1
|
Schepers M, Vangansewinkel T, Libberecht K, Jeurissen H, Jacobs D, Piccart E, Prior R, Ricciarelli R, Brullo C, Fedele E, Bruno O, Prickaerts J, Lambrichts I, Van Den Bosch L, Vanmierlo T, Wolfs E. Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A. Biomed Pharmacother 2025; 183:117828. [PMID: 39823724 DOI: 10.1016/j.biopha.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation. Therefore, increasing cAMP by inhibiting its degraders, phosphodiesterases (PDE), is a potential therapeutic strategy for CMT1A. This study investigated the therapeutic potential of the specific PDE4D inhibitor Gebr32a using the C3-PMP22 mouse model for CMT1A and patient-induced Pluripotent Stem Cell (iPSC)-derived Schwann cells. C3-PMP22 mice, injected subcutaneously with Gebr32a twice a day for 10 weeks, showed significantly increased nerve conduction in sciatic nerves compared to vehicle-injected controls, indicating improved myelination. Additionally, Gebr32a-treated C3-PMP22 mice exhibited improved sensorimotor functions. Grip strength analysis revealed significantly increased strength in all limbs of Gebr32a-treated C3-PMP22 mice. Post-mortem histological and ultrastructural analysis confirmed enhanced myelination in the sciatic nerve of treated mice compared to controls. In primary mouse CMT1A Schwann cells, Gebr32a dose-dependently increased the expression of pro-myelinating genes such as oct6, Krox20, Mbp, Mpz, and Plp, while downregulating the dedifferentiation marker c-Jun and human PMP22. Similar effects on gene expression were observed in iPSC-derived Schwann cells from a CMT1A patient, highlighting the clinical relevance of our findings. In conclusion, inhibition of PDE4D with Gebr32a improves the functional and molecular outcomes in mouse and human models of CMT1A, highlighting its potential as a new therapeutic strategy for CMT1A disease management.
Collapse
Affiliation(s)
- Melissa Schepers
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Karen Libberecht
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Hanne Jeurissen
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Darren Jacobs
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elisabeth Piccart
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium; Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | | | - Ivo Lambrichts
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Tim Vanmierlo
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Esther Wolfs
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
2
|
Almarzooqi A. Charcot-Marie-Tooth Disease With Leukodystrophy: An Atypical Presentation. Cureus 2024; 16:e64335. [PMID: 39130881 PMCID: PMC11316514 DOI: 10.7759/cureus.64335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
This case report presents a 23-year-old male diagnosed with Charcot-Marie-Tooth (CMT) disease, who exhibited additional neurological symptoms suggestive of leukodystrophy. The patient experienced recurrent episodes of slurred speech, imbalance, and a recent tonic-clonic seizure, prompting admission. Neurological examination and imaging revealed bilateral white matter changes, raising suspicion of leukoencephalopathy. Further investigations confirmed a nonsense mutation c.64C>T (p.Arg22*) in the gap junction beta 1 (GJB1) gene. This case underscores the complexity of Charcot-Marie-Tooth disease type 1 (CMTX1) with atypical central nervous system (CNS) manifestations, highlighting the importance of comprehensive diagnostic evaluations and a multidisciplinary approach to management.
Collapse
|
3
|
Artiukhov AV, Solovjeva ON, Balashova NV, Sidorova OP, Graf AV, Bunik VI. Pharmacological Doses of Thiamine Benefit Patients with the Charcot-Marie-Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1161-1182. [PMID: 39218016 DOI: 10.1134/s0006297924070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Charcot-Marie-Tooth (CMT) neuropathy is a polygenic disorder of peripheral nerves with no effective cure. Thiamine (vitamin B1) is a neurotropic compound that improves neuropathies. Our pilot study characterizes therapeutic potential of daily oral administration of thiamine (100 mg) in CMT neuropathy and its molecular mechanisms. The patient hand grip strength was determined before and after thiamine administration along with the blood levels of the thiamine coenzyme form (thiamine diphosphate, ThDP), activities of endogenous holo-transketolase (without ThDP in the assay medium) and total transketolase (with ThDP in the assay medium), and transketolase activation by ThDP [1 - (holo-transketolase/total transketolase),%], corresponding to the fraction of ThDP-free apo-transketolase. Single cases of administration of sulbutiamine (200 mg) or benfotiamine (150 mg) reveal their effects on the assayed parameters within those of thiamine. Administration of thiamine or its pharmacological forms increased the hand grip strength in the CMT patients. Comparison of the thiamin status in patients with different forms of CMT disease to that of control subjects without diagnosed pathologies revealed no significant differences in the average levels of ThDP, holo-transketolase, or relative content of holo and apo forms of transketolase. However, the regulation of transketolase by thiamine/ThDP differed in the control and CMT groups: in the assay, ThDP activated transketolase from the control individuals, but not from CMT patients. Thiamine administration paradoxically decreased endogenous holo-transketolase in CMT patients; this effect was not observed in the control group. Correlation analysis revealed sex-specific differences in the relationship between the parameters of thiamine status in both the control subjects and patients with the CMT disease. Thus, our findings link physiological benefits of thiamine administration in CMT patients to changes in their thiamine status, in particular, the blood levels of ThDP and transketolase regulation.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
