1
|
Wallen TE, Morris M, Ammann A, Baucom MR, Price A, Schuster R, Makley AT, Goodman MD. Platelet Function is Independent of Sphingolipid Manipulation. J Surg Res 2024; 300:25-32. [PMID: 38795670 DOI: 10.1016/j.jss.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Previous literature suggests that sphingolipids may impact systemic coagulation and platelet aggregation, thus modulating the risks of thrombotic events. The goal of this investigation was to evaluate the role of serum sphingolipids on intrinsic platelet function to assess whether pharmacologic manipulation of sphingolipid metabolites would impact platelet aggregability. METHODS C57BL/6J mice were injected with either normal saline, 1 mg/kg FTY720 (synthetic sphingosine-1-phosphate [S1P] receptor analog), or 5 mg/kg SLM6031434 (sphingosine kinase two inhibitor). Mice were sacrificed at 6 h and whole blood (WB) was collected for impedance aggregometry assessing platelet responsiveness to arachidonic acid or adenosine diphosphate. Ex vivo studies utilized WB or platelet-rich plasma that was pretreated with S1P, FTY720, amitriptyline, or d-sphingosine then analyzed by aggregability and flow cytometry for platelet and platelet-derived microvesicle characteristics. RESULTS FTY720 and SLM6031434 pretreated induced similar arachidonic acid and adenosine diphosphate-mediated platelet aggregation as controls. Ex vivo WB and platelet-rich plasma treatment with S1P, FTY720, amitriptyline and d-sphingosine did not impact platelet aggregation. The percentages of CD41+, CD62P+ and CD41+/ceramide+, CD62P+/ceramide + platelets, and platelet-derived microvesicle were not significantly different between amitriptyline-treated and normal saline-treated cohorts. CONCLUSIONS Sphingolipid modulating agents, such as FTY720, SLM6031434, S1P, amitriptyline, ceramide, and d-sphingosine do not appear to independently impact platelet aggregation in murine models.
Collapse
Affiliation(s)
- Taylor E Wallen
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Mackenzie Morris
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Allison Ammann
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Mathew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
2
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
3
|
Whitefoot-Keliin KM, Benaske CC, Allen ER, Guerrero MT, Grapentine JW, Schiff BD, Mahon AR, Greenlee-Wacker MC. In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways. J Leukoc Biol 2024:qiae125. [PMID: 38809773 DOI: 10.1093/jleuko/qiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils release extracellular vesicles (EVs) and some subsets of neutrophil-derived EVs are procoagulant. In response to S. aureus, neutrophils produce EVs that associate electrostatically with neutrophil extracellular traps (NETs). DNA in NETs is procoagulant, but whether neutrophil EVs produced during bacterial challenge have similar activity is unknown. Given that EV activity is agonist- and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived EVs, as well as EV-associated DNA, and intact EVs and DNA cause coagulation. We recovered EVs from neutrophils challenged with S. aureus (SA), S. epidermidis (SE), E. coli (EC), and P. aeruginosa (PA), and measured associated DNA and procoagulant activity. EVs from SA-challenged neutrophils (SA-EVs), which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation (TG) in platelet-poor plasma. EV lysis and DNase treatment reduced TG by 90% and 37%, respectively. SE, EC, and PA also increased EV production and EV-associated extracellular DNA, and these EVs were also procoagulant. Compared to spontaneously released EVs, which demonstrated some ability to amplify Factor XII-dependent coagulation in the presence of an activator, only EVs produced in response to bacteria could initiate the pathway. SA-EVs and SE-EVs had more surface-associated DNA than EC-EVs and PA-EVs, and SA-EVs and SE-EVs contributed to initiation and amplification of TG in a DNA-dependent manner. However, DNA on EC- or PA-EVs played no role, suggesting that neutrophils release procoagulant EVs which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.
Collapse
Affiliation(s)
| | - Chase C Benaske
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Edwina R Allen
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Mariana T Guerrero
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Justin W Grapentine
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Benjamin D Schiff
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Andrew R Mahon
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Mallary C Greenlee-Wacker
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| |
Collapse
|
4
|
Ortmann W, Such A, Cichon I, Baj-Krzyworzeka M, Weglarczyk K, Kolaczkowska E. Large extracellular vesicle (EV) and neutrophil extracellular trap (NET) interaction captured in vivo during systemic inflammation. Sci Rep 2024; 14:4680. [PMID: 38409254 PMCID: PMC10897202 DOI: 10.1038/s41598-024-55081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) are pivotal bioactive structures involved in various processes including inflammation. Herein we report the interactions between EVs and NETs during murine endotoxemia studied in situ directly in the vasculature (cremaster muscle, liver sinusoids) using intravital microscopy (IVM). We captured NETs and EV release in real time by both non- and polarized neutrophils in liver but not in cremaster vasculature. When comparing numbers of circulating EVs of various origin (nanoparticle tracking analysis-NTA, flow cytometry) with those interacting with endothelium and NETs (IVM) we observed that whereas platelet and monocyte/macrophage-derived EVs dominate in blood and peritoneal lavage, respectively, mostly neutrophil-derived EVs interact with the vascular lining, NETs and leukocytes. Despite the interaction, NETs do not affect EV formation as NET release inhibition did not alter EV release. However, EVs inhibit NETs formation and in particular, erythrocyte-derived EVs downregulate NET release and this effect is mediated via Siglec-E-dependent interactions with neutrophils. Overall, we report that EVs are present in NETs in vivo and they do modulate their release but the process in not bidirectional. Moreover, EVs isolated from body fluids might not reflect their importance in direct endothelial- and leukocyte-related interactions.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Anna Such
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland.
| |
Collapse
|
5
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Cuadrado-Payán E, Ramírez-Bajo MJ, Bañón-Maneus E, Rovira J, Diekmann F, Revuelta I, Cucchiari D. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers. Front Immunol 2023; 14:1154650. [PMID: 37662919 PMCID: PMC10469977 DOI: 10.3389/fimmu.2023.1154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody-mediated rejection is the leading cause of kidney graft dysfunction. The process of diagnosing it requires the performance of an invasive biopsy and subsequent histological examination. Early and sensitive biomarkers of graft damage and alloimmunity are needed to identify graft injury and eventually limit the need for a kidney biopsy. Moreover, other scenarios such as delayed graft function or interstitial fibrosis and tubular atrophy face the same problem. In recent years, interest has grown around extracellular vesicles, specifically exosomes actively secreted by immune cells, which are intercellular communicators and have shown biological significance. This review presents their potential as biomarkers in kidney transplantation and alloimmunity.
Collapse
Affiliation(s)
- Elena Cuadrado-Payán
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Bañón-Maneus
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
9
|
Marki A, Ley K. The expanding family of neutrophil-derived extracellular vesicles. Immunol Rev 2022; 312:52-60. [PMID: 35665941 PMCID: PMC10111154 DOI: 10.1111/imr.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.
