1
|
Sakhare S, Sanap A, Bhonde R, Behera S, Potdar P, Kheur S, Kharat A. Dialysis and lyophilization of the mesenchymal stromal cell secretome for wound healing. Cytotherapy 2025; 27:544-551. [PMID: 39818643 DOI: 10.1016/j.jcyt.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AIMS The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications. METHODS AND RESULTS We dialyzed the UC-MSC-S using Slide-A-Lyzer G3 Dialysis Cassettes (20K MWCO) and then lyophilized it to obtain secretome powder. The DS fraction exhibited an 86.01-fold decrease compared with S, whereas LDS showed a 613.71-fold increase in the total protein concentration. Growth factor analysis revealed a significant decrease in the levels of interleukin-6 (IL-6; 54.44-fold), angiopoietin-1 (79.56-fold), angiopoietin-2 (51.76-fold), IL-8 (54.4-fold), platelet endothelial cell adhesion molecule-1 (PECAM-1; 63.25-fold), phosphatidylinositol glycan anchor biosynthesis class F (PIGF; 40.42-fold), vascular endothelial growth factor (VEGF; 39.64-fold), and tumor necrosis factor alpha (TNF-α; 24.62-fold) after dialysis as analyzed by the LEGEND plex multi-analyte flow assay kit on a FACS analyzer. Post-lyophilization, the levels of IL-6 (392.21-fold), angiopoietin-1 (823.04-fold), angiopoietin-2 (397.69-fold), IL-8 (584.83-fold), PECAM-1 (341.28-fold), PIGF (342.85-fold), VEGF (2209.42-fold), and TNF-α (194.4-fold) were enriched in LDS. The highest wound closure (64.07%) and a significant increase in angiogenesis were seen in DLS at the concentration of 1 µg/µL of protein by wound scratch and in ovo yolk sac membrane assay, respectively. CONCLUSIONS Dialysis followed by lyophilization is a simple and cost-effective method to fractionate and enrich the bioactive components of MSC-S without compromising the bioactivity for tailor-made applications.
Collapse
Affiliation(s)
- Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India
| | - Shubhanath Behera
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| |
Collapse
|
2
|
Alquraisy A, Wilar G, Mohammed AFA, El-Rayyes A, Suhandi C, Wathoni N. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Stem Cells Cloning 2024; 17:5-19. [PMID: 39310304 PMCID: PMC11416772 DOI: 10.2147/sccaa.s480437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Various studies have been widely conducted on conditioned medium for the development of anti-aging preparations, including the utilization of stem cells, which present a promising alternative solution. This narrative review aims to understand the latest developments in various conditioned medium stem cell applications for anti-aging on the skin. A search of the Scopus database yielded publications of interest. The research focused on articles published without restrictions on the year. After finding 68 articles in the search results, they moved on to the checking phase. Upon comprehensive literature review, 23 articles met the inclusion criteria, while 45 articles were deemed ineligible for participation in this research. The results of the review indicate that conditioned medium from various stem cells has demonstrated success in reducing risk factors for skin aging, as proven in various tests. The successful reduction of the risk of skin aging has been established in vitro, in vivo, and in clinical trials. Given the numerous studies on the progress of exploring and utilizing conditioned medium, it is expected to provide a solution to the problem of skin aging.
Collapse
Affiliation(s)
- Ayatulloh Alquraisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
4
|
Piao X, Li D, Liu H, Guo Q, Yu Y. Advances in Gene and Cellular Therapeutic Approaches for Huntington's Disease. Protein Cell 2024:pwae042. [PMID: 39121016 DOI: 10.1093/procel/pwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/11/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and non-pharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Collapse
Affiliation(s)
- Xuejiao Piao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
6
|
Wang LW, Chio CC, Chao CM, Chao PY, Lin MT, Chang CP, Lin HJ. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Sci Prog 2024; 107:368504241231154. [PMID: 38425276 PMCID: PMC10908245 DOI: 10.1177/00368504241231154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Pi-Yu Chao
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
7
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
8
|
Smolinská V, Boháč M, Danišovič Ľ. Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine. Physiol Res 2023; 72:S233-S245. [PMID: 37888967 PMCID: PMC10669946 DOI: 10.33549/physiolres.935186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Recently published studies suggest that the paracrine substances released by mesenchymal stem cells (MSCs) are the primary motive behind the therapeutic action reported in these cells. Pre-clinical and clinical research on MSCs has produced promising outcomes. Furthermore, these cells are generally safe for therapeutic use and may be extracted from a variety of anatomical regions. Recent research has indicated, however, that transplanted cells do not live long and that the advantages of MSC treatment may be attributable to the large diversity of bioactive substances they create, which play a crucial role in the control of essential physiological processes. Secretome derivatives, such as conditioned media or exosomes, may provide significant benefits over cells in terms of manufacture, preservation, handling, longevity of the product, and potential as a ready-to-use biologic product. Despite their immunophenotypic similarities, the secretome of MSCs appears to vary greatly depending on the host's age and the niches in which the cells live. The secretome's effect on multiple biological processes such as angiogenesis, neurogenesis, tissue repair, immunomodulation, wound healing, anti-fibrotic, and anti-tumor for tissue maintenance and regeneration has been discovered. Defining the secretome of cultured cultivated MSC populations by conditioned media analysis will allow us to assess its potential as a novel treatment approach. This review will concentrate on accumulating data from pre-clinical and clinical trials pointing to the therapeutic value of the conditioned medium. At last, the necessity of characterizing the conditioned medium for determining its potential for cell-free treatment therapy will be emphasized in this study.
Collapse
|
9
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
10
|
Salikhova DI, Golovicheva VV, Fatkhudinov TK, Shevtsova YA, Soboleva AG, Goryunov KV, Dyakonov AS, Mokroysova VO, Mingaleva NS, Shedenkova MO, Makhnach OV, Kutsev SI, Chekhonin VP, Silachev DN, Goldshtein DV. Therapeutic Efficiency of Proteins Secreted by Glial Progenitor Cells in a Rat Model of Traumatic Brain Injury. Int J Mol Sci 2023; 24:12341. [PMID: 37569717 PMCID: PMC10419112 DOI: 10.3390/ijms241512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Traumatic brain injuries account for 30-50% of all physical traumas and are the most common pathological diseases of the brain. Mechanical damage of brain tissue leads to the disruption of the blood-brain barrier and the massive death of neuronal, glial, and endothelial cells. These events trigger a neuroinflammatory response and neurodegenerative processes locally and in distant parts of the brain and promote cognitive impairment. Effective instruments to restore neural tissue in traumatic brain injury are lacking. Glial cells are the main auxiliary cells of the nervous system, supporting homeostasis and ensuring the protection of neurons through contact and paracrine mechanisms. The glial cells' secretome may be considered as a means to support the regeneration of nervous tissue. Consequently, this study focused on the therapeutic efficiency of composite proteins with a molecular weight of 5-100 kDa secreted by glial progenitor cells in a rat model of traumatic brain injury. The characterization of proteins below 100 kDa secreted by glial progenitor cells was evaluated by proteomic analysis. Therapeutic effects were assessed by neurological outcomes, measurement of the damage volume by MRI, and an evaluation of the neurodegenerative, apoptotic, and inflammation markers in different areas of the brain. Intranasal infusions of the composite protein product facilitated the functional recovery of the experimental animals by decreasing the inflammation and apoptotic processes, preventing neurodegenerative processes by reducing the amounts of phosphorylated Tau isoforms Ser396 and Thr205. Consistently, our findings support the further consideration of glial secretomes for clinical use in TBI, notably in such aspects as dose-dependent effects and standardization.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria V. Golovicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Timur Kh. Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Yulia A. Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna G. Soboleva
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
| | - Alexander S. Dyakonov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria O. Mokroysova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Natalia S. Mingaleva
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Margarita O. Shedenkova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Oleg V. Makhnach
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Vladimir P. Chekhonin
- Serbsky State Scientific Center for Social and Forensic Psychiatry, 119034 Moscow, Russia;
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Dmitry V. Goldshtein
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| |
Collapse
|
11
|
García-Bonilla M, Ojeda-Pérez B, Shumilov K, Rodríguez-Pérez LM, Domínguez-Pinos D, Vitorica J, Jiménez S, Ramírez-Lorca R, Echevarría M, Cárdenas-García C, Iglesias T, Gutiérrez A, McAllister JP, Limbrick DD, Páez-González P, Jiménez AJ. Generation of Periventricular Reactive Astrocytes Overexpressing Aquaporin 4 Is Stimulated by Mesenchymal Stem Cell Therapy. Int J Mol Sci 2023; 24:5640. [PMID: 36982724 PMCID: PMC10057840 DOI: 10.3390/ijms24065640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFβ1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.