| | - Olga N Solovjeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia V Balashova
- Faculty of Advanced Medicine, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
- Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, 117198, Russia
| | - Olga P Sidorova
- Department of Neurology, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria I Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
5
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
7
|
Van Lent J, Verstraelen P, Asselbergh B, Adriaenssens E, Mateiu L, Verbist C, De Winter V, Eggermont K, Van Den Bosch L, De Vos WH, Timmerman V. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain 2021; 144:2471-2485. [PMID: 34128983 PMCID: PMC8418338 DOI: 10.1093/brain/awab226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Axonal Charcot-Marie-Tooth neuropathies (CMT type 2) are caused by inherited mutations in various genes functioning in different pathways. The type of genes and multiplicity of mutations reflect the clinical and genetic heterogeneity in CMT2 disease, which complicates the diagnosis and has halted therapy development. Here, we used CMT2 patient-derived pluripotent stem cells (iPSCs) to identify common hallmarks of axonal degeneration shared by different CMT2 subtypes. We compared the cellular phenotypes of neurons differentiated from CMT2 patient iPSCs with those from healthy controls and a CRISPR/Cas9-corrected isogenic line. Our results demonstrate neurite network alterations along with extracellular electrophysiological abnormalities in the differentiated motor neurons. Progressive deficits in mitochondrial and lysosomal trafficking, as well as in mitochondrial morphology, were observed in all CMT2 patient lines. Differentiation of the same CMT2 iPSC-lines into peripheral sensory neurons, only gave rise to cellular phenotypes in subtypes with sensory involvement, supporting the notion that some gene mutations predominantly affect motor neurons. We revealed a common mitochondrial dysfunction in CMT2-derived motor neurons, supported by alterations in the expression pattern and oxidative phosphorylation, which could be recapitulated in the sciatic nerve tissue of a symptomatic mouse model. Inhibition of a dual leucine zipper kinase (DLK) could partially ameliorate the mitochondrial disease phenotypes in CMT2 subtypes. Altogether, our data reveals shared cellular phenotypes across different CMT2 subtypes and suggests that targeting such common pathomechanisms could allow the development of a uniform treatment for CMT2.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Ligia Mateiu
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
| | - Christophe Verbist
- Laboratory of Molecular Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| |
Collapse
|
8
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
9
|
Li MX, Mercier P, Hartman JJ, Sykes BD. Structural Basis of Tirasemtiv Activation of Fast Skeletal Muscle. J Med Chem 2021; 64:3026-3034. [PMID: 33703886 DOI: 10.1021/acs.jmedchem.0c01412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pascal Mercier
- National High Field NMR Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James J Hartman
- Cytokinetics, Inc., South San Francisco, California 94080, United States
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
11
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
12
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
13
|
Hardy PA. Editorial for "Microstructural Integrity of Peripheral Nerves in Charcot-Marie-Tooth (CMT) Disease: An MRI Evaluation Study". J Magn Reson Imaging 2020; 53:445-446. [PMID: 33128410 DOI: 10.1002/jmri.27417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter A Hardy
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Farré Mariné A, Granger N, Bertolani C, Mascort Boixeda J, Shelton GD, Luján Feliu‐Pascual A. Long-term outcome of Miniature Schnauzers with genetically confirmed demyelinating polyneuropathy: 12 cases. J Vet Intern Med 2020; 34:2005-2011. [PMID: 32738000 PMCID: PMC7517849 DOI: 10.1111/jvim.15861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A demyelinating polyneuropathy with focally folded myelin sheaths was reported in 3 Miniature Schnauzers in France in 2008 and was predicted to represent a naturally occurring canine homologue of Charcot-Marie-Tooth (CMT) disease. A genetic variant of MTRM13/SBF2 has been identified as causative in affected Miniature Schnauzers with this polyneuropathy. OBJECTIVE To provide data on the long-term progression in affected Miniature Schnauzers from Spain confirmed with the MTRM13/SBF2 genetic variant. ANIMALS Twelve Miniature Schnauzers presented between March 2013 and June 2019. METHODS Only dogs presented with consistent clinical signs and homozygous for the MTRM13/SBF2 genetic variant were included. Clinical signs, age of onset and presentation, time from onset to presentation, treatment, outcome, and time from diagnosis to final follow-up were retrospectively reviewed. RESULTS The hallmark clinical signs at the time of presentation were regurgitation with radiologically confirmed megaesophagus (11/12) and aphonic bark (11/12) with or without obvious neuromuscular weakness despite electrodiagnostic evidence of appendicular demyelinating polyneuropathy. Age of onset and clinical presentation were 3-18 and 4-96 months, respectively. Treatment was mostly symptomatic and consisted of head elevation during meals, antacids, prokinetics, bethanechol, sildenafil, mirtazapine, or some combination of these. During the follow-up period (7-73 months), clinical signs were unchanged in (11/12) cases with aspiration pneumonia developing occasionally (6/12) and being the cause of death in 1 dog. CONCLUSIONS AND CLINICAL IMPORTANCE Demyelinating polyneuropathy of Miniature Schnauzers tends to remain stable over the long term leading to a good prognosis with preventive feeding measures and symptomatic treatment to control aspiration pneumonia.