Collapse
Affiliation(s)
- Alex Marki
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Klaus Ley
- La Jolla Institute for Immunology and Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Lu J, Liu J, Zhu L, Zhang Y, Li A. The effect of age on the clinical characteristics and innate immune cell function in the patients with abdominal sepsis. Front Physiol 2022; 13:952434. [PMID: 36237524 PMCID: PMC9551265 DOI: 10.3389/fphys.2022.952434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sepsis is a life-threatening dysregulated host response to infection that compromises organ health, and abdominal sepsis is a commonly presenting critical illness in intensive care units (ICU). In this study, we investigate the effect of age on clinical sepsis characteristics and innate immune cells (neutrophils and monocytes) functionality in abdominal sepsis patients. We recruited 32 patients with abdominal sepsis from the Beijing Ditan Hospital’s ICU from February 2021 to September 2021, and selected 18 healthy volunteers that were age- and sex-matched as controls for a prospective cohort study. Elderly abdominal sepsis patients (age >65 years) had the following altered characteristics compared to nonelderly patient controls: lower mean arterial pressure, monocytes percentage, and red blood cell volume distribution width (p < 0.05); higher neutrophils percentage and neutrophils-to-lymphocytes ratio (p < 0.05); significantly increased monocyte-produced reactive oxygen (p < 0.05); increases neutrophilic secretion of TNF-α, as well as lower monocytic secretion of TNF-α (p < 0.05); higher neutrophil percentage (which was significantly higher in peripheral blood than monocyte percentage). Elderly patients also had significantly increased phagocytic activity in their neutrophils and monocytes (p < 0.05), significantly reduced neutrophils-produced reactive oxygen (p < 0.001), and significantly increased TNF-α secretion by monocytes and neutrophils (p < 0.05). We found that elderly patients have decreased immune cell function and increased release of cytokines compared to younger patients, suggesting individualized treatment plans targeting the elderly septic microenvironment could help prevent organ failure in elderly septic patients and improves patient survival.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ang Li,
| |
Collapse
|
11
|
Allen ER, Whitefoot-Keliin KM, Palmatier EM, Mahon AR, Greenlee-Wacker MC. Extracellular vesicles from A23187-treated neutrophils cause cGAS-STING-dependent IL-6 production by macrophages. Front Immunol 2022; 13:949451. [PMID: 35967325 PMCID: PMC9374307 DOI: 10.3389/fimmu.2022.949451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
In response to several types of bacteria, as well as pharmacological agents, neutrophils produce extracellular vesicles (EVs) and release DNA in the form of neutrophil extracellular traps (NETs). However, it is unknown whether these two neutrophil products cooperate to modulate inflammation. Consistent with vital NETosis, neutrophils challenged with S. aureus, as well as those treated with A23187, released significantly more DNA relative to untreated or fMLF-treated neutrophils, with no lysis occurring for any condition. To test the hypothesis that EVs generated during NETosis caused macrophage inflammation, we isolated and characterized EVs from A23187-treated neutrophils (A23187-EVs). A23187-EVs associated with neutrophil granule proteins, histone H3, transcription factor A, mitochondrial (TFAM), and nuclear and mitochondrial DNA (mtDNA). We showed that DNA from A23187-EVs, when transfected into macrophages, led to production of IL-6 and IFN-α2, and this response was blunted by pre-treatment with the STING inhibitor H151. Next, we confirmed that A23187-EVs were engulfed by macrophages, and showed that they induced cGAS-STING-dependent IL-6 production. In contrast, neither EVs from untreated or fMLF-treated cells exhibited pro-inflammatory activity. Although detergent-mediated lysis of A23187-EVs diminished IL-6 production, removal of surface-associated DNA with DNase I treatment had no effect, and A23187-EVs did not induce IFN-α2 production. Given these unexpected results, we investigated whether macrophage mtDNA activated the cGAS-STING signaling axis. Consistent with mitochondrial outer membrane permeabilization (MOMP), a defined mechanism of mtDNA release, we observed macrophage mitochondrial membrane depolarization, a decrease in cytosolic Bax, and a decrease in mitochondrial cytochrome c, suggesting that macrophage mtDNA may initiate this EV-dependent signaling cascade. All together, these data demonstrate that A23187-EVs behave differently than transfected NET- or EV-DNA, and that neutrophil-derived EVs could be used as a model to study NF-κB-dependent STING activation.
Collapse
|
12
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
13
|
Bonifay A, Robert S, Champagne B, Petit P, Eugène A, Chareyre C, Duchez A, Vélier M, Fritz S, Vallier L, Lacroix R, Dignat‐George F. A new strategy to count and sort neutrophil-derived extracellular vesicles: Validation in infectious disorders. J Extracell Vesicles 2022; 11:e12204. [PMID: 35362257 PMCID: PMC8971553 DOI: 10.1002/jev2.12204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Newly recognized polymorphonuclear neutrophil (PMNs) functions include the ability to release subcellular mediators such as neutrophil-derived extracellular vesicles (NDEVs) involved in immune and thrombo-inflammatory responses. Elevation of their plasmatic level has been reported in a variety of infectious and cardiovascular disorders, but the clinical use of this potential biomarker is hampered by methodological issues. Although flow cytometry (FCM) is currently used to detect NDEVs in the plasma of patients, an extensive characterization of NDEVs has never been done. Moreover, their detection remains challenging because of their small size and low antigen density. Therefore, the objective of the present study was first to establish a surface antigenic signature of NDEVs detectable by FCM and therefore to improve their detection in biological fluids by developing a strategy allowing to overcome their low fluorescent signal and reduce the background noise. By testing a large panel of 54 antibody specificities already reported to be positive on PMNs, we identified a profile of 15 membrane protein markers, including 4 (CD157, CD24, CD65 and CD66c) never described on NDEVs. Among them, CD15, CD66b and CD66c were identified as the most sensitive and specific markers to detect NDEVs by FCM. Using this antigenic signature, we developed a new strategy combining the three best antibodies in a cocktail and reducing the background noise by size exclusion chromatography (SEC). This strategy allowed a significant improvement in NDEVs enumeration in plasma from sepsis patients and made it feasible to efficiently sort NDEVs from COVID-19 patients. Altogether, this work opens the door to a more valuable measurement of NDEVs as a potential biomarker in clinical practice. A similar strategy could also be applied to improve detection by FCM of other rare subpopulations of EVs generated by tissues with limited access, such as vascular endothelium, cancer cells or placenta.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Stéphane Robert
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Belinda Champagne
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Paul‐Rémi Petit
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Aude Eugène
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Corinne Chareyre
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | | | - Mélanie Vélier
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Shirley Fritz
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Loris Vallier
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Romaric Lacroix
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Françoise Dignat‐George
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| |
Collapse
|
14
|
Neutrophil-Derived Extracellular Vesicles Activate Platelets after Pneumolysin Exposure. Cells 2021; 10:cells10123581. [PMID: 34944089 PMCID: PMC8700313 DOI: 10.3390/cells10123581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin of Streptococcus pneumoniae that contributes substantially to the inflammatory processes underlying pneumococcal pneumonia and lung injury. Host responses against S. pneumoniae are regulated in part by neutrophils and platelets, both individually and in cooperative interaction. Previous studies have shown that PLY can target both neutrophils and platelets, however, the mechanisms by which PLY directly affects these cells and alters their interactions are not completely understood. In this study, we characterize the effects of PLY on neutrophils and platelets and explore the mechanisms by which PLY may induce neutrophil–platelet interactions. In vitro studies demonstrated that PLY causes the formation of neutrophil extracellular traps (NETs) and the release of extracellular vesicles (EVs) from both human and murine neutrophils. In vivo, neutrophil EV (nEV) levels were increased in mice infected with S. pneumoniae. In platelets, treatment with PLY induced the cell surface expression of P-selectin (CD62P) and binding to annexin V and caused a significant release of platelet EVs (pl-EVs). Moreover, PLY-induced nEVs but not NETs promoted platelet activation. The pretreatment of nEVs with proteinase K inhibited platelet activation, indicating that the surface proteins of nEVs play a role in this process. Our findings demonstrate that PLY activates neutrophils and platelets to release EVs and support an important role for neutrophil EVs in modulating platelet functions in pneumococcal infections.