Collapse
Affiliation(s)
- María García-Bonilla
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Kirill Shumilov
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Luis-Manuel Rodríguez-Pérez
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, 29010 Malaga, Spain
| | | | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Reposo Ramírez-Lorca
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Miriam Echevarría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Casimiro Cárdenas-García
- Servicios Centrales de Apoyo a la Investigación (SCAI), University of Malaga, 29010 Malaga, Spain
| | - Teresa Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain
| | - Antonia Gutiérrez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - James P. McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Patricia Páez-González
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Antonio J. Jiménez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| |
Collapse
|
12
|
Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ. Mesenchymal Stromal Cells-Derived Exosome and the Roles in the Treatment of Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:469-489. [PMID: 35103872 PMCID: PMC11415182 DOI: 10.1007/s10571-022-01201-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
Collapse
Affiliation(s)
- Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| |
Collapse
|
13
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
14
|
Pischiutta F, Caruso E, Cavaleiro H, Salgado AJ, Loane DJ, Zanier ER. Mesenchymal stromal cell secretome for traumatic brain injury: Focus on immunomodulatory action. Exp Neurol 2022; 357:114199. [PMID: 35952763 DOI: 10.1016/j.expneurol.2022.114199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
The severity and long-term consequences of brain damage in traumatic brain injured (TBI) patients urgently calls for better neuroprotective/neuroreparative strategies for this devastating disorder. Mesenchymal stromal cells (MSCs) hold great promise and have been shown to confer neuroprotection in experimental TBI, mainly through paracrine mechanisms via secreted bioactive factors (i.e. secretome), which indicates significant potential for a cell-free neuroprotective approach. The secretome is composed of cytokines, chemokines, growth factors, proteins, lipids, nucleic acids, metabolites, and extracellular vesicles; it may offer advantages over MSCs in terms of delivery, safety, and variability of therapeutic response for brain injury. Immunomodulation by molecular factors secreted by MSCs is considered to be a key mechanism involved in their multi-potential therapeutic effects. Regulated neuroinflammation is required for healthy remodeling of central nervous system during development and adulthood. Moreover, immune cells and their secreted factors can also contribute to tissue repair and neurological recovery following acute brain injury. However, a chronic and maladaptive neuroinflammatory response can exacerbate TBI and contribute to progressive neurodegeneration and long-term neurological impairments. Here, we review the evidence for MSC-derived secretome as a therapy for TBI. Our framework incorporates a detailed analysis of in vitro and in vivo studies investigating the effects of the secretome on clinically relevant neurological and histopathological outcomes. We also describe the activation of immune cells after TBI and the immunomodulatory properties exerted by mediators released in the secretome. We then describe how ageing modifies central and systemic immune responses to TBI and discuss challenges and opportunities of developing secretome based neuroprotective therapies for elderly TBI populations. Finally, strategies aimed at modulating the secretome in order to boost its efficacy for TBI will also be discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Enrico Caruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helena Cavaleiro
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Elisa R Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy.
| |
Collapse
|
15
|
Mahmoudi A, Heydari S, Markina YV, Barreto GE, Sahebkar A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed Pharmacother 2022; 153:113304. [PMID: 35724514 DOI: 10.1016/j.biopha.2022.113304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disorder with debilitating physical and psychological complications. Previous studies have indicated that genetic factors have a critical role in modulating the secondary phase of injury in TBI. Statins have interesting pleiotropic properties such as antiapoptotic, antioxidative, and anti-inflammatory effects, which make them a suitable class of drugs for repurposing in TBI. In this study, we aimed to explore how statins modulate proteins and pathways involved in TBI using system pharmacology. We first explored the target associations with statins in two databases to discover critical clustering groups, candidate hub and critical hub genes in the network of TBI, and the possible connections of statins with TBI-related genes. Our results showed 1763 genes associated with TBI. Subsequently, the analysis of centralities in the PPI network displayed 55 candidate hub genes and 15 hub genes. Besides, MCODE analysis based on threshold score:10 determined four modular clusters. Intersection analysis of genes related to TBI and statins demonstrated 204 shared proteins, which suggested that statins influence 31 candidate hub and 9 hub genes. Moreover, statins had the highest interaction with MCODE1. The biological processes of the 31 shared proteins are related to gene expression, inflammation, antioxidant activity, and cell proliferation. Biological enriched pathways showed Programmed Cell Death proteins, AGE-RAGE signaling pathway, C-type lectin receptor signalling pathway, and MAPK signaling pathway as top clusters. In conclusion, statins could target several critical post-TBI genes mainly involved in inflammation and apoptosis, supporting the previous research results as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, the Russian Federation
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
16
|
Kaminska A, Radoszkiewicz K, Rybkowska P, Wedzinska A, Sarnowska A. Interaction of Neural Stem Cells (NSCs) and Mesenchymal Stem Cells (MSCs) as a Promising Approach in Brain Study and Nerve Regeneration. Cells 2022; 11:cells11091464. [PMID: 35563770 PMCID: PMC9105617 DOI: 10.3390/cells11091464] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rapid developments in stem cell research in recent years have provided a solid foundation for their use in medicine. Over the last few years, hundreds of clinical trials have been initiated in a wide panel of indications. Disorders and injuries of the nervous system still remain a challenge for the regenerative medicine. Neural stem cells (NSCs) are the optimal cells for the central nervous system restoration as they can differentiate into mature cells and, most importantly, functional neurons and glial cells. However, their application is limited by multiple factors such as difficult access to source material, limited cells number, problematic, long and expensive cultivation in vitro, and ethical considerations. On the other hand, according to the available clinical databases, most of the registered clinical trials involving cell therapies were carried out with the use of mesenchymal stem/stromal/signalling cells (MSCs) obtained from afterbirth or adult human somatic tissues. MSCs are the multipotent cells which can also differentiate into neuron-like and glia-like cells under proper conditions in vitro; however, their main therapeutic effect is more associated with secretory and supportive properties. MSCs, as a natural component of cell niche, affect the environment through immunomodulation as well as through the secretion of the trophic factors. In this review, we discuss various therapeutic strategies and activated mechanisms related to bilateral MSC–NSC interactions, differentiation of MSCs towards the neural cells (subpopulation of crest-derived cells) under the environmental conditions, bioscaffolds, or co-culture with NSCs by recreating the conditions of the neural cell niche.
