1
|
Hautasaari P, Kujala UM, Tarkka IM. Detecting differences with magnetoencephalography of somatosensory processing after tactile and electrical stimuli. J Neurosci Methods 2018; 311:331-337. [PMID: 30218670 DOI: 10.1016/j.jneumeth.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deviant stimuli within a standard, frequent stimulus train induce a cortical somatosensory mismatch response (SMMR). The SMMR reflects the brain's automatic mechanism for the detection of change in a somatosensory domain. It is usually elicited by electrical stimulation, which activates nerve fibers and receptors in superficial and deep skin layers, whereas tactile stimulation is closer to natural stimulation and activates uniform fiber types. We recorded SMMRs after electrical and tactile stimuli. METHOD 306-channel magnetoencephalography recordings were made with 16 healthy adults under two conditions: electrical (eSMMR) and tactile (tSMMR) stimulations. The SMMR protocol consisted of 1000 stimuli with 10% deviants to fingers. RESULTS Sensor-level analysis revealed stronger activation after deviant stimulation in bilateral channel locations approximately corresponding to parietal cortical areas within both stimulation conditions. Between conditions, deviant tSMMR showed stronger activation in the ipsilateral channels. Based on sensor-level results, two components, M50 and SMMR (40-58 and 110-185 ms), were compared at the source-level. Deviant stimulation elicited stronger contralateral SI activation during M50 component in both conditions. SMMR was observed with both conditions, activating contralateral SII after deviant stimulation. However, only tSMMR showed long latency activation in bilateral SI cortices. This suggests that there is an integration of both body sides during the automatic stages of tactile processing in SI cortices. CONCLUSIONS This study indicates that tactile stimulation (tSMMR) is a feasible method for investigating the brain's mechanism for detecting somatosensory changes; this may extend the clinical utility of tSMMR for assessing disorders involving altered somatosensory processing.
Collapse
Affiliation(s)
- Pekka Hautasaari
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Urho M Kujala
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Del Guerra A, Ahmad S, Avram M, Belcari N, Berneking A, Biagi L, Bisogni MG, Brandl F, Cabello J, Camarlinghi N, Cerello P, Choi CH, Coli S, Colpo S, Fleury J, Gagliardi V, Giraudo G, Heekeren K, Kawohl W, Kostou T, Lefaucheur JL, Lerche C, Loudos G, Morrocchi M, Muller J, Mustafa M, Neuner I, Papadimitroulas P, Pennazio F, Rajkumar R, Brambilla CR, Rivoire J, Kops ER, Scheins J, Schimpf R, Shah NJ, Sorg C, Sportelli G, Tosetti M, Trinchero R, Wyss C, Ziegler S. TRIMAGE: A dedicated trimodality (PET/MR/EEG) imaging tool for schizophrenia. Eur Psychiatry 2018; 50:7-20. [PMID: 29358016 DOI: 10.1016/j.eurpsy.2017.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
Simultaneous PET/MR/EEG (Positron Emission Tomography - Magnetic Resonance - Electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here within the framework of the European Union Project TRIMAGE. The trimodal, cost-effective PET/MR/EEG imaging tool makes use of cutting edge technology both in PET and in MR fields. A novel type of magnet (1.5T, non-cryogenic) has been built together with a PET scanner that makes use of the most advanced photodetectors (i.e., SiPM matrices), scintillators matrices (LYSO) and digital electronics. The combined PET/MR/EEG system is dedicated to brain imaging and has an inner diameter of 260 mm and an axial Field-of-View of 160 mm. It enables the acquisition and assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. The dopaminergic system and the glutamatergic system in schizophrenic patients are investigated via PET, the same physiological/pathophysiological conditions with regard to functional connectivity, via fMRI, and its electrophysiological signature via EEG. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases. The preliminary performances of two components of the imaging tool (PET and MR) are discussed. Initial results of the search of possible candidates for suitable schizophrenia biomarkers are also presented as obtained with PET/MR systems available to the collaboration.