Collapse
|
15
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
16
|
Qiu P, Zhou J, Zhang J, Dong Y, Liu Y. Exosome: The Regulator of the Immune System in Sepsis. Front Pharmacol 2021; 12:671164. [PMID: 33995102 PMCID: PMC8113812 DOI: 10.3389/fphar.2021.671164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a syndrome comprised of a series of life-threatening organ dysfunctions caused by a maladjusted body response to infection with no effective treatment. There is growing evidence that the immune system plays a core role in sepsis. Pathogens cause abnormal host immune response and eventually lead to immunosuppression, which is an important cause of death in patients with sepsis. Exosomes are vesicles derived from double invagination of plasma membrane, associating with immune responses closely. The cargos delivered by exosomes into recipient cells, especially immune cells, effectively alter their response and functions in sepsis. In this review, we focus on the effects and mechanisms of exosomes on multiple immune cells, as well as the role of immune cell-derived exosomes in sepsis. This is helpful for us to have an in-depth understanding of the mechanism of immune disorders in sepsis. Exosomes is also expected to become a novel target and therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Youn YJ, Shrestha S, Lee YB, Kim JK, Lee JH, Hur K, Mali NM, Nam SW, Kim SH, Lee S, Song DK, Jin HK, Bae JS, Hong CW. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. Am J Cancer Res 2021; 11:2770-2787. [PMID: 33456572 PMCID: PMC7806483 DOI: 10.7150/thno.51756] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Aims: Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci. However, the physical and functional characteristics of neutrophil-derived EVs are incompletely understood. In this study, we aimed to investigate the differences between NDTRs and NDMVs. Methods: The generation of neutrophil-derived EVs were visualized by live-cell fluorescence images and the physical characteristics were further analyzed using nanotracking analysis assay, scanning electron microscopic analysis, and marker expressions. Functional characteristics of neutrophil-derived EVs were analyzed using assays for bactericidal activity, monocyte chemotaxis, phenotype polarization of macrophages, and miRNA sequencing. Finally, the effects of neutrophil-derived EVs on the acute and chronic inflammation were examined in vivo. Results: Both EVs share similar characteristics including stimulators, surface marker expression, bactericidal activity, and chemoattractive effect on monocytes via MCP-1. However, the integrin-mediated physical interaction was required for generation of NDTRs whereas NDMV generation was dependent on PI3K pathway. Interestingly, NDTRs contained proinflammatory miRNAs such as miR-1260, miR-1285, miR-4454, and miR-7975, while NDMVs contained anti-inflammatory miRNAs such as miR-126, miR-150, and miR-451a. Although both EVs were easily uptaken by monocytes, NDTRs enhanced proinflammatory macrophage polarization whereas NDMVs induced anti-inflammatory macrophage polarization. Moreover, NDTRs showed protective effects against lethality in a murine sepsis model and pathological changes in a murine chronic colitis model. Conclusion: These results suggest that NDTR is a proinflammatory subtype of neutrophil-derived EVs distinguished from NDMV.
Collapse
|
18
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
19
|
Chen HP, Wang XY, Pan XY, Hu WW, Cai ST, Joshi K, Deng LH, Ma D. Circulating Neutrophil-Derived Microparticles Associated with the Prognosis of Patients with Sepsis. J Inflamm Res 2020; 13:1113-1124. [PMID: 33363395 PMCID: PMC7754272 DOI: 10.2147/jir.s287256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Because of its high morbidity and mortality, sepsis remains the leading cause of death in the ICU. Microparticles (MP) have been largely studied as potential diagnostic or prognostic markers in various diseases including sepsis. Objective The biological and clinical relevance of neutrophil-derived microparticles (NDMPs) within the MP population remains unclear. The objective of this study was to elucidate the relationship between plasma NDMPs and the prognosis of patients with sepsis and/or septic shock. Methods The study was designed as an observational, noninterventional clinical study. The cohort for this study included 40 sepsis and 40 septic shock patients together with 10 healthy controls admitted to the Intensive Care Unit (ICU) and the Health Surveillance Center in the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China, from January to November 2018, respectively. The degree of critical disease for sepsis and septic shock was evaluated, with data analyses conducted from 2018 to 2019. Results On days 1, 3 and 5 post-admission a series of data including plasma NDMP levels, patient demographics, TNF-α levels, IL-6 levels, sTREM-1 levels, and the sepsis severity score measurements were collected. A survival curve was plotted against levels of plasma NDMPs. Levels of NDMPs were observed to be higher in the septic shock patients than in the sepsis patients on days 1, 3, and 5 post-ICU admission (p < 0.05). NDMP levels were significantly increased in sepsis and septic shock patients with a parallel increase in pro-inflammatory mediators and sepsis severity score (p < 0.05) as well as mortality. Conclusion Our data suggest that NDMPs may be a biomarker of sepsis severity and mortality although its implications on sepsis prognosis warrant further study.
Collapse
Affiliation(s)
- Hong-Peng Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China.,Zhanjiang Key Laboratory of Organ Injury and Protection and Translational Medicine, Zhanjiang, Guangdong, People's Republic of China
| | - Xiao-Yan Wang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Xiao-Yan Pan
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Wang-Wang Hu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Shu-Ting Cai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Kiran Joshi
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Lie-Hua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China.,Zhanjiang Key Laboratory of Organ Injury and Protection and Translational Medicine, Zhanjiang, Guangdong, People's Republic of China
| | - Daqing Ma
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
20
|
Sanches JM, Rossato L, Lice I, Alves de Piloto Fernandes AM, Bueno Duarte GH, Rosini Silva AA, de Melo Porcari A, de Oliveira Carvalho P, Gil CD. The role of annexin A1 in Candida albicans and Candida auris infections in murine neutrophils. Microb Pathog 2020; 150:104689. [PMID: 33307121 DOI: 10.1016/j.micpath.2020.104689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Annexin A1 (AnxA1) is an anti-inflammatory protein expressed in various cell types, especially macrophages and neutrophils. Because neutrophils play important roles in infections and inflammatory processes and the relationship between AnxA1 and Candida spp. infections is not well-understood, our study examined whether AnxA1 can serve as a target protein for the regulation of the immune response during fungal infections. C57BL/6 wild-type (WT) and AnxA1 knockout (AnxA1-/-) peritoneal neutrophils were coinfected with Candida albicans or Candida auris for 4 h. AnxA1-/- neutrophils exhibited a marked increase in cyclooxygenase 2 (COX-2), phosphorylated extracellular signal-related kinase (ERK), p-38, and c-Jun N-terminal kinase (JNK) levels after coinfection with both Candida spp. A lipidomics approach showed that AnxA1 deficiency produced marked differences in the supernatant lipid profiles of both control neutrophils and neutrophils coinfected with Candida spp. compared with WT cells, especially the levels of glycerophospholipids and glycerolipids. Our results showed that endogenous AnxA1 regulates the neutrophil response under fungal infection conditions, altering lipid membrane organization and metabolism.
Collapse
Affiliation(s)
- José Marcos Sanches
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | - Luana Rossato
- Laboratório Especial de Micologia, Departamento de Medicina, UNIFESP, São Paulo, 04038-032, Brazil
| | - Izabella Lice
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | | | | | - Alex Aparecido Rosini Silva
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Andreia de Melo Porcari
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil.
| |
Collapse
|
21
|
Morris MC, John D, Singer KE, Moran R, McGlone E, Veile R, Goetzman HS, Makley AT, Caldwell CC, Goodman MD. Post-TBI splenectomy may exacerbate coagulopathy and platelet activation in a murine model. Thromb Res 2020; 193:211-217. [PMID: 32798961 DOI: 10.1016/j.thromres.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) induces acute hypocoagulability, subacute hypercoagulability, and persistently elevated risk for thromboembolic events. Splenectomy is associated with increased mortality in patients with moderate or severe TBI. We hypothesized that the adverse effects of splenectomy in TBI patients may be secondary to the exacerbation of pathologic coagulation and platelet activation changes. METHODS An established murine weight-drop TBI model was utilized and a splenectomy was performed immediately following TBI. Sham as well as TBI and splenectomy alone mice were used as injury controls. Mice were sacrificed for blood draws at 1, 6, and 24 h, as well as 7 days post-TBI. Viscoelastic coagulation parameters were assessed by rotational thromboelastometry (ROTEM) and platelet activation was measured by expression of P-selectin via flow cytometry analysis of platelet rich plasma samples. RESULTS At 6 h following injury, TBI/splenectomy demonstrated hypocoagulability with prolonged clot formation time (CFT) compared to TBI alone. By 24 h following injury, TBI/splenectomy and splenectomy mice were hypercoagulable with a shorter CFT, a higher alpha angle, and increased MCF, despite a lower percentage of platelet contribution to clot compared to TBI alone. However, only the TBI/splenectomy continued to display this hypercoagulable state at 7 days. While TBI/splenectomy had greater P-selectin expression at 1-h post-injury, TBI alone had significantly greater P-selectin expression at 24 h post-injury compared to TBI/splenectomy. Interestingly, P-selectin expression remained elevated only in TBI/splenectomy at 7 days post-injury. CONCLUSION Splenectomy following TBI exacerbates changes in the post-injury coagulation state. The combination of TBI and splenectomy induces an acute hypocoagulable state that could contribute to an increase in intracranial bleeding. Subacutely, the addition of splenectomy to TBI exacerbates post-injury hypercoagulability and induces persistent platelet activation. These polytrauma effects on coagulation may contribute to the increased mortality observed in patients with combined brain and splenic injuries.