Collapse
|
17
|
Muhammad SA, Abbas AY, Imam MU, Saidu Y, Bilbis LS. Efficacy of stem cell secretome in the treatment of traumatic brain injury: A systematic review and meta-analysis of preclinical studies. Mol Neurobiol 2022; 59:2894-2909. [PMID: 35230664 DOI: 10.1007/s12035-022-02759-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 01/26/2023]
Abstract
Traumatic brain injury (TBI) remains a public health challenge and represents one of the major contributors to disability and mortality worldwide among all trauma-related injuries. This study aimed to determine a precise effect size of secretome intervention in TBI. We performed a systematic literature search through Cochrane, MEDLINE Complete, PubMed and Scopus databases for articles published until June 2021. The search terms used include cells OR stem cells OR mesenchymal stem cells AND secretome OR conditioned medium OR extracellular vesicles OR exosomes OR microvesicles AND traumatic brain injury OR head injury. Neurological deficits and neuroinflammation were the outcome measures assessed after the intervention. Thirty-one (31) studies involving mouse, rat and swine were enrolled for the meta-analysis. Secretome significantly improved structural and functional recovery when compared with control. The mean effect sizes were as follows: modified neurological severity score (mNSS) (-2.65, 95% CI: -3.42, -1.87, p < 0.00001), impact size (-3.02 mm3, 95% CI: -4.97, -1.08, p = 0.002) and latency to platform (-17.20 s, 95% CI: -23.91, -10.50, p < 0.00001). Similarly, intervention with secretome reduced neuroinflammation after TBI. The results of meta-regression showed that the source of secretome, TBI models and duration of follow-up did not influence the mNSS. Furthermore, the methodological quality of the studies was moderate as shown by the risk of bias assessment. Publication bias was observed for the mNSS. This meta-analysis provides preclinical evidence of secretome intervention in TBI, suggesting that it can be explored as a therapeutic agent for TBI and other neurological disorders in humans.
Collapse
Affiliation(s)
| | - Abdullahi Yahya Abbas
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Lawal Suleiman Bilbis
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
18
|
Yan X, Liu Y, Yu S, Huang D, Hu R. Repair Effects of Bone Marrow Mesenchymal Stem Cells on Demyelination of Trigeminal Ganglion in Rats with Trigeminal Neuralgia. J Pain Res 2022; 15:613-622. [PMID: 35250305 PMCID: PMC8894102 DOI: 10.2147/jpr.s347907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The current study investigated the effects of bone marrow mesenchymal stem cells (BMSCs) on pain behavior in rats with trigeminal neuralgia induced by infraorbital nerve chronic constriction injury (ION-CCI), and the repair effects of BMSCs on pathological changes in trigeminal ganglion demyelination. Methods BMSCs or phosphate-buffered saline (PBS) alone were injected around trigeminal ganglion in ION-CCI rats via a rat brain stereotaxic apparatus. Mechanical pain threshold (von Frey test) and face grooming behavior were measured in each group. Recovery of demyelination of trigeminal ganglion was observed via electron microscopy 2 weeks later, and BMSC differentiation was observed via immunofluorescence. Results Rats in the BMSC group exhibited significant improvements in mechanical pain threshold and face grooming behavior compared with the PBS group. BMSCs could repair demyelinating changes in trigeminal ganglion in ION-CCI rats. Only cells expressing GFAP, S-100, and p75 were observed via immunofluorescence, and no PKH67-labeled BMSCs were observed in the trigeminal ganglion. No BMSC differentiation was observed in the trigeminal ganglion. Conclusion Injection of BMSCs around the trigeminal ganglion could relieve trigeminal neuralgia effectively and repair trigeminal ganglion demyelination. No differentiation of BMSCs injected around the trigeminal ganglion into Schwann cells was observed. The mechanism of trigeminal neuralgia demyelination repair requires further investigation.
Collapse
Affiliation(s)
- Xuebin Yan
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yi Liu
- Department of Anesthesia, The First Hospital of Changsha, Changsha, People’s Republic of China
| | - Shanzi Yu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Correspondence: Rong Hu, Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China, Tel +86 18973162969, Email
| |
Collapse
|
19
|
Üçal M, Maurer C, Etschmaier V, Hamberger D, Grünbacher G, Tögl L, Roosen MJ, Molcanyi M, Vorholt D, Hatay FF, Hescheler J, Pallasch C, Schäfer U, Patz S. Inflammatory Pre-Conditioning of Adipose-Derived Stem Cells with Cerebrospinal Fluid from Traumatic Brain Injury Patients Alters the Immunomodulatory Potential of ADSC Secretomes. J Neurotrauma 2021; 38:2311-2322. [PMID: 33514282 DOI: 10.1089/neu.2020.7017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immunomodulation by adipose-tissue-derived stem cells (ADSCs) is of special interest for the alleviation of damaging inflammatory responses in central nervous system injuries. The present study explored the effects of cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients on this immunomodulatory potential of ADSCs. CSF conditioning of ADSCs increased messenger RNA levels of both pro- and anti-inflammatory genes compared to controls. Exposure of phorbol-12-myristate-13-acetate-differentiated THP1 macrophages to the secretome of CSF-conditioned ADSCs downregulated both proinflammatory (cyclooxygenase-2, tumor necrosis factor alpha) and anti-inflammatory (suppressor of cytokine signaling 3, interleukin-1 receptor antagonist, and transforming growth factor beta) genes in these cells. Interleukin-10 expression was elevated in both naïve and conditioned secretomes. ADSC secretome treatment, further, induced macrophage maturation of THP1 cells and increased the percentage of CD11b+, CD14+, CD86+, and, to a lesser extent, CD206+ cells. This, moreover, enhanced the phagocytic activity of CD14+ and CD86+ cells, though independently of pre-conditioning. Secretome exposure, finally, also induced a reduction in the percentage of CD192+ adherent cells in cultures of peripheral blood mononuclear cells (PBMCs) from both healthy subjects and TBI patients. This limited efficacy (of both naïve and pre-conditioned secretomes) suggests that the effects of lymphocyte-monocyte paracrine signaling on the fate of cultured PBMCs are strongest upon adherent cell populations.