Collapse
Affiliation(s)
| | - Nicolas Granger
- CVS Referrals, Bristol Veterinary Specialists at HighcroftBristolUK
- The Royal Veterinary College, University of LondonHatfieldUK
| | | | | | - G. Diane Shelton
- Department of Pathology, School of MedicineUniversity of California and Comparative Neuromuscular LaboratorySan DiegoCaliforniaUSA
| | | |
Collapse
|
15
|
Scapin C, Ferri C, Pettinato E, Zambroni D, Bianchi F, Del Carro U, Belin S, Caruso D, Mitro N, Pellegatta M, Taveggia C, Schwab MH, Nave KA, Feltri ML, Wrabetz L, D'Antonio M. Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot-Marie-Tooth type 1B mouse model. Hum Mol Genet 2020; 28:992-1006. [PMID: 30481294 DOI: 10.1093/hmg/ddy411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Bianchi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ubaldo Del Carro
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Donatella Caruso
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Pellegatta
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Markus H Schwab
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - M Laura Feltri
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
16
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
17
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
18
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
19
|
TRIM E3 Ubiquitin Ligases in Rare Genetic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:311-325. [PMID: 32274764 DOI: 10.1007/978-3-030-38266-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TRIM family comprises proteins characterized by the presence of the tripartite motif composed of a RING domain, one or two B-box domains and a coiled-coil region. The TRIM shared domain structure underscores a common biochemical function as E3 ligase within the ubiquitination cascade. The TRIM proteins represent one of the largest E3 ligase families counting in human more than 70 members. These proteins are implicated in a plethora of cellular processes such as apoptosis, cell cycle regulation, muscular physiology, and innate immune response. Consistently, their alteration results in several pathological conditions emphasizing their medical relevance. Here, the genetic and pathogenetic mechanisms of rare disorders directly caused by mutations in TRIM genes will be reviewed. These diseases fall into different pathological areas, from malformation birth defects due to developmental abnormalities, to neurological disorders and progressive teenage neuromuscular disorders. In many instances, TRIM E3 ligases act on several substrates thus exerting pleiotropic activities: the need of unraveling disease-specific TRIM pathways for a precise targeting therapy avoiding dramatic side effects will be discussed.
Collapse
|
20
|
Brindisi M, Saraswati AP, Brogi S, Gemma S, Butini S, Campiani G. Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases. J Med Chem 2019; 63:23-39. [PMID: 31415174 DOI: 10.1021/acs.jmedchem.9b00924] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation orchestrates many cellular processes and greatly influences key disease mechanisms. Histone deacetylase (HDAC) enzymes play a crucial role either as biomarkers or therapeutic targets owing to their involvement in specific pathophysiological pathways. Beyond their well-characterized role as histone modifiers, HDACs also interact with several nonhistone substrates and their increased expression has been highlighted in specific diseases. The HDAC6 isoform, due to its unique cytoplasmic localization, modulates the acetylation status of tubulin, HSP90, TGF-β, and peroxiredoxins. HDAC6 also exerts noncatalytic activities through its interaction with ubiquitin. Both catalytic and noncatalytic functions of HDACs are being actively studied in the field of specific rare disorders beyond the well-established role in carcinogenesis. This Perspective outlines the application of HDAC(6) inhibitors in rare diseases, such as Rett syndrome, inherited retinal disorders, idiopathic pulmonary fibrosis, and Charcot-Marie-Tooth disease, highlighting their therapeutic potential as innovative and targeted disease-modifying agents.
Collapse
Affiliation(s)
- Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022 , University of Naples Federico II , Via D. Montesano 49 , I-80131 Naples , Italy
| | - A Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 , Siena , Italy
| | - Simone Brogi
- Department of Pharmacy , University of Pisa , via Bonanno 6 , 56126 , Pisa , Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 , Siena , Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 , Siena , Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 , University of Siena , via Aldo Moro 2 , 53100 , Siena , Italy
| |
Collapse
|
21
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
22
|
Charcot-Marie-Tooth 2F (Hsp27 mutations): A review. Neurobiol Dis 2019; 130:104505. [PMID: 31212070 DOI: 10.1016/j.nbd.2019.104505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease is a commonly inherited form of neuropathy. Although named over 100 years ago, identification of subtypes of Charcot-Marie-Tooth has rapidly expanded in the preceding decades with the advancement of genetic sequencing, including type 2F (CMT2F), due to mutations in heat shock protein 27 (Hsp27). However, despite CMT being one of the most common inherited neurological diseases, definitive mechanistic models of pathology and effective treatments for CMT2F are lacking. This review extensively profiles the published literature on CMT2F and distal hereditary motor neuropathy II (dHMN II), a similar neuropathy with exclusively motor symptoms that is also due to mutations in Hsp27. This includes a review of case reports and sequencing studies detailing disease course. Included are tables listing of all known published mutations of Hsp27 that cause symptoms of CMT2F and dHMN II. Furthermore, pathological mechanisms are assessed. While many groups have established pathologies relating to defective chaperone function, cellular neurofilament and microtubule structure and function, and mitochondrial and metabolic dysfunction, there are still discrepancies in results between different model systems. Moreover, initial mouse models have also produced promising results with similar phenotypes to humans, however discrepancies still exist. Both patient-focused and scientific studies have demonstrated variability in phenotypes even considering specific mutations. Given the clinical heterogeneity in presentation, CMT2F and dHMN II likely result from similar pathological mechanisms of the same general disease process that may present distinctly due to other genetic and environment influences. Determining how these influences exert their effects to produce pathology contributing to the disease phenotype will be a major future challenge ahead in the field.