Collapse
Affiliation(s)
| | - Devin John
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Kathleen E Singer
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan Moran
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Emily McGlone
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Rosalie Veile
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Holly S Goetzman
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Division of Research, Shriners Hospital for Children, Cincinnati, OH, USA
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Division of Research, Shriners Hospital for Children, Cincinnati, OH, USA
| | - Michael D Goodman
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation. Cells 2020; 9:cells9071626. [PMID: 32640653 PMCID: PMC7408059 DOI: 10.3390/cells9071626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.
Collapse
|
23
|
Kumagai Y, Murakami T, Kuwahara-Arai, Iba T, Reich J, Nagaoka I. Antimicrobial peptide LL-37 ameliorates a murine sepsis model via the induction of microvesicle release from neutrophils. Innate Immun 2020; 26:565-579. [PMID: 32600088 PMCID: PMC7556193 DOI: 10.1177/1753425920936754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sepsis is a life-threatening disease caused by systemic dys-regulated inflammatory response to infection. We previously revealed that LL-37, a human cathelicidin antimicrobial peptide, improves the survival of cecal ligation and puncture septic mice. Ectosomes, microvesicles released from neutrophils, are reported to be elevated in sepsis survivors; however, the functions of ectosomes in sepsis remain largely unknown. Therefore, we herein elucidated the protective action of LL-37 on sepsis, by focusing on LL-37-induced ectosome release in a cecal ligation and puncture model. The results demonstrated the enhancement of ectosome levels by LL-37 administration, accompanied by a reduction of bacterial load. Importantly, ectosomes isolated from LL-37-injected cecal ligation and puncture mice contained higher amounts of antimicrobial proteins/peptides and exhibited higher antibacterial activity, compared with those from PBS-injected cecal ligation and puncture mice, suggesting that LL-37 induces the release of ectosomes with antibacterial potential in vivo. Actually, LL-37 stimulated mouse bone-marrow neutrophils to release ectosomes ex vivo, and the LL-37-induced ectosomes possessed antibacterial potential. Furthermore, administration of LL-37-induced ectosomes reduced the bacterial load and improved the survival of cecal ligation and puncture mice. Together these observations suggest LL-37 induces the release of antimicrobial ectosomes in cecal ligation and puncture mice, thereby reducing the bacterial load and protecting mice from lethal septic conditions.
Collapse
Affiliation(s)
- Yumi Kumagai
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Japan
| | - Taisuke Murakami
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Japan
| | - Kuwahara-Arai
- Department of Microbiology, Juntendo University, Graduate School of Medicine, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Japan
| | | | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Japan
| |
Collapse
|
24
|
PULLIERO A, PERGOLI L, LA MAESTRA S, MICALE R, CAMOIRANO A, BOLLATI V, IZZOTTI A, DE FLORA S. Extracellular vesicles in biological fluids. A biomarker of exposure to cigarette smoke and treatment with chemopreventive drugs. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E327-E336. [PMID: 31967089 PMCID: PMC6953455 DOI: 10.15167/2421-4248/jpmh2019.60.4.1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are released from cells and enter into body fluids thereby providing a toxicological mechanism of cell-cell communication. The present study aimed at assessing (a) the presence of EVs in mouse body fluids under physiological conditions, (b) the effect of exposure of mice to cigarette smoke for 8 weeks, and (c) modulation of smoke-related alterations by the nonsteroidal anti-inflammatory drug celecoxib, a selective cyclooxygenase-2 inhibitor. To this purpose, ICR (CD-1) mice were either unexposed or exposed to cigarette smoke, either treated or untreated with oral celecoxib. EVs, isolated from bronchoalveolar lavage fluid (BALF), blood serum, and urines, were analyzed by nanoparticle tracking analysis and flow cytometry. EVs baseline concentrations in BALF were remarkably high. Larger EVs were detected in urines. Smoking increased EVs concentrations but only in BALF. Celecoxib remarkably increased EVs concentrations in the blood serum of both male and female smoking mice. The concentration of EVs positive for EpCAM, a mediator of cell-cell adhesion in epithelia playing a role in tumorigenesis, was much higher in urines than in BALF, and celecoxib significantly decreased their concentration. Thus, the effects of smoke on EVs concentrations were well detectable in the extracellular environment of the respiratory tract, where they could behave as delivery carriers to target cells. Celecoxib exerted both protective mechanisms in the urinary tract and adverse systemic effects of likely hepatotoxic origin in smoke-exposed mice. Detection of EVs in body fluids may provide an early diagnostic tool and an end-point exploitable for preventive medicine strategies.
Collapse
Affiliation(s)
- A. PULLIERO
- Department of Health Sciences, University of Genoa, Italy
| | - L. PERGOLI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - S. LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
| | - R.T. MICALE
- Department of Health Sciences, University of Genoa, Italy
| | - A. CAMOIRANO
- Department of Health Sciences, University of Genoa, Italy
| | - V. BOLLATI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - A. IZZOTTI
- Department of Health Sciences, University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. DE FLORA
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
25
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
26
|
Balaphas A, Meyer J, Sadoul R, Morel P, Gonelle-Gispert C, Bühler LH. Extracellular vesicles: Future diagnostic and therapeutic tools for liver disease and regeneration. Liver Int 2019; 39:1801-1817. [PMID: 31286675 DOI: 10.1111/liv.14189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 02/13/2023]
Abstract
Extracellular vesicles are membrane fragments that can be produced by all cell types. Interactions between extracellular vesicles and various liver cells constitute an emerging field in hepatology and recent evidences have established a role for extracellular vesicles in various liver diseases and physiological processes. Extracellular vesicles originating from liver cells are implicated in intercellular communication and fluctuations of specific circulating extracellular vesicles could constitute new diagnostic tools. In contrast, extracellular vesicles derived from progenitor cells interact with hepatocytes or non-parenchymal cells, thereby protecting the liver from various injuries and promoting liver regeneration. Our review focuses on recent developments investigating the role of various types of extracellular vesicles in acute and chronic liver diseases as well as their potential use as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Rémy Sadoul
- Université Grenoble Alpes, Institut des Neurosciences, Grenoble, France
| | - Philippe Morel
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Leo Hans Bühler
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Wang H, Pan L, Liu Z. Neutrophils as a Protagonist and Target in Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2019; 12:337-347. [PMID: 31394895 PMCID: PMC6787473 DOI: 10.21053/ceo.2019.00654] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have traditionally been acknowledged as the first immune cells that are recruited to inflamed tissues during acute inflammation. By contrast, their importance in the context of chronic inflammation has been studied in less depth. Neutrophils can be recruited and are largely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS) both in Asians and in Caucasians. Increased infiltration of neutrophils in patients with CRS has been linked to poor corticosteroid response and disease prognosis. Meanwhile, tissue neutrophils may possess specific phenotypic features distinguishing them from resting blood counterparts and are endowed with particular functions, such as cytokines and chemokines production, thus may contribute to the pathogenesis of CRS. This review aims to summarize our current understanding of the pathophysiologic mechanisms of CRS, with a focus on the roles of neutrophils. We discuss recruitment, function, and regulation of neutrophils in CRS and outline the potential therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Morris MC, Kassam F, Bercz A, Beckmann N, Schumacher F, Gulbins E, Makley AT, Goodman MD. The Role of Chemoprophylactic Agents in Modulating Platelet Aggregability After Traumatic Brain Injury. J Surg Res 2019; 244:1-8. [PMID: 31279258 DOI: 10.1016/j.jss.2019.