Collapse
Affiliation(s)
- Muammer Üçal
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Christa Maurer
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Ruprecht-Karls-University Heidelberg, Institute for Anatomy and Cell Biology, Division for Medical Cell Biology, Heidelberg, Germany
| | | | - Daniel Hamberger
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,National Centre for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Gerda Grünbacher
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Lennart Tögl
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marvin J Roosen
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniela Vorholt
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - F Fulya Hatay
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Silke Patz
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
20
|
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front Immunol 2021; 11:591065. [PMID: 33613514 PMCID: PMC7893976 DOI: 10.3389/fimmu.2020.591065] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent stem cells derived from mesoderm, which can be easily isolated from many sources such as bone marrow, umbilical cord or adipose tissue. MSCs provide support for hematopoietic stem cells and have an ability to differentiate into multiple cell lines. Moreover, they have proangiogenic, protective and immunomodulatory properties. MSCs have the capacity to modulate both innate and adaptive immune responses, which accompany many diseases, by inhibiting pro-inflammatory reactions and stimulating anti-inflammatory activity. Recent findings revealed that the positive effect of MSCs is at least partly associated with the production of extracellular vesicles (EVs). EVs are small membrane structures, containing proteins, lipids and nuclei acids, which take part in intra-cellular communication. Many studies indicate that EVs contain protective and pro-regenerative properties and can modulate an immune response that is activated in various diseases such as CNS diseases, myocardial infarction, liver injury, lung diseases, ulcerative colitis or kidney injury. Thus, EVs have similar functions as their cells of origin and since they do not carry the risk of cell transplantation, such as tumor formation or small vessel blockage, they can be considered a potential therapeutic tool for cell-free therapy.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| |
Collapse
|
21
|
Vawda R, Badner A, Hong J, Mikhail M, Dragas R, Xhima K, Jose A, Fehlings MG. Harnessing the Secretome of Mesenchymal Stromal Cells for Traumatic Spinal Cord Injury: Multicell Comparison and Assessment of In Vivo Efficacy. Stem Cells Dev 2020; 29:1429-1443. [PMID: 32962528 PMCID: PMC7703247 DOI: 10.1089/scd.2020.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell therapy offers significant promise for traumatic spinal cord injury (SCI), which despite many medical advances, has limited treatment strategies. Able to address the multifactorial and dynamic pathophysiology of SCI, cells present various advantages over standard pharmacological approaches. However, the use of live cells is also severely hampered by logistical and practical considerations. These include specialized equipment and expertise, standardization of cell stocks, sustained cell viability post-thawing, and cryopreservation-induced delayed-onset cell death. For this reason, we suggest a novel and clinically translatable alternative to live-cell systemic infusion, which retains the efficacy of the latter while overcoming many of its limitations. This strategy involves the administration of concentrated cell secretome and exploits the trophic mechanism by which stromal cells function. In this study, we compare the efficacy of intravenously delivered concentrated conditioned media (CM) from human umbilical cord matrix cells (HUCMCs), bone marrow mesenchymal stromal cells, as well as newborn and adult fibroblasts in a rat model of moderately severe cervical clip compression/contusion injury (C7--T1, 35 g). This is further paired with a thorough profile of the CM cytokines, chemokines, and angiogenic factors. The HUCMC-derived CM was most effective at limiting acute (48 h post-SCI) vascular pathology, specifically lesion volume, and functional vascularity. Principle component analysis (PCA), hierarchical clustering, and interaction analysis of proteins highly expressed in the HUCMC secretome suggest involvement of the MAPK/ERK, JAK/STAT, and immune cell migratory pathways. This "secretotherapeutic" strategy represents a novel and minimally invasive method to target multiple organ systems and several pathologies shortly after traumatic SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Mirriam Mikhail
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada
| | - Kristiana Xhima
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Alejandro Jose
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, School of Medicine, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
22
|
Genetically Modified Mesenchymal Stem Cells: The Next Generation of Stem Cell-Based Therapy for TBI. Int J Mol Sci 2020; 21:ijms21114051. [PMID: 32516998 PMCID: PMC7312789 DOI: 10.3390/ijms21114051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as an attractive approach for restorative medicine in central nervous system (CNS) diseases and injuries, such as traumatic brain injury (TBI), due to their relatively easy derivation and therapeutic effect following transplantation. However, the long-term survival of the grafted cells and therapeutic efficacy need improvement. Here, we review the recent application of MSCs in TBI treatment in preclinical models. We discuss the genetic modification approaches designed to enhance the therapeutic potency of MSCs for TBI treatment by improving their survival after transplantation, enhancing their homing abilities and overexpressing neuroprotective and neuroregenerative factors. We highlight the latest preclinical studies that have used genetically modified MSCs for TBI treatment. The recent developments in MSCs’ biology and potential TBI therapeutic targets may sufficiently improve the genetic modification strategies for MSCs, potentially bringing effective MSC-based therapies for TBI treatment in humans.
Collapse
|
23
|
Liu XYE, Park E, Barretto T, Liu E, Ferrier GA, Tavakkoli J, J Baker A. Effect of Human Umbilical Cord Perivascular Cell-Conditioned Media in an Adult Zebrafish Model of Traumatic Brain Injury. Zebrafish 2020; 17:177-186. [PMID: 32434437 DOI: 10.1089/zeb.2020.1859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathophysiological events of secondary brain injury contribute to poor outcome after traumatic brain injury (TBI). The neuroprotective effects of mesenchymal cells have been extensively studied and evidence suggests that their effects are mostly mediated through paracrine effects. Human umbilical cord perivascular cells (HUCPVCs) are mesenchymal stem cells with potential therapeutic value in TBI. In this study, we assessed the effect of HUCPVC-conditioned media (CM) in an established adult zebrafish model of TBI induced by pulsed high-intensity focused ultrasound (pHIFU). This model demonstrates similarities to mammalian outcome after TBI. Administration of HUCPVC-CM 1 h postinjury (hpi) resulted in improved outcome after pHIFU-induced TBI. Western blot and immunohistochemistry results demonstrated that the HUCPVC-CM reduced (p < 0.05) reactive astrogliosis at 24 hpi. Moreover, at 24 hpi, the HUCPVC-CM treatment resulted in reduced apoptosis in HUCPVC-CM-treated zebrafish. Behavioral analysis demonstrated improvement in locomotor activity (p < 0.05) and anxiety (p < 0.05) at 6 and 24 hpi following HUCPVC-CM treatment. Overall, HUCPVC-CM treatment improved acute outcome measures in pHIFU-injured zebrafish. Collectively, the data demonstrate a cell-free treatment approach for traumatic brain injuries.
Collapse
Affiliation(s)
| | - Eugene Park
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Tanya Barretto
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Elaine Liu
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | | | - Jahan Tavakkoli
- Department of Physics, Ryerson University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Andrew J Baker
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Critical Care and Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anesthesia and Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells 2020; 9:cells9051163. [PMID: 32397132 PMCID: PMC7290733 DOI: 10.3390/cells9051163] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.
Collapse
|
25
|
Triglyceride is a Good Biomarker of Increased Injury Severity on a High Fat Diet Rat After Traumatic Brain Injury. Neurochem Res 2020; 45:1536-1550. [PMID: 32222876 DOI: 10.1007/s11064-020-03018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Injury severity is correlated with poor prognosis after traumatic brain injury (TBI). It is not known whether triglycerides (TGs) or total cholesterol (TC) is good biomarker of increased injury of neuroinflammation and apoptosis in a high fat diet (HFD)-treated rat after TBI episodes. Five-week-old male Sprague-Dawley (SD) rats were fed a HFD for 8 weeks. The anesthetized male SD rats were divided into three sub-groups: sham-operated and TBI with 1.6 atm or with 2.4 atm fluid percussion injury (FPI). Cell infarction volume (triphenyltetrazolium chloride stain), tumor necrosis factor-alpha (TNF-α) expression in the microglia (OX42 marker) and astrocytes (Glial fibrillary acidic protein marker), TNF-α receptor expression in the neurons (TNFR1 and TNFR2 markers), and the extent of neuronal apoptosis (TUNEL marker) were evaluated by immunofluorescence, and the functional outcome was assessed by an inclined plane test. These tests were performed 72 h after TBI. Serum triglyceride and cholesterol levels were measured at 24, 48 and 72 h after TBI. The FPI with 2.4 atm significantly increased body weight loss, infarction volume, neuronal apoptosis and TNF-α expression in the microglia and astrocytes, and it decreased the maximum grasp degree and TNFR1 and TNFR2 expression in neurons at the 3rd day following TBI. The serum TG level was positively correlated with FPI force, infarction volume, Neu-N-TUNEL, GFAP-TNFα, and OX42-TNFα Simultaneously; the serum TG level was negatively correlated with Neu-N-TNFR1 and Neu-N-TNFR2. TG is a good biomarker of increased injury for neuroinflammation and apoptosis at the 3rd day after TBI in HFD rats.