Collapse
|
23
|
Won SY, Choi BO, Chung KW, Lee JE. Zebrafish is a central model to dissect the peripheral neuropathy. Genes Genomics 2019; 41:993-1000. [PMID: 31183681 DOI: 10.1007/s13258-019-00838-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
The peripheral nervous system (PNS) is composed with all nerves extended from the brain and spinal cord, which are the central nervous system to other organs of the body. Dysfunctional peripheral motion resulting from the regressive neuronal axons in the defected PNS leads to several peripheral neuropathies including both inherited and non-inherited disorders. Because of poor understanding of cellular and molecular mechanisms involved in the peripheral neuropathy, there is currently non-targeted treatment of the disorder. Basic researches have paid attention to dissect roles of causative genes, identified from the inherited peripheral neuropathies, in PNS development. However, recent studies focusing on investigation of therapeutic targets have suggested that successful regeneration of the impaired peripheral nerves may be most effective treatment. The regeneration studies have been limited in the rodents system due to some of practical and physiological disadvantages until zebrafish model has emerged as an ideal system. Hence, this review aims to provide a comprehensive overview of the advantages of zebrafish as a model for the peripheral neuropathy researches and to suggest the disease genes-involved potential mechanisms targeting the PNS regeneration that may be demonstrated in zebrafish.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Kongju, 32588, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
24
|
Jules Sottas (1866–1945) forgotten despite the eponym: “Dejerine-Sottas syndrome”. Rev Neurol (Paris) 2019; 175:283-290. [DOI: 10.1016/j.neurol.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022]
|
25
|
Volpi VG, Ferri C, Fregno I, Del Carro U, Bianchi F, Scapin C, Pettinato E, Solda T, Feltri ML, Molinari M, Wrabetz L, D’Antonio M. Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genet 2019; 15:e1008069. [PMID: 30995221 PMCID: PMC6488099 DOI: 10.1371/journal.pgen.1008069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/29/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders. Charcot-Marie-Tooth neuropathies are a large family of peripheral nerve disorders, showing extensive clinical and genetic heterogeneity. Although strong advances have been made in the identification of genes and mutations involved, effective therapies are still lacking. Intracellular retention of abnormal proteins has been recently suggested as one of the pathogenetic events that might underlie several conformational neuropathies. To limit the toxic effects of accumulated mutant proteins, cells have developed efficient protein quality control systems aimed at optimizing both protein folding and degradation. Here we show that ER-associated degradation limits Schwann cells stress and myelin defects caused by the accumulation of a mutant myelin protein into the ER. In addition, we also describe for the first time the importance of Schwann cells ERAD in preserving myelin integrity in adult nerves, showing that genetic ERAD impairment leads to a late onset, motor-predominant, peripheral neuropathy in vivo. Effort in the design of strategies that potentiate ERAD and ER quality controls is therefore highly desirable.
Collapse
Affiliation(s)
- Vera G. Volpi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Fregno
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ubaldo Del Carro
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tatiana Solda
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - M. Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio Molinari
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
26
|
El-Bazzal L, Rihan K, Bernard-Marissal N, Castro C, Chouery-Khoury E, Desvignes JP, Atkinson A, Bertaux K, Koussa S, Lévy N, Bartoli M, Mégarbané A, Jabbour R, Delague V. Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. Hum Mol Genet 2019; 28:2378-2394. [DOI: 10.1093/hmg/ddz060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot–Marie–Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system.
Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease’.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Khalil Rihan
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | - Eliane Chouery-Khoury
- Unité de Génétique Médicale, Université Saint Joseph, Campus des Sciences Médicales, Beirut, Lebanon
| | | | | | - Karine Bertaux
- Medical Genetics, Biological Resource Center—Tissue, DNA, Cells, CRB TAC, La Timone Children’s Hospital, Marseille, France
| | - Salam Koussa
- Department of Neurology, Lebanese University Hospital-Geitaoui, Beirut, Lebanon
| | - Nicolas Lévy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Children’s Hospital La Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - André Mégarbané
- Centre Médical et Psychopédagogique, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | - Rosette Jabbour
- Neurology Division, Department of Internal Medicine, St George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | | |
Collapse
|
27
|
Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H 2O 2 in a Side Reaction and Each Could Contribute to Oxidative Stress in Mitochondria. Neurochem Res 2019; 44:2325-2335. [PMID: 30847859 DOI: 10.1007/s11064-019-02765-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022]
Abstract
According to recent findings, the human 2-oxoglutarate dehydrogenase complex (hOGDHc) could be an important source of the reactive oxygen species in the mitochondria and could contribute to mitochondrial abnormalities associated with multiple neurodegenerative diseases, including Alzheimer's disease, Huntington disease, and Parkinson's disease. The human 2-oxoadipate dehydrogenase (hE1a) is a novel protein, which is encoded by the DHTKD1 gene. Both missence and nonsense mutations were identified in the DHTKD1 that lead to alpha-aminoadipic and alpha-oxoadipic aciduria, a metabolic disorder with a wide variety of the neurological abnormalities, and Charcot-Marie-Tooth disease type 2Q, an inherited neurological disorder affecting the peripheral nervous system. Recently, the rare pathogenic mutations in DHTKD1 and an increased H2O2 production were linked to the genetic ethiology of Eosinophilic Esophagitis (EoE), a chronic allergic inflammatory esophageal disorder. In view of the importance of hOGDHc in the tricarboxylic acid cycle (TCA cycle) and hE1a on the L-lysine, L-hydroxylysine and L-tryptophan degradation pathway in mitochondria, and to enhance our current understanding of the mechanism of superoxide/H2O2 generation by hOGDHc, and by human 2-oxoadipate dehydrogenase complex (hOADHc), this review focuses on several novel and unanticipated recent findings in vitro that emerged from the Jordan group's research. Most significantly, the hE1o and hE1a now join the hE3 as being able to generate the superoxide/H2O2 in mitochondria.