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The pathophysiology behind the subacute but persistent hypercoagulable state after traumatic brain injury (TBI) is poorly understood but contributes to morbidity induced by venous thromboembolism. Because platelets and their microvesicles have been hypothesized to play a role in post-traumatic hypercoagulability, administration of commonly used agents may ameliorate this coagulability. We hypothesized that utilization of aspirin, ketorolac, amitriptyline, unfractionated heparin, or enoxaparin would modulate the platelet aggregation response after TBI. METHODS Concussive TBI was induced by weight drop. Mice were then randomized to receive aspirin, ketorolac, amitriptyline, heparin, enoxaparin, or saline control at 2 and 8 h after TBI. Mice were sacrificed at 6 or 24 h after injury to determine coagulability by rotational thromboelastometry (ROTEM), platelet function testing with impedance aggregometry, and microvesicle enumeration. Platelet sphingolipid metabolites were analyzed by mass spectrometry. RESULTS ROTEM demonstrated increased platelet contribution to maximum clot firmness at 6 h after TBI in mice that received aspirin or amitriptyline, but this did not persist at 24 h. By contrast, adenosine diphosphate- and arachidonic acid-induced platelet aggregation at 6 h was significantly lower in mice receiving ketorolac, aspirin, and amitriptyline compared with mice receiving saline at 6 h after injury and only arachidonic acid-initiated platelet aggregation was decreased by aspirin at 24 h. There were no differences in microvesicle production at either time point. Platelet sphingosine-1-phosphate levels were decreased at 6 h in the group receiving amitriptyline and increased at 24 h along with platelet ceramide levels at 24 h in the amitriptyline group. CONCLUSION After TBI, amitriptyline decreased platelet aggregability and increased contribution to clot in a manner similar to aspirin. The amitriptyline effects on platelet function and sphingolipid metabolites may represent a possible role of the acid sphingomyelinase in the hypercoagulability observed after injury. In addition, inhibition of platelet reactivity may be an underappreciated benefit of low molecular weight heparins, such as enoxaparin.
Collapse
Affiliation(s)
| | - Farzaan Kassam
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Aron Bercz
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Nadine Beckmann
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Fabian Schumacher
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
29
|
Abstract
The process of fracture healing is complex and requires an interaction of multiple organ systems. Cell-cell communication is known to be very important during this process. Extracellular vesicles (EVs) are small membranous vesicles generated from a variety of cells. Proteins, RNAs, small molecules, and mitochondria DNA were found to be transported among cells through EVs. EV-based cross talk represents a substantial cell-cell communication pattern that can both interact with cells through molecular surfaces and transfer molecules to cells. These interactions can assist in the synchronization of cellular functions among cells of the same kind, and coordinate the functions of different types of cells. After activation, platelets, neutrophils, macrophages, osteoblasts, osteoclasts, and mesenchymal stem cell (') all secrete EVs, promoting the fracture healing process. Moreover, some studies have found evidence that EVs may be used for diagnosis and treatment of delayed fracture healing, and may be significantly involved in the pathophysiology of fracture healing disturbances. In this review, we summarize recent findings on EVs released by fracture healing-related cells, and EV-mediated communications during fracture healing. We also highlight the potential applications of EVs in fracture healing. Lastly, the prospect of EVs for research and clinical use is discussed.
Collapse
|
30
|
|
31
|
Balaphas A, Meyer J, Sadoul K, Fontana P, Morel P, Gonelle-Gispert C, Bühler LH. Platelets and Platelet-Derived Extracellular Vesicles in Liver Physiology and Disease. Hepatol Commun 2019; 3:855-866. [PMID: 31304449 PMCID: PMC6601322 DOI: 10.1002/hep4.1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond their role in hemostasis, platelets are proposed as key mediators of several physiological and pathophysiological processes of the liver, such as liver regeneration, toxic or viral acute liver injury, liver fibrosis, and carcinogenesis. The effects of platelets on the liver involve interactions with sinusoidal endothelial cells and the release of platelet‐contained molecules following platelet activation. Platelets are the major source of circulating extracellular vesicles, which are suggested to play key roles in platelet interactions with endothelial cells in several clinical disorders. In the present review, we discuss the implications of platelet‐derived extracellular vesicles in physiological and pathophysiological processes of the liver.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Karin Sadoul
- Regulation and Pharmacology of the Cytoskeleton, Institute for Advanced Biosciences Université Grenoble Alpes Grenoble France
| | - Pierre Fontana
- Division of Angiology and Hemostasis Geneva University Hospitals Geneva Switzerland.,Geneva Platelet Group University of Geneva Geneva Switzerland
| | - Philippe Morel
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Leo H Bühler
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| |
Collapse
|
32
|
Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev 2019; 138:247-258. [PMID: 30553953 DOI: 10.1016/j.addr.2018.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Emerging advances in extracellular vesicle (EV) research brings along new promises for tailoring clinical treatments in order to meet specific disease features of each patient in a personalized medicine concept. EVs may act as regenerative effectors conveying endogenous therapeutic factors from parent cells or constitute a bio-camouflaged delivery system for exogenous therapeutic agents. Physical stimulation may be an important tool in the field of EVs for personalized therapy by powering EV production, loading and therapeutic properties. Physically-triggered EV production is inspired by naturally occurring EV release by shear stress in blood vessels. Bioinspired physically-triggered EV production technologies may bring along high yield advantages combined to scalability assets. Physical stimulation may also provide new prospects for high-efficient EV loading. Additionally, physically-triggered EV theranostic properties brings new hopes for spatio-temporal controlled therapy combined to tracking. Technological considerations related to EV-based personalized medicine and the input of physical stimulation on EV production, loading and theranostic properties will be overviewed herein.
Collapse
|
33
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
34
|
Hong CW. Extracellular Vesicles of Neutrophils. Immune Netw 2018; 18:e43. [PMID: 30619629 PMCID: PMC6312893 DOI: 10.4110/in.2018.18.e43] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. As professional phagocytes, neutrophils also produce EVs in response to various inflammatory stimuli during inflammatory processes. Neutrophil-derived EVs can be categorized into 2 subtypes according to the mechanism of generation. Neutrophil-derived trails (NDTRs) are generated from migrating neutrophils. The uropods of neutrophils are elongated by adhesion to endothelial cells, and small parts of the uropods are detached, leaving submicrometer-sized NDTRs. Neutrophil-derived microvesicles (NDMVs) are generated from neutrophils which arrived at the inflammatory foci. Membrane blebbing occurs in response to various stimuli at the inflammatory foci, and small parts of the blebs are detached from the neutrophils, leaving NDMVs. These 2 subtypes of neutrophil-derived EVs share common features such as membrane components, receptors, and ligands. However, there are substantial differences between these 2 neutrophil-derived EVs. NDTRs exert pro-inflammatory functions by guiding subsequent immune cells through the inflammatory foci. On the other hand, NDMVs exert anti-inflammatory functions by limiting the excessive immune responses of nearby cells. This review outlines the current understanding of the different subtypes of neutrophil-derived EVs and provides insights into the clinical relevance of neutrophil-derived EVs.