Collapse
|
26
|
Mellett K, Ren D, Alexander S, Osier N, Beers SR, Okonkwo DO, Puccio AM, Conley YP. Genetic Variation in the TP53 Gene and Patient Outcomes Following Severe Traumatic Brain Injury. Biol Res Nurs 2020; 22:334-340. [PMID: 32207313 DOI: 10.1177/1099800420912335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, with more than 5 million people in the United States living with long-term complications related to TBI. This study examined the relationship between TP53, the gene that codes for the protein p53, and outcome variability following severe TBI. The p53 protein impacts neuronal apoptosis following TBI, thus investigation into TP53 genetic variability as a prognosticator for TBI outcomes (mortality, Glasgow Outcome Scale [GOS], Neurobehavioral Rating Scale [NRS], and Disability Rating Scale [DRS]) is warranted. Participants (N = 429) with severe TBI (Glasgow Coma Scale score ≤8) were enrolled into a prospective study with outcomes assessed over 24 months following injury. The single-nucleotide polymorphism Arg72Pro (rs1042522), a functional missense polymorphism for which the CC homozygous genotype is most efficient at inducing apoptosis, was investigated. Individuals with the CC genotype (arginine homozygotes) were more likely to have poorer outcomes at 24 months following TBI compared to individuals with CG/GG genotypes (GOS: p = .048, DRS: p = .022). These findings add to preliminary evidence that p53 plays a role in recovery following TBI and, if further replicated, could support investigations into p53-based therapies for treating TBI.
Collapse
Affiliation(s)
| | - Dianxu Ren
- School of Nursing, University of Pittsburgh, PA, USA
| | | | - Nicole Osier
- School of Nursing, University of Texas at Austin, TX, USA.,Department of Neurology, Dell Medical School, University of Texas at Austin, TX, USA
| | - Sue R Beers
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, PA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, PA, USA
| |
Collapse
|
27
|
García-Bonilla M, Ojeda-Pérez B, García-Martín ML, Muñoz-Hernández MC, Vitorica J, Jiménez S, Cifuentes M, Santos-Ruíz L, Shumilov K, Claros S, Gutiérrez A, Páez-González P, Jiménez AJ. Neocortical tissue recovery in severe congenital obstructive hydrocephalus after intraventricular administration of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:121. [PMID: 32183876 PMCID: PMC7079418 DOI: 10.1186/s13287-020-01626-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background In obstructive congenital hydrocephalus, cerebrospinal fluid accumulation is associated with high intracranial pressure and the presence of periventricular edema, ischemia/hypoxia, damage of the white matter, and glial reactions in the neocortex. The viability and short time effects of a therapy based on bone marrow-derived mesenchymal stem cells (BM-MSC) have been evaluated in such pathological conditions in the hyh mouse model. Methods BM-MSC obtained from mice expressing fluorescent mRFP1 protein were injected into the lateral ventricle of hydrocephalic hyh mice at the moment they present a very severe form of the disease. The effect of transplantation in the neocortex was compared with hydrocephalic hyh mice injected with the vehicle and non-hydrocephalic littermates. Neural cell populations and the possibility of transdifferentiation were analyzed. The possibility of a tissue recovering was investigated using 1H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, thus allowing the detection of metabolites/osmolytes related with hydrocephalus severity and outcome in the neocortex. An in vitro assay to simulate the periventricular astrocyte reaction conditions was performed using BM-MSC under high TNFα level condition. The secretome in the culture medium was analyzed in this assay. Results Four days after transplantation, BM-MSC were found undifferentiated and scattered into the astrocyte reaction present in the damaged neocortex white matter. Tissue rejection to the integrated BM-MSC was not detected 4 days after transplantation. Hyh mice transplanted with BM-MSC showed a reduction in the apoptosis in the periventricular neocortex walls, suggesting a neuroprotector effect of the BM-MSC in these conditions. A decrease in the levels of metabolites/osmolytes in the neocortex, such as taurine and neuroexcytotoxic glutamate, also indicated a tissue recovering. Under high TNFα level condition in vitro, BM-MSC showed an upregulation of cytokine and protein secretion that may explain homing, immunomodulation, and vascular permeability, and therefore the tissue recovering. Conclusions BM-MSC treatment in severe congenital hydrocephalus is viable and leads to the recovery of the severe neurodegenerative conditions in the neocortex. NMR spectroscopy allows to follow-up the effects of stem cell therapy in hydrocephalus.
Collapse
Affiliation(s)
- María García-Bonilla
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - María L García-Martín
- BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain
| | - M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain
| | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Cifuentes
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Leonor Santos-Ruíz
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Kirill Shumilov
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Silvia Claros
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Páez-González
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain. .,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| | - Antonio J Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain. .,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| |
Collapse
|
28
|
Munshi A, Mehic J, Creskey M, Gobin J, Gao J, Rigg E, Muradia G, Luebbert CC, Westwood C, Stalker A, Allan DS, Johnston MJW, Cyr T, Rosu-Myles M, Lavoie JR. A comprehensive proteomics profiling identifies NRP1 as a novel identity marker of human bone marrow mesenchymal stromal cell-derived small extracellular vesicles. Stem Cell Res Ther 2019; 10:401. [PMID: 31852509 PMCID: PMC6921509 DOI: 10.1186/s13287-019-1516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance. METHODS Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers. RESULTS Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 1010 ± 3.23 × 109/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors. CONCLUSION The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.
Collapse
Affiliation(s)
- Afnan Munshi
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jelica Mehic
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jonathan Gobin
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jun Gao
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Emma Rigg
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Gauri Muradia
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Christian C Luebbert
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carole Westwood
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Stalker
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Michael J W Johnston
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Carleton, Ottawa, Ontario, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
29
|
Chong AJ, Wee HY, Chang CH, Chio CC, Kuo JR, Lim SW. Effects of a High-Fat Diet on Neuroinflammation and Apoptosis in Acute Stage After Moderate Traumatic Brain Injury in Rats. Neurocrit Care 2019; 33:230-240. [DOI: 10.1007/s12028-019-00891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Muhammad SA. Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. Biofactors 2019; 45:880-891. [PMID: 31498511 DOI: 10.1002/biof.1563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a global health problem that is a common cause of disability and mortality. Despite the availability of many treatment options, none is capable of restoring functional and structural recovery of the damaged brain. Both the results of preclinical and clinical studies suggest the use of mesenchymal stromal cells (MSCs) as a therapeutic strategy for structural and functional recovery in TBI. However, recent evidence shows that the neuroprotective potential of MSCs is due to multiple secretions of bioactive molecules that modulate tissue microenvironment for tissue repair and regeneration. The results of preclinical studies indicate the therapeutic benefits of MSC secretome in TBI. Soluble bioactive molecules and extracellular vesicles are the various factors secreted by MSCs that can induce neurogenesis, angiogenesis, neovascularization, and anti-inflammatory activities. This review highlights the neuroprotective effect of MSC secretome for the treatment of TBI. In addition, the possible challenges of secretome as biotherapeutics are identified and how some of the issues raised could be overcome for effective clinical application are also discussed.