Collapse
|
28
|
Quadros Santos Monteiro Fonseca AT, Zanoteli E. Charcot-Marie-Tooth disease. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
30
|
Wang B, Li D, Rodriguez-Juarez R, Farfus A, Storozynsky Q, Malach M, Carpenter E, Filkowski J, Lykkesfeldt AE, Kovalchuk O. A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells. BMC Cancer 2018; 18:817. [PMID: 30103729 PMCID: PMC6090602 DOI: 10.1186/s12885-018-4711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION GNB4 is important for growth of breast cancer cells and a potential target for treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | | | - Allison Farfus
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Quinn Storozynsky
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Megan Malach
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Emily Carpenter
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Jody Filkowski
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Anne E. Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden, Copenhagen, Denmark
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Hepler Hall, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4 Canada
| |
Collapse
|
31
|
Collibee SE, Bergnes G, Muci A, Browne WF, Garard M, Hinken AC, Russell AJ, Suehiro I, Hartman J, Kawas R, Lu PP, Lee KH, Marquez D, Tomlinson M, Xu D, Kennedy A, Hwee D, Schaletzky J, Leung K, Malik FI, Morgans DJ, Morgan BP. Discovery of Tirasemtiv, the First Direct Fast Skeletal Muscle Troponin Activator. ACS Med Chem Lett 2018; 9:354-358. [PMID: 29670700 PMCID: PMC5900333 DOI: 10.1021/acsmedchemlett.7b00546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
![]()
The
identification and optimization of the first activators of
fast skeletal muscle are reported. Compound 1 was identified
from high-throughput screening (HTS) and subsequently found to improve
muscle function via interaction with the troponin complex. Optimization
of 1 for potency, metabolic stability, and physical properties
led to the discovery of tirasemtiv (25), which has been
extensively characterized in clinical trials for the treatment of
amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Scott E. Collibee
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Gustave Bergnes
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Alexander Muci
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - William F. Browne
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Marc Garard
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Aaron C. Hinken
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Alan J. Russell
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Ion Suehiro
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - James Hartman
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Raja Kawas
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Pu-Ping Lu
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Kenneth H. Lee
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - David Marquez
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Matthew Tomlinson
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Donghong Xu
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Adam Kennedy
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Darren Hwee
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Julia Schaletzky
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Kwan Leung
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Fady I. Malik
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - David J. Morgans
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Bradley P. Morgan
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Masingue M, Perrot J, Carlier RY, Piguet-Lacroix G, Latour P, Stojkovic T. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon. Neurogenetics 2018; 19:67-76. [PMID: 29396836 DOI: 10.1007/s10048-018-0539-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
Collapse
Affiliation(s)
- Marion Masingue
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France.
| | - Jimmy Perrot
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Robert-Yves Carlier
- Department of Medical Imaging, Hôpitaux universitaires Paris Ile-de-France Ouest, Hôpital Raymond Poincaré, Garches, France
| | | | - Philippe Latour
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Tanya Stojkovic
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
33
|
Muhammad AKMG, Kim K, Epifantseva I, Aghamaleky-Sarvestany A, Simpkinson ME, Carmona S, Landeros J, Bell S, Svaren J, Baloh RH. Cell transplantation strategies for acquired and inherited disorders of peripheral myelin. Ann Clin Transl Neurol 2018; 5:186-200. [PMID: 29468179 PMCID: PMC5817839 DOI: 10.1002/acn3.517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate transplantation of rat Schwann cells or human iPSC-derived neural crest cells and derivatives into models of acquired and inherited peripheral myelin damage. Methods Primary cultured rat Schwann cells labeled with a fluorescent protein for monitoring at various times after transplantation. Human-induced pluripotent stem cells (iPSCs) were differentiated into neural crest stem cells, and subsequently toward a Schwann cell lineage via two different protocols. Cell types were characterized using flow cytometry, immunocytochemistry, and transcriptomics. Rat Schwann cells and human iPSC derivatives were transplanted into (1) nude rats pretreated with lysolecithin to induce demyelination or (2) a transgenic rat model of dysmyelination due to PMP22 overexpression. Results Rat Schwann cells transplanted into sciatic nerves with either toxic demyelination or genetic dysmyelination engrafted successfully, and migrated longitudinally for relatively long distances, with more limited axial migration. Transplanted Schwann cells engaged existing axons and displaced dysfunctional Schwann cells to form normal-appearing myelin. Human iPSC-derived neural crest stem cells and their derivatives shared similar engraftment and migration characteristics to rat Schwann cells after transplantation, but did not further differentiate into Schwann cells or form myelin. Interpretation These results indicate that cultured Schwann cells surgically delivered to peripheral nerve can engraft and form myelin in either acquired or inherited myelin injury, as proof of concept for pursuing cell therapy for diseases of peripheral nerve. However, lack of reliable technology for generating human iPSC-derived Schwann cells for transplantation therapy remains a barrier in the field.