Collapse
Affiliation(s)
- Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
35
|
Raeven P, Zipperle J, Drechsler S. Extracellular Vesicles as Markers and Mediators in Sepsis. Am J Cancer Res 2018; 8:3348-3365. [PMID: 29930734 PMCID: PMC6010985 DOI: 10.7150/thno.23453] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/14/2018] [Indexed: 01/28/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a highly lethal condition in which current tools for early diagnosis and therapeutic decision-making are far from ideal. Extracellular vesicles (EVs), 30 nm to several micrometers in size, are released from cells upon activation and apoptosis and express membrane epitopes specific for their parental cells. Since their discovery two decades ago, their role as biomarkers and mediators in various diseases has been intensively studied. However, their potential importance in the sepsis syndrome has gained attention only recently. Sepsis and EVs are both complex fields in which standardization has long been overdue. In this review, several topics are discussed. First, we review current studies on EVs in septic patients with emphasis on their variable quality and clinical utility. Second, we discuss the diagnostic and therapeutic potential of EVs as well as their role as facilitators of cell communication via micro RNA and the relevance of micro-organism-derived EVs. Third, we give an overview over the potential beneficial but also detrimental roles of EVs in sepsis. Finally, we focus on the role of EVs in selected intensive care scenarios such as coagulopathy, mechanical ventilation and blood transfusion. Overall, the prospect for EV use in septic patients is bright, ranging from rapid and precise (point-of-care) diagnostics, prevention of harmful iatrogenic interventions, to using EVs as guides of individualized therapy. Before the above is achieved, however, the EV research field requires reliable standardization of the current methods and development of new analytical procedures that can close the existing technological gaps.
Collapse
|
36
|
Wang B, Cai W, Zhang Z, Zhang H, Tang K, Zhang Q, Wang X. Circulating microparticles in patients after ischemic stroke: a systematic review and meta-analysis. Rev Neurosci 2018; 32:/j/revneuro.ahead-of-print/revneuro-2017-0105/revneuro-2017-0105.xml. [PMID: 29750657 DOI: 10.1515/revneuro-2017-0105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Microparticles (MPs), a class of cell products with biological activities, have been found to participate in a series of vascular activities. The aim of this article is to investigate the changes in the concentrations of MPs after ischemic stroke by meta-analysis. According to pre-established criteria, a strict screening of articles was performed through the Medline and Embase databases. Subsequently, the included studies were subjected to quality assessment and data extraction. Finally, a meta-analysis was performed on seven major outcomes from 985 noncerebrovascular disease controls and 988 ischemic stroke patients. The pooled concentrations of total MPs (TMPs), endotheliocyte-derived MPs (EMPs), platelet-derived MPs (PMPs), erythrocyte-derived MPs (RMPs), leukocyte-derived MPs (LMPs), and monocyte-derived MPs (MMPs) were significantly increased in the ischemic stroke patients compared to the noncerebrovascular disease controls, with the results as follows: TMPs [standardized mean difference (SMD), 1.12; 95% confidence interval (CI), 0.26-1.97; p=0.01], EMPs (SMD, 0.90; 95% CI, 0.67-1.13; p<0.00001), PMPs (SMD, 1.15; 95% CI, 0.69-1.60; p<0.00001), RMPs (SMD, 1.14; 95% CI, 0.57-1.71; p<0.0001), LMPs (SMD, 1.42; 95% CI, 0.74-2.10; p<0.0001), and MMPs (SMD, 1.09; 95% CI, 0.59-1.60; p<0.0001). However, the pooled concentration of lymphocyte-derived MPs (LyMPs) demonstrated no significant difference between the patients and the controls (SMD, 0.22; 95% CI, -0.19 to 0.63; p=0.29). The available data indicated that the circulating MPs, except for LyMPs, play an important role in the development and prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Botao Wang
- Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Wang Cai
- Department of Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhen Zhang
- Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hui Zhang
- Department of Oncology Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Zhang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, 6 Changjiang Road, Tianjin 300100, China
| | - Ximo Wang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, 6 Changjiang Road, Tianjin 300100, China
| |
Collapse
|
37
|
Rice TC, Pugh AM, Xia BT, Seitz AP, Whitacre BE, Gulbins E, Caldwell CC. Bronchoalveolar Lavage Microvesicles Protect Burn-Injured Mice from Pulmonary Infection. J Am Coll Surg 2017; 225:538-547. [PMID: 28690205 DOI: 10.1016/j.jamcollsurg.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of morbidity and mortality among burn patients, despite antibiotic therapy. There is a need to identify innate immune defenses that prevent P aeruginosa infection in injured adults in an effort to find therapeutic alternatives to antibiotics. Here, we tested our hypothesis that microvesicles (MVs) in bronchoalveolar (BAL) fluid have a role in the immunity of the lung in response to pathogens. STUDY DESIGN Microvesicles were isolated from murine BAL fluid, quantified using Nanoparticle Tracking Analysis, and injected into burn-injured mice before P aeruginosa infection. Survival was assessed and BAL bacterial loads enumerated. Neutrophil number and interleukin 6 activity were determined. Lungs were harvested and sphingosine (SPH) content analyzed via immunohistochemistry. Antimicrobial effects of MVs and SPH-enriched MVs were assessed in an in vitro assay. RESULTS Burn-injured mice have reduced BAL MV number and SPH content compared with sham. When BAL MVs from healthy mice are administered to injured mice, survival and bacterial clearance are improved robustly. We also observed that intranasal administration of MVs restores SPH levels after burn injury, MVs kill bacteria directly, and this bacterial killing is increased when the MVs are supplemented with SPH. CONCLUSIONS Using a preclinical model, BAL MVs are reduced after scald injury and BAL MV restoration to injured mice improves survival and bacterial clearance. The antimicrobial mechanisms leading to improved survival include the quantity and SPH content of BAL MVs.
Collapse
Affiliation(s)
- Teresa C Rice
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Amanda M Pugh
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Brent T Xia
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Aaron P Seitz
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Brynne E Whitacre
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - Erich Gulbins
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
38
|
Balance Between the Proinflammatory and Anti-Inflammatory Immune Responses with Blood Transfusion in Sepsis. Crit Care Nurs Clin North Am 2017; 29:331-340. [PMID: 28778292 DOI: 10.1016/j.cnc.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood product transfusion may exacerbate the initial immunosuppressive response of sepsis. Nurses and other patient care providers must be diligent in recognizing and managing a worsening immune status, using flow cytometry to monitor patients' immune status. This type of monitoring may be instrumental in reducing morbidity and mortality in persons with sepsis. This article discusses the recent literature on the associated inflammatory responses that occur with blood transfusion and provides an analysis of alterations in key inflammatory pathways in response to transfusion in a sepsis population.
Collapse
|
39
|
Abstract
Extracellular vesicles (EVs) can modulate the host immune response, executing both pro- and anti-inflammatory effects. As EVs increasingly gain attention as potential carriers for targeted gene and drug delivery, knowledge on the effects of EVs on the host immune response is important. This review will focus on the ability of EVs to trigger a pro-inflammatory host response by activating target cells. The overall view is that EVs can augment an inflammatory response, thereby potentially contributing to organ injury. This pro-inflammatory potential of EVs may hamper its use for therapeutic drug delivery. Whether removal of EVs as a means to reduce a pro-inflammatory or pro-coagulant response during hyper-inflammatory conditions is beneficial remains to be determined. Prior to any proposed therapeutic application, there is a need for further studies on the role of EVs in physiology and pathophysiology using improved detection and characterization methods to elucidate the roles of EVs in inflammatory conditions.