Collapse
|
31
|
Chong AJ, Lim SW, Lee YL, Chio CC, Chang CH, Kuo JR, Wang CC. The Neuroprotective Effects of Simvastatin on High Cholesterol Following Traumatic Brain Injury in Rats. World Neurosurg 2019; 132:e99-e108. [PMID: 31518751 DOI: 10.1016/j.wneu.2019.08.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND High cholesterol has been correlated with a greater risk of cerebrovascular diseases. Whether pre-existing high cholesterol exacerbates traumatic brain injury (TBI), and whether treatment with the cholesterol-lowering agent simvastatin has neuroprotective effects, especially anti-neuroinflammatory effects, after TBI are not well investigated. METHODS Five-week-old male Sprague-Dawley rats were fed a high-fat diet for 8 weeks to induce hypercholesterolemia. Anesthetized male Sprague-Dawley rats were divided into 5 groups, including the sham-operated control, TBI control, and TBI with simvastatin treatment (4 mg/kg, 10 mg/kg, or 20 mg/kg) groups. Simvastatin was intraperitoneally injected at 0, 24, and 48 hours after TBI. Motor function was measured using an inclined plane. Neuronal apoptosis (maker Neu-N, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling), tumor necrosis factor-α expression in microglia (marker OX42) and astrocytes (marker glial fibrillary acidic protein), and Tumor necrosis factor-alpha receptor (TNFR) 1 and TNFR2 expression in neurons in the ischemic cortex were investigated using an immunofluorescence assay. All of the parameters were measured on the third day after TBI. RESULTS TBI significantly increased the serum levels of cholesterol. The TBI-induced motor deficit was significantly attenuated by 4, 10, and 20 mg/kg simvastatin therapy on the third day after TBI. TBI-induced neuronal TNFR1 activation and apoptosis, as well as tumor necrosis factor-α expression in astrocytes in the ischemic cortex, were significantly attenuated by simvastatin, particularly when 20 mg/kg was administered. Simultaneously, the serum cholesterol remained high despite simvastatin treatment. CONCLUSIONS The neuroprotection effects of simvastatin on the pre-existing hypercholesterolemia during TBI in rats may be related to its anti-neuroinflammatory effects but not to its cholesterol-lowing effects.
Collapse
Affiliation(s)
- Arng Jack Chong
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Yao-Lin Lee
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chin-Hung Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Medical Research Chi-Mei Medical Center, Tainan, Taiwan.
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Medical Research Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
32
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
33
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Human adipose-derived stem cell treatment modulates cellular protection in both in vitro and in vivo traumatic brain injury models. J Trauma Acute Care Surg 2019; 84:745-751. [PMID: 29251705 DOI: 10.1097/ta.0000000000001770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common cause of morbidity and mortality in the civilian population. The purpose of this study was to examine the effect(s) of adipose-derived stem cell (ASC) treatment on cellular and functional recovery in TBI via both in vitro and in vivo methods. METHODS Cultured neuroblastoma cells, SH-SY5Y, were scratched to mimic TBI in an in vitro model. The effect of ASC-conditioned medium (CM) on cell death, mitochondrial function, and expression of inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin 1β [IL-1β], and IL-6), as well as apoptosis marker FAS, was measured. In our in vivo model, Sprague-Dawley rats underwent TBI via a frontal, closed-head injury model. Animals randomly received either intravenous human-derived ASCs or intravenous saline within 3 hours of injury and were compared with a sham group. Functional recovery was evaluated via accelerating Rotarod method. On post-TBI Day 3, brain tissue was harvested and assessed for cellular damage via enzyme-linked immunosorbent assay for TNF-α, as well as immunohistochemical staining for β-amyloid precursor protein (β-APP). RESULTS Our in vitro data show that ASC treatment imparted reduced cell death (ratio to control: 1.21 ± 0.066 vs. 1.01 ± 0.056, p = 0.017), increased cell viability (ratio to control: 0.86 ± 0.009 vs. 1.09 ± 0.01, p = 0.0001), increased mitochondrial function (percentage of control: 78 ± 6% vs. 68 ± 3%), and significantly decreased levels of inflammatory cytokine IL-1β. In our in vivo study, compared with TBI alone, ASC-treated animals showed no difference in functional recovery, lower levels of expressed TNF-α (ratio to total protein, 0.47 ± 0.01 vs. 0.67 ± 0.04; p < 0.01), and lower levels of β-amyloid precursor protein (fluorescence ratio, 0.43 ± 0.05 vs. 0.69 ± 0.03; p < 0.01). CONCLUSIONS Adipose-derived stem cell treatment results in improved cell survival, decreased inflammatory marker release, and decreased evidence of neural injury. No difference in functional recovery was seen. These data suggest the potential for ASC treatment to aid in cellular protection and recovery in neural cells following TBI.
Collapse
|
35
|
Skop NB, Singh S, Antikainen H, Saqcena C, Calderon F, Rothbard DE, Cho CH, Gandhi CD, Levison SW, Dobrowolski R. Subacute Transplantation of Native and Genetically Engineered Neural Progenitors Seeded on Microsphere Scaffolds Promote Repair and Functional Recovery After Traumatic Brain Injury. ASN Neuro 2019; 11:1759091419830186. [PMID: 30818968 PMCID: PMC6399762 DOI: 10.1177/1759091419830186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
There is intense interest and effort toward regenerating the brain after severe injury. Stem cell transplantation after insult to the central nervous system has been regarded as the most promising approach for repair; however, engrafting cells alone might not be sufficient for effective regeneration. In this study, we have compared neural progenitors (NPs) from the fetal ventricular zone (VZ), the postnatal subventricular zone, and an immortalized radial glia (RG) cell line engineered to conditionally secrete the trophic factor insulin-like growth factor 1 (IGF-1). Upon differentiation in vitro, the VZ cells were able to generate a greater number of neurons than subventricular zone cells. Furthermore, differentiated VZ cells generated pyramidal neurons . In vitro, doxycycline-driven secretion of IGF-1 strongly promoted neuronal differentiation of cells with hippocampal, interneuron and cortical specificity. Accordingly, VZ and engineered RG-IGF-1-hemagglutinin (HA) cells were selected for subsequent in vivo experiments. To increase cell survival, we delivered the NPs attached to a multifunctional chitosan-based scaffold. The microspheres containing adherent NPs were injected subacutely into the lesion cavity of adult rat brains that had sustained controlled cortical impact injury. At 2 weeks posttransplantation, the exogenously introduced cells showed a reduction in stem cell or progenitor markers and acquired mature neuronal and glial markers. In beam walking tests assessing sensorimotor recovery, transplanted RG cells secreting IGF-1 contributed significantly to functional improvement while native VZ or RG cells did not promote significant recovery. Altogether, these results support the therapeutic potential of chitosan-based multifunctional microsphere scaffolds seeded with genetically modified NPs expressing IGF-1 to promote repair and functional recovery after traumatic brain injuries.