Collapse
Affiliation(s)
- A K M G Muhammad
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Irina Epifantseva
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Megan E Simpkinson
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Sharon Carmona
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Jesse Landeros
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Shaughn Bell
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences University of Wisconsin-Madison Madison Wisconsin 53706
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048.,Department of Neurology Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| |
Collapse
|
34
|
Fornasari BE, Ronchi G, Pascal D, Visigalli D, Capodivento G, Nobbio L, Perroteau I, Schenone A, Geuna S, Gambarotta G. Soluble Neuregulin1 is strongly up-regulated in the rat model of Charcot-Marie-Tooth 1A disease. Exp Biol Med (Maywood) 2018; 243:370-374. [PMID: 29350067 DOI: 10.1177/1535370218754492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuregulin1 (NRG1) is a growth factor playing a pivotal role in peripheral nerve development through the activation of the transmembrane co-receptors ErbB2-ErbB3. Soluble NRG1 isoforms, mainly secreted by Schwann cells, are strongly and transiently up-regulated after acute peripheral nerve injury, thus suggesting that they play a crucial role also in the response to nerve damage. Here we show that in the rat experimental model of the peripheral demyelinating neuropathy Charcot-Marie-Tooth 1A (CMT1A) the expression of the different NRG1 isoforms (soluble, type α and β, type a and b) is strongly up-regulated, as well as the expression of NRG1 co-receptors ErbB2-ErbB3, thus showing that CMT1A nerves have a gene expression pattern highly reminiscent of injured nerves. Because it has been shown that high concentrations of soluble NRG1 negatively affect myelination, we suggest that soluble NRG1 over-expression might play a negative role in the pathogenesis of CMT1A disease, and that a therapeutic approach, aimed to interfere with NRG1 activity, might be beneficial for CMT1A patients. Further studies will be necessary to test this hypothesis in animal models and to evaluate NRG1 expression in human patients. Impact statement Charcot-Marie-Tooth1A (CMT1A) is one of the most frequent inherited neurological diseases, characterized by chronic demyelination of peripheral nerves, for which effective therapies are not yet available. It has been recently proposed that the treatment with soluble Neuregulin1 (NRG1), a growth factor released by Schwann cells immediately after acute nerve injury, might be effective in CMT1A treatment. However, the expression of the different isoforms of endogenous NRG1 in CMT1A nerves has not been yet investigated. In this preliminary study, we demonstrate that different isoforms of soluble NRG1 are strongly over-expressed in CMT1A nerves, thus suggesting that a therapeutic approach based on NRG1 treatment should be carefully reconsidered. If soluble NRG1 is over-expressed also in human CMT1A nerves, a therapeutic approach aimed to inhibit (instead of stimulate) the signal transduction pathways driven by NRG1 might be fruitfully developed. Further studies will be necessary to test these hypotheses.
Collapse
Affiliation(s)
- Benedetta Elena Fornasari
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giulia Ronchi
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Davide Pascal
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,3 Candiolo Cancer Institute-FPO, IRCCS, Candiolo (TO) 10060, Italy
| | - Davide Visigalli
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Giovanna Capodivento
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Lucilla Nobbio
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Isabelle Perroteau
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| | - Angelo Schenone
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Stefano Geuna
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giovanna Gambarotta
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| |
Collapse
|
35
|
|
36
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
37
|
Prior R, Van Helleputte L, Benoy V, Van Den Bosch L. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 2017; 105:300-320. [DOI: 10.1016/j.nbd.2017.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
|
38
|
Saifullina EV, Magzhanov RV, Khidiyatova IM, Khusnutdinova EK. [Clinical and epidemiological characteristics of hereditary motor-sensory neuropathy 1X caused by the mutation c. 259C> G (p. P87A) in the GJB1 gene of patients from the Republic of Bashkortostan]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:80-84. [PMID: 28399101 DOI: 10.17116/jnevro20171173180-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
BACKGROUND Hereditary motor-sensory neuropathy 1X (НМСН 1X) is the second frequent form of hereditary motor-sensory neuropathies caused by mutations in the GJB1 gene (gap junction B1 type). The authors have established earlier that the с.259C>G (р.P87A) mutation is the most frequent cause of НМСН 1Х (92%) in patients from the Republic of Bashkortostan. AIM To study in details the territorial ethnic distribution and clinical manifestations of the с.259C>G (р.P87A) in the GJB1 gene in patients with НМСН 1Х from the Republic of Bashkortostan. MATERIAL AND METHODS Clinical/neurological data were assessed in 52 patients (32 men and 20 women) from 13 families with this НМСН 1Х mutation in accordance to the diagnostic criteria of the European neuromuscular center. Twenty-three patients underwent standard electroneuromyographic study ('Nicolet Viking quest') using cutaneous electrodes. Data analysis was performed with Statistica ver.6.0 ('Stat Soft, Inc.', 2003) software. RESULTS The с.259C>G (р.P87A) mutation was more frequent in Bashkir (61%) and Russian (31%) families from 6 areas of the Republic of Bashkortostan. The age-at-onset was 13.24±4.33 years in men. In women, the age-at-onset varied from 7 to 45 years, it was difficult to detect this parameter in several patients due to the absence of complaints and symptoms of disease. A comparative analysis revealed the higher degree of peripheral nerve lesions in men compared to women. There was the distinct difference in electrophysiological parameters (excitation spreading velocity and M-response amplitude) along motor fibers of the middle nerves between men and women that indicated the predominantly demyelinating character of the pathological process in men and the axonal character in women. CONCLUSION Clear clinical/electrophysiological sex differences (intra- and inter family) were shown in patients with НМСН IX with the с.259C>G (р.P87A) mutation in the GJB1 gene. The disease was less severe and often with the absence of symptoms in women. Genetic testing for mutations in the GJB1 gene, including the с.259C>G (р.P87A) mutation, can be recommended to female patients with excitation spreading velocity >38m/s.