Collapse
|
40
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
41
|
Shaver CM, Woods J, Clune JK, Grove BS, Wickersham NE, McNeil JB, Shemancik G, Ware LB, Bastarache JA. Circulating microparticle levels are reduced in patients with ARDS. Crit Care 2017; 21:120. [PMID: 28545548 PMCID: PMC5445431 DOI: 10.1186/s13054-017-1700-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND It is unclear how to identify which patients at risk for acute respiratory distress syndrome (ARDS) will develop this condition during critical illness. Elevated microparticle (MP) concentrations in the airspace during ARDS are associated with activation of coagulation and in vitro studies have demonstrated that MPs contribute to acute lung injury, but the significance of MPs in the circulation during ARDS has not been well studied. The goal of the present study was to test the hypothesis that elevated levels of circulating MPs could prospectively identify critically ill patients who will develop ARDS and that elevated circulating MPs are associated with poor clinical outcomes. METHODS A total of 280 patients with platelet-poor plasma samples from the prospective Validating Acute Lung Injury biomarkers for Diagnosis (VALID) cohort study were selected for this analysis. Demographics and clinical data were obtained by chart review. MP concentrations in plasma were measured at study enrollment on intensive care unit (ICU) day 2 and on ICU day 4 by MP capture assay. Activation of coagulation was measured by plasma recalcification (clot) times. RESULTS ARDS developed in 90 of 280 patients (32%) in the study. Elevated plasma MP concentrations were associated with reduced risk of developing ARDS (odds ratio (OR) 0.70 per 10 μM increase in MP concentration, 95% CI 0.50-0.98, p = 0.042), but had no significant effect on hospital mortality. MP concentration was greatest in patients with sepsis, pneumonia, or aspiration as compared with those with trauma or receiving multiple blood transfusions. MP levels did not significantly change over time. The inverse association of MP levels with ARDS development was most striking in patients with sepsis. After controlling for age, presence of sepsis, and severity of illness, higher MP concentrations were independently associated with a reduced risk of developing ARDS (OR 0.69, 95% CI 0.49-0.98, p = 0.038). MP concentration was associated with reduced plasma recalcification time. CONCLUSIONS Elevated levels of circulating MPs are independently associated with a reduced risk of ARDS in critically ill patients. Whether this is due to MP effects on systemic coagulation warrants further investigation.
Collapse
Affiliation(s)
- Ciara M. Shaver
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Justin Woods
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Jennifer K. Clune
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Brandon S. Grove
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Nancy E. Wickersham
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - J. Brennan McNeil
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Gregory Shemancik
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| | - Lorraine B. Ware
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA ,0000 0004 1936 9916grid.412807.8Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Julie A. Bastarache
- 0000 0004 1936 9916grid.412807.8Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave South, Medical Center North T-1218, Nashville, 37232 Tennessee USA
| |
Collapse
|
42
|
Bonzini M, Pergoli L, Cantone L, Hoxha M, Spinazzè A, Del Buono L, Favero C, Carugno M, Angelici L, Broggi L, Cattaneo A, Pesatori AC, Bollati V. Short-term particulate matter exposure induces extracellular vesicle release in overweight subjects. ENVIRONMENTAL RESEARCH 2017; 155:228-234. [PMID: 28231550 PMCID: PMC5380126 DOI: 10.1016/j.envres.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) represent a plausible molecular mechanism linking particulate matter (PM) inhalation to its systemic effects. Microvesicles (MVs) are released from many cell types in response to various stimuli. Increased body mass index (BMI) could modify the response to PM exposure due to enhanced PM uptake and/or an underlying pro-oxidative state. We investigated the relationship between EV release and PM10/PM2.5 exposure in a cohort of 51 volunteers. Subjects were stratified based on their BMI to evaluate whether overweight BMI is a determinant of hypersusceptibility to PM effects. RESULTS Exposure to PM10/PM2.5 was assessed with a personal sampler worn for 24hours before plasma collection and confirmed with monitoring station data. Size and cellular origin of plasma EVs were characterized by Nanosight analysis and flow cytometry, respectively. Multivariate regression models were run after log-transformation, stratifying subjects based on BMI (≥ or <25kg/m2). PM exposure resulted in increased release of EVs, with the maximum observed effect for endothelial MVs. For PM10 and PM2.5, the adjusted geometric mean ratio and 95% confidence interval were 3.47 (1.30, 9.27) and 3.14 (1.23, 8.02), respectively. Compared to those in normal subjects, PM-induced EV alterations in overweight subjects were more pronounced, with visibly effect in all MV subtypes, particularly endothelial MVs. CONCLUSIONS Our findings emphasize the role of EV release after PM exposure and the susceptibility of overweight subjects. Larger studies with accurate exposure assessment and complete EVs characterization/content analysis, could further clarify the molecular mechanism responsible for PM effects and of hypersusceptibility of overweight subjects.
Collapse
Affiliation(s)
- Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mirjam Hoxha
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Luca Del Buono
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Angelici
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lucia Broggi
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Angela C Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
43
|
Piffoux M, Silva AKA, Lugagne JB, Hersen P, Wilhelm C, Gazeau F. Extracellular Vesicle Production Loaded with Nanoparticles and Drugs in a Trade-off between Loading, Yield and Purity: Towards a Personalized Drug Delivery System. ACTA ACUST UNITED AC 2017; 1:e1700044. [DOI: 10.1002/adbi.201700044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Max Piffoux
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Jean-Baptiste Lugagne
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| |
Collapse
|
44
|
Johnson BL, Midura EF, Prakash PS, Rice TC, Kunz N, Kalies K, Caldwell CC. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2554-2563. [PMID: 28108420 DOI: 10.1016/j.bbadis.2017.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Although advances in medical care have significantly improved sepsis survival, sepsis remains the leading cause of death in the ICU. This is likely due to a lack of complete understanding of the pathophysiologic mechanisms that lead to dysfunctional immunity. Neutrophil derived microparticles (NDMPs) have been shown to be the predominant microparticle present at infectious and inflamed foci in human models, however their effect on the immune response to inflammation and infection is sepsis has not been fully elucidated. As NDMPs may be a potential diagnostic and therapeutic target, we sought to determine the impact NDMPs on the immune response to a murine polymicrobial sepsis. We found that peritoneal neutrophil numbers, bacterial loads, and NDMPs were increased in our abdominal sepsis model. When NDMPs were injected into septic mice, we observed increased bacterial load, decreased neutrophil recruitment, increased expression of IL-10 and worsened mortality. Furthermore, the NDMPs express phosphatidylserine and are ingested by F4/80 macrophages via a Tim-4 and MFG-E8 dependent mechanism. Finally, upon treatment, NDMPs decrease macrophage activation, increase IL-10 release and decrease macrophage numbers. Altogether, these data suggest that NDMPs enhance immune dysfunction in sepsis by blunting the function of neutrophils and macrophages, two key cell populations involved in the early immune response to infection. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Bobby L Johnson
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Emily F Midura
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Priya S Prakash
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Teresa C Rice
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Natalia Kunz
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kathrin Kalies
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
45
|
O’Dea KP, Porter JR, Tirlapur N, Katbeh U, Singh S, Handy JM, Takata M. Circulating Microvesicles Are Elevated Acutely following Major Burns Injury and Associated with Clinical Severity. PLoS One 2016; 11:e0167801. [PMID: 27936199 PMCID: PMC5148002 DOI: 10.1371/journal.pone.0167801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/21/2016] [Indexed: 01/26/2023] Open
Abstract
Microvesicles are cell-derived signaling particles emerging as important mediators and biomarkers of systemic inflammation, but their production in severe burn injury patients has not been described. In this pilot investigation, we measured circulating microvesicle levels following severe burns, with severe sepsis patients as a comparator group. We hypothesized that levels of circulating vascular cell-derived microvesicles are elevated acutely following burns injury, mirroring clinical severity due to the early onset and prevalence of systemic inflammatory response syndrome (SIRS) in these patients. Blood samples were obtained from patients with moderate to severe thermal injury burns, with severe sepsis, and from healthy volunteers. Circulating microvesicles derived from total leukocytes, granulocytes, monocytes, and endothelial cells were quantified in plasma by flow cytometry. All circulating microvesicle subpopulations were elevated in burns patients on day of admission (day 0) compared to healthy volunteers (leukocyte-microvesicles: 3.5-fold, p = 0.005; granulocyte-microvesicles: 12.8-fold, p<0.0001; monocyte-microvesicles: 20.4-fold, p<0.0001; endothelial- microvesicles: 9.6-fold, p = 0.01), but decreased significantly by day 2. Microvesicle levels were increased with severe sepsis, but less consistently between patients. Leukocyte- and granulocyte-derived microvesicles on day 0 correlated with clinical assessment scores and were higher in burns ICU non-survivors compared to survivors (leukocyte MVs 4.6 fold, p = 0.002; granulocyte MVs 4.8 fold, p = 0.003). Mortality prediction analysis of area under receiver operating characteristic curve was 0.92 (p = 0.01) for total leukocyte microvesicles and 0.85 (p = 0.04) for granulocyte microvesicles. These findings demonstrate, for the first time, acute increases in circulating microvesicles following burns injury in patients and point to their potential role in propagation of sterile SIRS-related pathophysiology.