Collapse
Affiliation(s)
- Nolan B. Skop
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sweta Singh
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Henri Antikainen
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Chaitali Saqcena
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Deborah E. Rothbard
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Cheul H. Cho
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Chirag D. Gandhi
- Department of Neurosurgery, Westchester Medical Center at NY Medical College, Valhalla, NY, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
36
|
Damous LL, de Carvalho AETS, Nakamuta JS, Shiroma ME, Louzada ACS, Soares-Jr JM, Krieger JE, Baracat EC. Cell-free therapy with the secretome of adipose tissue-derived stem cells in rats' frozen-thawed ovarian grafts. Stem Cell Res Ther 2018; 9:323. [PMID: 30463630 PMCID: PMC6249760 DOI: 10.1186/s13287-018-1054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
The use of secretome may be a new strand of cell therapy, which is equal to or even superior to the injection of live cells, called cell-free therapy. In ovarian transplantation, this approach may be a therapeutic possibility for the ovarian graft in hypoxia. We designed the present study to evaluate whether the cell-free therapy with the secretome of adipose tissue-derived stem cells (ASCs) in rat frozen-thawed ovarian grafts could protect a graft against ischemic injury. A single dose of rat ASCs secretome or vehicle was injected into the bilateral frozen-thawed ovaries of 18 adult female rats immediately after an autologous transplant. Nine animals were used to control the cryopreservation protocol and were evaluated before and after the cryopreservation process. Daily vaginal smears were performed for estrous cycle evaluation until euthanasia on postoperative day 30. Follicle viability by trypan blue, graft morphology by HE, and apoptosis by TUNEL and cleaved-caspase-3 were assessed. No differences were found with respect to estrous cycle resumption and follicle viability (p > 0.05). However, compared with the vehicle-treated grafts, the morphology of the secretome-treated grafts was impaired, showing reduced follicular population and increased apoptosis (p < 0.05). ASC secretome impaired the rat frozen-thawed ovarian graft from ischemic injury. However, more studies are needed to evaluate the factors involved and the possibility of applying the secretome in scaffolds to optimize its use.
Collapse
Affiliation(s)
- Luciana Lamarão Damous
- Disciplina de Ginecologia, Laboratório de Biologia Estrutural e Molecular (LIM58), Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 4nf floor, room 4119, Pacaembu, São Paulo, 01246-903, Brazil. .,Baturite St, 120. Ap 91., Aclimação, São Paulo, 01530-030, Brazil.
| | - Ana Elisa Teófilo Saturi de Carvalho
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil
| | - Juliana Sanajotti Nakamuta
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil
| | - Marcos Eiji Shiroma
- Disciplina de Ginecologia, Laboratório de Biologia Estrutural e Molecular (LIM58), Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 4nf floor, room 4119, Pacaembu, São Paulo, 01246-903, Brazil
| | - Andressa Cristina Sposato Louzada
- Disciplina de Ginecologia, Laboratório de Biologia Estrutural e Molecular (LIM58), Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 4nf floor, room 4119, Pacaembu, São Paulo, 01246-903, Brazil
| | - José Maria Soares-Jr
- Disciplina de Ginecologia, Laboratório de Biologia Estrutural e Molecular (LIM58), Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 4nf floor, room 4119, Pacaembu, São Paulo, 01246-903, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, São Paulo, 05403-000, Brazil
| | - Edmund C Baracat
- Disciplina de Ginecologia, Laboratório de Biologia Estrutural e Molecular (LIM58), Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 4nf floor, room 4119, Pacaembu, São Paulo, 01246-903, Brazil
| |
Collapse
|
37
|
Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy-Brief review. Clin Neurol Neurosurg 2018; 173:8-14. [PMID: 30053745 DOI: 10.1016/j.clineuro.2018.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022]
Abstract
Adult mammalian neural stem cells are unique because of their properties, such as differentiation capacity, self-renewal, quiescence, and also because they exist in specific niches, which are the subventricular zone (SVZ) and subgranular zone (SGZ) - the dentate gyrus of the hippocampus. SVZ is situated along the ependymal cell layer, dividing the ventricular area and subventricular zone. There are several sources of neural stem cells such as human embryonic stem cells, human fetal brain-derived neural stem/progenitor cells, human induced pluripotent stem cells, direct reprogrammed astrocytes. Stem cell sciences are a promising tool for research purposes as well as therapy. Induced pluripotent stem cells appear to be very useful for human neuron studies, allowing the creation of defined neuron populations, particularly for neurodevelopmental and neurodegenerative diseases as well as ischemic events. Neural stem cell sciences have a promising future in terms of stem cell therapy as well as research. There is, however, still a great need for further research to overcome obstacles.
Collapse
Affiliation(s)
- Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Doktora Kazimierza Jaczewskiego 4, 20-400, Lublin, Poland; Department of Neurosurgery and Pediatric Neurosurgery in Lublin, Medical University of Lublin, Poland.
| | - Elżbieta Radzikowska
- Department of Plastic Surgery, Central Clinical Hospital of the MSWiA in Warsaw, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Doktora Kazimierza Jaczewskiego 4, 20-400, Lublin, Poland
| |
Collapse
|
38
|
Conditioned Medium of Bone Marrow-Derived Mesenchymal Stromal Cells as a Therapeutic Approach to Neuropathic Pain: A Preclinical Evaluation. Stem Cells Int 2018. [PMID: 29535781 PMCID: PMC5831939 DOI: 10.1155/2018/8179013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is a type of chronic pain caused by injury or dysfunction of the nervous system, without effective therapeutic approaches. Mesenchymal stromal cells (MSCs), through their paracrine action, have great potential in the treatment of this syndrome. In the present study, the therapeutic potential of MSC-derived conditioned medium (CM) was investigated in a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSL). PSL mice were treated by endovenous route with bone marrow-derived MSCs (1 × 106), CM, or vehicle. Gabapentin was the reference drug. Twelve hours after administration, neuropathic mice treated with CM exhibited an antinociceptive effect that was maintained throughout the evaluation period. MSCs also induced nonreversed antinociception, while gabapentin induced short-lasting antinociception. The levels of IL-1β, TNF-α, and IL-6 were reduced, while IL-10 was enhanced on sciatic nerve and spinal cord by treatment with CM and MSCs. Preliminary analysis of the CM secretome revealed the presence of growth factors and cytokines likely involved in the antinociception. In conclusion, the CM, similar to injection of live cells, produces a powerful and long-lasting antinociceptive effect on neuropathic pain, which is related with modulatory properties on peripheral and central levels of cytokines involved with the maintenance of this syndrome.