Collapse
Affiliation(s)
| | | | - I M Khidiyatova
- Institute of Biochemistry and Genetics Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
39
|
Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci 2017; 10:143. [PMID: 28553203 PMCID: PMC5425483 DOI: 10.3389/fnmol.2017.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
40
|
Intermediate Charcot–Marie–Tooth disease: an electrophysiological reappraisal and systematic review. J Neurol 2017; 264:1655-1677. [DOI: 10.1007/s00415-017-8474-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
|
41
|
Echaniz-Laguna A, Geuens T, Petiot P, Péréon Y, Adriaenssens E, Haidar M, Capponi S, Maisonobe T, Fournier E, Dubourg O, Degos B, Salachas F, Lenglet T, Eymard B, Delmont E, Pouget J, Juntas Morales R, Goizet C, Latour P, Timmerman V, Stojkovic T. Axonal Neuropathies due to Mutations in Small Heat Shock Proteins: Clinical, Genetic, and Functional Insights into Novel Mutations. Hum Mutat 2017; 38:556-568. [PMID: 28144995 DOI: 10.1002/humu.23189] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/29/2017] [Indexed: 12/12/2022]
Abstract
In this study, we describe the phenotypic spectrum of distal hereditary motor neuropathy caused by mutations in the small heat shock proteins HSPB1 and HSPB8 and investigate the functional consequences of newly discovered variants. Among 510 unrelated patients with distal motor neuropathy, we identified mutations in HSPB1 (28 index patients/510; 5.5%) and HSPB8 (four index patients/510; 0.8%) genes. Patients have slowly progressive distal (100%) and proximal (13%) weakness in lower limbs (100%), mild lower limbs sensory involvement (31%), foot deformities (73%), progressive distal upper limb weakness (29%), mildly raised serum creatine kinase levels (100%), and central nervous system involvement (9%). We identified 12 HSPB1 and four HSPB8 mutations, including five and three not previously reported. Transmission was either dominant (78%), recessive (3%), or de novo (19%). Three missense mutations in HSPB1 (Pro7Ser, Gly53Asp, and Gln128Arg) cause hyperphosphorylation of neurofilaments, whereas the C-terminal mutant Ser187Leu triggers protein aggregation. Two frameshift mutations (Leu58fs and Ala61fs) create a premature stop codon leading to proteasomal degradation. Two mutations in HSPB8 (Lys141Met/Asn) exhibited increased binding to Bag3. We demonstrate that HSPB1 and HSPB8 mutations are a major cause of inherited motor axonal neuropathy. Mutations lead to diverse functional outcomes further demonstrating the pleotropic character of small heat shock proteins.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Department of Neurology, Neuromuscular Disease Centre (CERNEST), Strasbourg University Hospital, Strasbourg, France
| | - Thomas Geuens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Philippe Petiot
- Neuromuscular Disease Centre, Lyon University Hospital, Lyon, France
| | - Yann Péréon
- Neuromuscular Disease Centre, Nantes University Hospital, Nantes, France
| | - Elias Adriaenssens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Mansour Haidar
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Simona Capponi
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thierry Maisonobe
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Emmanuel Fournier
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Odile Dubourg
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Bertrand Degos
- APHP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Salachas
- APHP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Timothée Lenglet
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Bruno Eymard
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Emilien Delmont
- Neuromuscular Disease Centre, Nice University Hospital, Nice, France
| | - Jean Pouget
- Neuromuscular Disease Centre, Marseille University Hospital, APHM, Marseille, France
| | - Raul Juntas Morales
- Neuromuscular Disease Centre, Montpellier University Hospital, Montpellier, France
| | - Cyril Goizet
- Department of Genetics, Bordeaux University Hospital, Bordeaux, France
| | - Philippe Latour
- Biology and Pathology Department, Lyon University Hospital, Bron, France
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Tanya Stojkovic
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| |
Collapse
|
42
|
Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Curr Opin Genet Dev 2017; 44:61-73. [PMID: 28213160 DOI: 10.1016/j.gde.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Peripheral neuropathies are characterized by degeneration of peripheral motor, sensory and/or autonomic axons, leading to progressive distal muscle weakness, sensory deficits and/or autonomic dysfunction. Acquired peripheral neuropathies, e.g., as a side effect of chemotherapy, are distinguished from inherited peripheral neuropathies (IPNs). Drosophila models for chemotherapy-induced peripheral neuropathy and several IPNs have provided novel insight into the molecular mechanisms underlying axonal degeneration. Forward genetic screens have predictive value for discovery of human IPN genes, and the pathogenicity of novel mutations in known IPN genes can be evaluated in Drosophila. Future screens for genes and compounds that modify Drosophila IPN phenotypes promise to make valuable contributions to unraveling the molecular pathogenesis and identification of therapeutic targets for these incurable diseases.
