 83:1315-1320. [PMID: 27571874 DOI: 10.1016/j.biopha.2016.08.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ghrelin is a hormone that protects against hypoxic injury of cardiac cells by inducing autophagy, but the role of autophagy in sepsis remains unclear. This study aimed to evaluate whether ghrelin could enhance autophagy in rats with intestinal sepsis. METHODS The cecal ligation and perforation (CLP) method was used to induce sepsis in Sprague-Dawley rats. The rats were assigned to four groups: normal group, sham-operated group, sepsis group, and Ghrelin-treated group. Sera and small intestinal tissues were collected from all groups. The sepsis was evaluated by histological analysis, and autophagy of small intestinal epithelial cells was assessed by electron microscopy, immunofluorescence, and biochemical methods. RESULTS The expression of autophagy-associated proteins such as LC3, Atg 7 and Beclin 1 increased by 8h post-CLP and declined to basal levels by 12h post-CLP. The expression of LC3, Atg 7 and Beclin 1 in Ghrelin-treated rats was higher than that in rats with sepsis. Furthermore, compared to rats with sepsis, Ghrelin-treated rats showed significantly reduced intestinal mucosa injury at 20h post-CLP. CONCLUSION Autophagy is induced in the early stages of sepsis. Ghrelin could enhance the autophagy of intestinal epithelial cells in rats with sepsis and protect the small intestinal epithelium against sepsis-induced injury.
Collapse
Affiliation(s)
- Sheng-Xia Wan
- The No. 4 Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Shi
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Critical Care Unit, Shanghai, China.
| | - Xiao-Li Lou
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Central Laboratory, Shanghai, China
| | - Jing-Quan Liu
- Zhejiang Provincial People's Hospital, Critical Care Unit, Hanzhou, China
| | - Guo-Guang Ma
- Zhongshan Hospital Affiliated with FuDan University, Critical Care Unit, Shanghai, China
| | - Dong-Yu Liang
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Central Laboratory, Shanghai, China
| | - Shuang Ma
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Critical Care Unit, Shanghai, China
| |
Collapse
|
50
|
Antiseptic effect of sea cucumber ( Holothuria atra) against multi-organ failure induced by sepsis: Molecular and histopathological study. Exp Ther Med 2016; 12:222-230. [PMID: 27347042 PMCID: PMC4906945 DOI: 10.3892/etm.2016.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection and severe sepsis patients can develop acute lung and liver injury. The aim of the present study was to evaluate the efficacy of Holothuria atra methanolic body wall extract (HaE), as an antioxidant and anti-inflammatory agent against induced sepsis in a cecal ligation and puncture (CLP) rat model. In total, 30 males albino rats were divided into three groups (n=10 each) as follows: Sham (Sh), which was used as negative control; sepsis (Se), which was used as a positive control and was subjected to CLP surgery; and Ho, which was subjected to CLP and fed with 200 mg/kg (body weight) of HaE, once daily for 7 days. Subsequently, the expression of various genes was detected by polymerase chain reaction, while liver and lung tissues were examined by immunohistochemistry. The expression of Caspase-3 was significantly reduced in liver and lung tissues in the Ho group, while the expression levels of Gsta2, Cat and Sod1 genes were slightly reduced in the Ho group, when compared with the Se group. In addition, expression levels of tumor necrosis factor, interferon-γ, liver interleukin (IL)1b and lung IL1a were reduced in the Ho group compared with the Se group. Furthermore, histopathological changes were observed in liver tissues of the Se group, including congestion of hepatoportal blood vessel and focal hepatic necrosis, while lung tissues showed marked edema, hemorrhage and alveolar septal thickening. The Ho group showed apparent normal hepatic parenchyma and slight interstitial pneumonia. Immunohistochemical staining of caspase-3 in liver and lung tissues showed no expression in the Sh group, strong expression in the Se group and moderate expression in the Ho group. In conclusion, HaE demonstrated beneficial effect against induced sepsis, which may be attributed to its antioxidant and antiapoptotic activities.
Collapse
|