Collapse
|
39
|
Lim SW, Shiue YL, Liao JC, Wee HY, Wang CC, Chio CC, Chang CH, Hu CY, Kuo JR. Simvastatin Therapy in the Acute Stage of Traumatic Brain Injury Attenuates Brain Trauma-Induced Depression-Like Behavior in Rats by Reducing Neuroinflammation in the Hippocampus. Neurocrit Care 2017; 26:122-132. [PMID: 27406816 DOI: 10.1007/s12028-016-0290-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The antidepressant-like effects of simvastatin on traumatic brain injury (TBI) remain unclear. The present study aimed to investigate the neuroprotective effects of simvastatin and determine whether simvastatin attenuates TBI-induced depression-like behavior and, more specifically, acts as an antineuroinflammatory. METHODS Anesthetized male Sprague-Dawley rats were divided into five groups: sham-operated controls, TBI controls, and TBI treatment with simvastatin 4, 10, or 20 mg/kg. Simvastatin was intraperitoneally injected 0, 24, and 48 h after TBI. The motor function was measured using an inclined plane, and depression-like behavior was evaluated using forced swimming tests. Neuronal apoptosis (markers: NeuN, TUNEL, caspase-3), microglia (marker: OX42) and astrocyte (marker: GFAP) activation, and TNF-α expression in the microglia and astrocytes of the hippocampal CA3 area were investigated using immunofluorescence assay. All parameters were measured on the 4th, 8th, and 15th day, or only on the 15th day after TBI. RESULTS TBI-induced depression-like behavior, which increased duration of immobility, was significantly attenuated by 20 mg simvastatin therapy on day 15 after TBI. TBI-induced neuronal apoptosis, microglia and astrocyte activation, and TNF-α expression in the microglia and astrocytes of the CA3 area of the hippocampus were significantly reduced by simvastatin treatment, particularly when 20 mg/kg was administered for 3 days. CONCLUSIONS Intraperitoneal injection of simvastatin attenuated TBI in rats during the acute stage by reducing neuronal apoptosis, microglia, and TNF-α expression, thereby resulting in a reduction of depressive-like behavior. Our results suggest that simvastatin may be a promising treatment for TBI-induced depression-like behavior.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jen-Chieh Liao
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hsiao-Yue Wee
- Department of Neurosurgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Che-Chuan Wang
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
- Departments of Child Care, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chin-Hung Chang
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chiao-Ya Hu
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan.
- Departments of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.
- Chi-Mei Medical Center, #901 Chung Hwa Road, Yung Kang, Tainan, Taiwan.
| |
Collapse
|
40
|
Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury. Front Neurol 2017; 8:28. [PMID: 28265255 PMCID: PMC5316525 DOI: 10.3389/fneur.2017.00028] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University , Doha , Qatar
| | - George Deeb
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Rahaf Rahal
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Khairallah Atwi
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | - Amr Gali
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Eliana Sleiman
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
41
|
Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Crit Care Med 2016; 44:e1118-e1131. [DOI: 10.1097/ccm.0000000000001864] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Li G, Yu F, Lei T, Gao H, Li P, Sun Y, Huang H, Mu Q. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res 2016; 11:1015-24. [PMID: 27482235 PMCID: PMC4962565 DOI: 10.4103/1673-5374.184506] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.
Collapse
Affiliation(s)
- Guihong Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurosurgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Fengbo Yu
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Ting Lei
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haijun Gao
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peiwen Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yuxue Sun
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haiyan Huang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingchun Mu
- Department of Neurosurgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| |
Collapse
|
43
|
Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools. Front Cell Neurosci 2016; 10:109. [PMID: 27199663 PMCID: PMC4852177 DOI: 10.3389/fncel.2016.00109] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-surrounded structures released by most cell types. They are characterized by a specific set of proteins, lipids and nucleic acids. EVs have been recognized as potent vehicles of intercellular communication to transmit biological signals between cells. In addition, pathophysiological roles of EVs in conditions like cancer, infectious diseases and neurodegenerative disorders are well established. In recent years focus has been shifted on therapeutic use of stem cell derived-EVs. Use of stem cell derived-EVs present distinct advantage over the whole stem cells as EVs do not replicate and after intravenous administration, they are less likely to trap inside the lungs. From the therapeutic perspective, the most promising cellular sources of EVs are mesenchymal stem cells (MSCs), which are easy to obtain and maintain. Therapeutic activity of MSCs has been shown in numerous animal models and the beneficial paracrine effect of MSCs may be mediated by EVs. The various components of MSC derived-EVs such as proteins, lipids, and RNA might play a specific therapeutic role. In this review, we characterize the role of EVs in immune and central nervous system (CNS); present evidences for defective signaling of these vesicles in neurodegeneration and therapeutic role of EVs in CNS.
Collapse
Affiliation(s)
- Sylwia Koniusz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua Padua, Italy
| | - Amit K Srivastava
- Russel H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of SciencesWarsaw, Poland; Russel H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
44
|
Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P, Geurtsen W, Tsiftsoglou A. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments. Stem Cells Dev 2015. [PMID: 26203919 DOI: 10.1089/scd.2015.0197] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial transdifferentiation of SCAP, uncovering the molecular mechanisms regulating their fate. They also validate the angiogenic properties of their secretome giving insights into preconditioning strategies enhancing their therapeutic potential.
Collapse
Affiliation(s)
- Athina Bakopoulou
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece .,2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Aristeidis Kritis
- 3 Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Dimitrios Andreadis
- 4 Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Eleni Papachristou
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Gabriele Leyhausen
- 2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Petros Koidis
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Werner Geurtsen
- 2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Asterios Tsiftsoglou
- 5 Laboratory of Pharmacology, School of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| |
Collapse
|
45
|
Teixeira FG, Panchalingam KM, Anjo SI, Manadas B, Pereira R, Sousa N, Salgado AJ, Behie LA. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res Ther 2015. [PMID: 26204925 PMCID: PMC4533943 DOI: 10.1186/s13287-015-0124-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Krishna M Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Biocant - Biotechnology Innovation Center, Cantanhede, Portugal.
| | - Ricardo Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leo A Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
46
|
Prospect of stem cell conditioned medium in regenerative medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965849. [PMID: 25530971 PMCID: PMC4229962 DOI: 10.1155/2014/965849] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. OBJECTIVE To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. METHODS Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. RESULTS Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. CONCLUSION Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.
Collapse
|
47
|
Abstract
Radiation injury to skin results in a variety of deterministic effects including inflammatory reactions and cell depletion leading to distinct clinical symptoms following a defined time pattern. Therapeutic approaches are still limited, a complete restitution of affected areas is so far impossible. In the last few years increasing experimental knowledge about acquisition and administration of autologous stem cells also in the field of radiation injuries has been obtained. Evidence reviewed in this article shows that the beneficial effects of stem cell transplantation are not necessarily due to the replacement of damaged cells by transplanted cells but most probably due in the most part to a paracrine effect. Transplanted cells secrete bioactive factors that initiate the stimulation of the host stem cells to regenerate the damaged tissues. Transplanted stem cells produce trophic factors which aid the systemic healing of the victims. Furthermore, administration of stem cell secretomes in the form of conditioned media containing microvesicles or exosomes can be as effective as administering the stem cells. This hypothesis is supported by findings that cell-free derivatives from hMSCs were useful for wound healing purposes and could circumvent the need for intact cells. Furthermore, the beneficial effect of MSC injection on reperfusion and tissue damage in a mouse model of hind limb ischemia could be attributed to paracrine mechanisms with local release of arteriogenic cytokines. Further evaluation of the paracrine potential of autologous stem cells may open new means for treatment of acute as well as chronic sequelae of cutaneous radiation injuries.
Collapse
Affiliation(s)
- M Rezvani
- Natural Biosciences SA, Lake Garden Medical Center, Kilchberg, Zurich, Switzerland,
| |
Collapse
|
48
|
Tsai YT, Wang CC, Leung PO, Lin KC, Chio CC, Hu CY, Kuo JR. Extracellular signal–regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res 2014; 189:106-16. [DOI: 10.1016/j.jss.2014.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
|
49
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
50
|
Wang CC, Chen YS, Lin BS, Chio CC, Hu CY, Kuo JR. The neuronal protective effects of local brain cooling at the craniectomy site after lateral fluid percussion injury in a rat model. J Surg Res 2013; 185:753-62. [DOI: 10.1016/j.jss.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|