Collapse
|
43
|
Volpi VG, Touvier T, D'Antonio M. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders. Front Mol Neurosci 2017; 9:162. [PMID: 28101003 PMCID: PMC5209374 DOI: 10.3389/fnmol.2016.00162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia.
Collapse
Affiliation(s)
- Vera G Volpi
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Thierry Touvier
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| |
Collapse
|
44
|
Ho AK, Wagstaff JL, Manna PT, Wartosch L, Qamar S, Garman EF, Freund SMV, Roberts RC. The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biol 2016; 14:109. [PMID: 27927196 PMCID: PMC5142333 DOI: 10.1186/s12915-016-0332-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Collapse
Affiliation(s)
- Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jane L Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Lena Wartosch
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
45
|
Nenasheva VV, Novosadova EV, Makarova IV, Lebedeva OS, Grefenshtein MA, Arsenyeva EL, Antonov SA, Grivennikov IA, Tarantul VZ. The Transcriptional Changes of trim Genes Associated with Parkinson’s Disease on a Model of Human Induced Pluripotent Stem Cells. Mol Neurobiol 2016; 54:7204-7211. [DOI: 10.1007/s12035-016-0230-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022]
|
46
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Bouhy D, Geuens T, De Winter V, Almeida-Souza L, Katona I, Weis J, Hochepied T, Goossens S, Haigh JJ, Janssens S, Timmerman V. Characterization of New Transgenic Mouse Models for Two Charcot-Marie-Tooth-Causing HspB1 Mutations using the Rosa26 Locus. J Neuromuscul Dis 2016; 3:183-200. [DOI: 10.3233/jnd-150144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thomas Geuens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Ghent University, Gent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Unit for Molecular and Cellular Oncology, VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J. Haigh
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Sophie Janssens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
- Laboratory for Mucosal Immunology and Immunoregulation, VIB Inflammation Research Centre, Ghent University, Gent, Belgium
- Department of Internal Medicine, Ghent University, Gent, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
48
|
Ishida M, E Oguchi M, Fukuda M. Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 2016; 41:61-79. [PMID: 27246931 DOI: 10.1247/csf.16008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are highly conserved master regulators of membrane traffic in all eukaryotes. The same as the activation and inactivation of other small GTPases, the activation and inactivation of Rabs are tightly controlled by specific GEFs (guanine nucleotide exchange factors) and GAPs (GTPase-activating proteins), respectively. Although almost all Rab-GAPs reported thus far have a TBC (Tre-2/Bub2/Cdc16)/Rab-GAP domain in common, recent accumulating evidence has indicated the existence of a number of structurally unrelated types of Rab-GEFs, including DENN proteins, VPS9 proteins, Sec2 proteins, TRAPP complexes, heterodimer GEFs (Mon1-Ccz1, HPS1-HPS4 (BLOC-3 complex), Ric1-Rgp1 and Rab3GAP1/2), and other GEFs (e.g., REI-1 and RPGR). In this review article we provide an up-to-date overview of the structures and functions of all putative Rab-GEFs in mammals, with a special focus on their substrate Rabs, interacting proteins, associations with genetic diseases, and intracellular localizations.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
49
|
Wang Y, Yin F. A Review of X-linked Charcot-Marie-Tooth Disease. J Child Neurol 2016; 31:761-72. [PMID: 26385972 DOI: 10.1177/0883073815604227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/06/2015] [Indexed: 01/25/2023]
Abstract
X-linked Charcot-Marie-Tooth disease (CMTX) is the second common genetic variant of CMT. CMTX type 1 causes 90% of CMTX. The most important clinical features of CMTX are similar with other types of CMT; however, a few patients get the central nervous system involved with or without white matter lesions; males are more severely and earlier affected than females. In this review, the authors focus on the origin and classification of CMTX, the central nervous system manifestations of CMTX1, the possible mechanism by which GJB1 mutations cause CMT1X, and the emerging therapeutic strategies for CMTX. Moreover, several cases are presented to illustrate the central nervous system manifestations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China Hunan Intellectual and Developmental Disabilities Research Center, Hunan, China
| |
Collapse
|
50
|
Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113:E2421-9. [PMID: 27035961 DOI: 10.1073/pnas.1522202113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inherited demyelinating peripheral neuropathies are progressive incurable diseases without effective treatment. To develop a gene therapy approach targeting myelinating Schwann cells that can be translatable, we delivered a lentiviral vector using a single lumbar intrathecal injection and a myelin-specific promoter. The human gene of interest, GJB1, which is mutated in X-linked Charcot-Marie-Tooth Disease (CMT1X), was delivered intrathecally into adult Gjb1-null mice, a genetically authentic model of CMT1X that develops a demyelinating peripheral neuropathy. We obtained widespread, stable, and cell-specific expression of connexin32 in up to 50% of Schwann cells in multiple lumbar spinal roots and peripheral nerves. Behavioral and electrophysiological analysis revealed significantly improved motor performance, quadriceps muscle contractility, and sciatic nerve conduction velocities. Furthermore, treated mice exhibited reduced numbers of demyelinated and remyelinated fibers and fewer inflammatory cells in lumbar motor roots, as well as in the femoral motor and sciatic nerves. This study demonstrates that a single intrathecal lentiviral gene delivery can lead to Schwann cell-specific expression in spinal roots extending to multiple peripheral nerves. This clinically relevant approach improves the phenotype of an inherited neuropathy mouse model and provides proof of principle for treating inherited demyelinating neuropathies.
Collapse
|