Collapse
Affiliation(s)
- Alberto Del Guerra
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy.
| | | | - Mihai Avram
- Nuklearmedinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nicola Belcari
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | - Arne Berneking
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | - Laura Biagi
- IRCSS, Stella Maris, Calambrone, Pisa, Italy
| | - Maria Giuseppina Bisogni
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jorge Cabello
- Nuklearmedinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Niccolò Camarlinghi
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | | | - Chang-Hoon Choi
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | - Silvia Coli
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | | | | | - Vito Gagliardi
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | - Giuseppe Giraudo
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Psychiatric Services of Aargovia, Switzerland
| | | | | | - Christoph Lerche
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | - George Loudos
- Technological Educational Institute of Athens, Greece
| | - Matteo Morrocchi
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | | | - Mona Mustafa
- Nuklearmedinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Irene Neuner
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, JARA Brain, Aachen, Germany
| | | | | | - Ravichandran Rajkumar
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, JARA Brain, Aachen, Germany
| | - Cláudia Régio Brambilla
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | | | - Elena Rota Kops
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | - Jürgen Scheins
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | | | - N Jon Shah
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM4, Jülich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giancarlo Sportelli
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Italy; INFN, Sezione di Pisa, Pisa, Italy
| | | | | | - Christine Wyss
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Sibylle Ziegler
- Nuklearmedinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Nuclear Medicine, University Hospital, LMU, Munich, Germany
| | | |
Collapse
|
3
|
Ajdacic-Gross V, Müller M, Rodgers S, Warnke I, Hengartner MP, Landolt K, Hagenmuller F, Meier M, Tse LT, Aleksandrowicz A, Passardi M, Knöpfli D, Schönfelder H, Eisele J, Rüsch N, Haker H, Kawohl W, Rössler W. The ZInEP Epidemiology Survey: background, design and methods. Int J Methods Psychiatr Res 2014; 23:451-68. [PMID: 24942564 PMCID: PMC6878317 DOI: 10.1002/mpr.1441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 02/01/2014] [Accepted: 02/14/2014] [Indexed: 11/10/2022] Open
Abstract
This article introduces the design, sampling, field procedures and instruments used in the ZInEP Epidemiology Survey. This survey is one of six ZInEP projects (Zürcher Impulsprogramm zur nachhaltigen Entwicklung der Psychiatrie, i.e. the "Zurich Program for Sustainable Development of Mental Health Services"). It parallels the longitudinal Zurich Study with a sample comparable in age and gender, and with similar methodology, including identical instruments. Thus, it is aimed at assessing the change of prevalence rates of common mental disorders and the use of professional help and psychiatric sevices. Moreover, the current survey widens the spectrum of topics by including sociopsychiatric questionnaires on stigma, stress related biological measures such as load and cortisol levels, electroencephalographic (EEG) and near-infrared spectroscopy (NIRS) examinations with various paradigms, and sociophysiological tests. The structure of the ZInEP Epidemiology Survey entails four subprojects: a short telephone screening using the SCL-27 (n of nearly 10,000), a comprehensive face-to-face interview based on the SPIKE (Structured Psychopathological Interview and Rating of the Social Consequences for Epidemiology: the main instrument of the Zurich Study) with a stratified sample (n = 1500), tests in the Center for Neurophysiology and Sociophysiology (n = 227), and a prospective study with up to three follow-up interviews and further measures (n = 157). In sum, the four subprojects of the ZInEP Epidemiology Survey deliver a large interdisciplinary database.
Collapse
Affiliation(s)
- Vladeta Ajdacic-Gross
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wyss C, Hitz K, Hengartner MP, Theodoridou A, Obermann C, Uhl I, Roser P, Grünblatt E, Seifritz E, Juckel G, Kawohl W. The loudness dependence of auditory evoked potentials (LDAEP) as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms. PLoS One 2013; 8:e68650. [PMID: 23874705 PMCID: PMC3709903 DOI: 10.1371/journal.pone.0068650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT) system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP). The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms.
Collapse
Affiliation(s)
- Christine Wyss
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Konrad Hitz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Michael P. Hengartner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Caitriona Obermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Idun Uhl
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Patrik Roser
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|