Collapse
Affiliation(s)
- Kieran P. O’Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - John R. Porter
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Intensive Care Unit, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nikhil Tirlapur
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Umar Katbeh
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Suveer Singh
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Intensive Care Unit, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jonathan M. Handy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Intensive Care Unit, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Impact of Platelets and Platelet-Derived Microparticles on Hypercoagulability Following Burn Injury. Shock 2016; 45:82-7. [PMID: 26529651 DOI: 10.1097/shk.0000000000000460] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An acute burn induced coagulopathy develops after scald injury, which evolves into a subacute, hypercoagulable state. Microparticles, specifically platelet-derived MPs (PMPs), have been suggested as possible contributors. We first developed a model of burn-induced coagulopathy and then sought to investigate the role of platelets and PMPs in coagulation after burn. We hypothesized that changes in circulating platelet and PMP populations after injury would contribute to the post-burn, hypercoagulable state. A murine scald model with 28% TBSA full thickness burn injury was utilized and blood samples were collected at intervals after injury. Circulating MP populations, platelet counts, overall coagulation, and platelet function were determined. Burn injury led to hypercoagulability on post-burn day one (PBD1), which persisted 6 days after injury (PBD6). On PBD1, there was a significant decrease in platelet numbers and a decline in platelet contribution to clot formation with a concomitant increase in circulating procoagulant PMPs. On PBD6, there was a significant increase in platelet numbers and in platelet activation with no change in PMPs compared with sham. Further, on PBD1 decreased ADP-induced platelet activation was observed with a contrasting increase in ADP-induced platelet activation on PBD6. We therefore concluded that there was a temporal change in the mechanisms leading to a hypercoagulable state after scald injury, that PMPs are responsible for changes seen on PBD1, and finally that ADP-induced platelet activation was key to the augmented clotting mechanisms 6 days after burn.
Collapse
|
47
|
Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Front Cell Dev Biol 2016; 4:83. [PMID: 27597941 PMCID: PMC4992732 DOI: 10.3389/fcell.2016.00083] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.
Collapse
Affiliation(s)
- Jacopo Burrello
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Silvia Monticone
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Yonathan Gomez
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Sharad Kholia
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| |
Collapse
|
48
|
Pomara C, Riezzo I, Bello S, De Carlo D, Neri M, Turillazzi E. A Pathophysiological Insight into Sepsis and Its Correlation with Postmortem Diagnosis. Mediators Inflamm 2016; 2016:4062829. [PMID: 27239102 PMCID: PMC4863102 DOI: 10.1155/2016/4062829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis is among the leading causes of death worldwide and is the focus of a great deal of attention from policymakers and caregivers. However, sepsis poses significant challenges from a clinical point of view regarding its early detection and the best organization of sepsis care. Furthermore, we do not yet have reliable tools for measuring the incidence of sepsis. Methods based on analyses of insurance claims are unreliable, and postmortem diagnosis is still challenging since autopsy findings are often nonspecific. AIM The objective of this review is to assess the state of our knowledge of the molecular and biohumoral mechanisms of sepsis and to correlate them with our postmortem diagnosis ability. CONCLUSION The diagnosis of sepsis-related deaths is an illustrative example of the reciprocal value of autopsy both for clinicians and for pathologists. A complete methodological approach, integrating clinical data by means of autopsy and histological and laboratory findings aiming to identify and demonstrate the host response to infectious insults, is mandatory to illuminate the exact cause of death. This would help clinicians to compare pre- and postmortem findings and to reliably measure the incidence of sepsis.
Collapse
Affiliation(s)
- C. Pomara
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Bello
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - D. De Carlo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - M. Neri
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
49
|
Endogenous microparticles drive the proinflammatory host immune response in severely injured trauma patients. Shock 2016; 43:317-21. [PMID: 25565646 DOI: 10.1097/shk.0000000000000321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Severe trauma affects the immune system, which in its turn is associated with poor outcome. The mediators driving the immune responses in trauma are largely unknown. The aim of this study was to investigate the role of endogenous microparticles (MPs) in mediating the immune response following severe trauma. METHODS A prospective, observational substudy of the ACIT II (Activation of Coagulation and Inflammation in Trauma II) study was performed at our academic level I trauma center. Adult multiple-trauma patients with an injury severity score of 15 or higher were included between May 2012 and June 2013. Ex vivo whole-blood stimulation with lipopolysaccharide was performed on aseptically collected patient plasma containing MPs and in plasma depleted of MPs. Flow cytometry and transmission electronic microscopy were performed on plasma samples to investigate the numbers and cellular origin of MPs. Healthy individuals served as a control group. RESULTS Ten trauma patients and 10 control subjects were included. Trauma patients were significantly injured with a median injury severity score of 19 (range, 17-45). Patients were neither in shock nor bleeding. On admission to the hospital, the host response to bacterial stimulation was blunted in trauma patients compared with control subjects, as reflected by decreased production of interleukin 6 (IL-6), IL-10, and tumor necrosis factor α (P < 0.001). In trauma patients, MP-positive plasma was associated with a significantly higher synthesis of IL-6 and tumor necrosis factor α compared with plasma depleted from MPs (P = 0.047 and 0.002, respectively). Compared with control subjects, the number of circulating MPs was significantly decreased in trauma patients (P = 0.009). Most MPs originated from platelets. Multiple cellular protrusions, which result in MP formation, were observed in plasma from trauma patients, but not in control subjects. CONCLUSIONS On admission, trauma patients have a reduced immune response toward endotoxin challenge, which is, at least in part, mediated by MPs, which circulate in low numbers and in early stages. Most MPs originate from platelets, which indicates that these cells may be the most important source of MPs involved in initiating an inflammatory host response after injury.
Collapse
|
50
|
Midura EF, Prakash PS, Johnson BL, Rice TC, Kunz N, Caldwell CC. Impact of caspase-8 and PKA in regulating neutrophil-derived microparticle generation. Biochem Biophys Res Commun 2015; 469:917-22. [PMID: 26707875 DOI: 10.1016/j.bbrc.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The morbidity and mortality from sepsis continues to remain high despite extensive research into understanding this complex immunologic process. Further, while source control and antibiotic therapy have improved patient outcomes, many immunologically based therapies have fallen short. Microparticles (MPs) are intact vesicles that serve as mediators of intercellular communication as well as markers of inflammation in various disease processes. We have previously demonstrated that MPs can be produced at the infected foci during sepsis, are predominantly of neutrophil derivation (NDMPs) and can modulate immune cells. In this study, we sought to elucidate the molecular mechanisms underlying NDMP generation. Using thioglycolate (TGA) to recruit and activate neutrophils, we first determined that intra-peritoneal TGA increase NDMP accumulation. We next utilized TGA-elicited neutrophils in vitro to investigate signaling intermediates involved in NDMP production, including the intrinsic and extrinsic caspase pathways, cAMP dependent PKA and Epac activation as well as the role myosin light chain kinase (MLCK) as a final mediator of NDMP release. We observed that NDMP generation was dependent on the extrinsic caspase apoptotic pathway (caspase 3 and caspase 8), cAMP activation of PKA but not of Epac, and on activation of MLCK. Altogether, these data contribute to an overall framework depicting the molecular mechanisms that regulate NDMP generation.
Collapse
Affiliation(s)
- Emily F Midura
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Priya S Prakash
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Bobby L Johnson
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Teresa C Rice
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA
| | - Natalia Kunz
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA; Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0558, Cincinnati, OH 45267, USA.
| |
Collapse
|