1
|
Singer A, Trigo F, Vinel L, Gruere O, Llano I, Oheim M. A first morphological and electrophysiological characterization of Fañanas cells of the mouse cerebellum. J Physiol 2025; 603:855-871. [PMID: 39869051 PMCID: PMC11826065 DOI: 10.1113/jp285949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents. We identified FCs of the molecular layer in cerebellar slices by their stubby process and small cell bodies. Despite their more compact shape compared to Bergmann glia (BGs), FCs showed similar membrane resistances and basal currents, suggesting that these passive currents are partly a result of electrical coupling between neighbouring glia. Dye filling and pharmacological experiments confirmed both homo- and heterotypic gap-junction coupling among FCs and BGs. Parallel-fibre stimulation evoked TTX-sensitive slow inward currents in FCs that were partially blocked by NBQX but not APV. Occasionally, we observed superimposed fast (milliseconds) current transients. Near-UV flash photolysis of MNI-caged glutamate revealed rapid desensitization of these AMPA-receptor mediated currents, which fully recovered only for stimulation intervals >500 ms. We mapped the highest current densities in proximal processes. We conclude that FCs respond with fast AMPA currents to local glutamate release and they integrate ambient glutamate rises to a slow inward current. Interestingly, we found FCs to prevail throughout adulthood at stable but different densities among cerebellar lobules, with the highest cell densities in lobules I-II and X. Our results strongly suggest that FCs are not just displaced BGs, and that they may have lobule-specific functions - both locally and at the circuit level, yet to be uncovered. KEY POINTS: Using whole-cell recordings and near-UV laser photolyisis of caged glutamate, we provide a first characterization of cells of Fañanas (FCs) in mouse cerebellar slices. FCs are present from postnatal day 5 onward throughout adulthood and have a lobule- dependent density. Parallel-fibre stimulation generates biphasic, predominantly AMPA-mediated currents in FCs. Currents induced in FCs by parallel fibre stimulation are not NMDA receptor-dependent and are enhanced upon glutamate-transporter block with TBOA. Local near-UV glutamate uncaging indicates that FCs can detect fast glutamatergic inputs on the millisecond-time scale. FCs functionally integrate into the glial syncytium.
Collapse
Affiliation(s)
- A. Singer
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - F. Trigo
- Departamento de Neurofisiologia Celular y MolecularInstituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay
| | - L. Vinel
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - O. Gruere
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - I. Llano
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - Martin Oheim
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| |
Collapse
|
2
|
Zayas-Santiago A, Malpica-Nieves CJ, Ríos DS, Díaz-García A, Vázquez PN, Santiago JM, Rivera-Aponte DE, Veh RW, Méndez-González M, Eaton M, Skatchkov SN. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. Int J Mol Sci 2024; 25:6458. [PMID: 38928162 PMCID: PMC11204015 DOI: 10.3390/ijms25126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | | | - David S. Ríos
- College of Science and Health Professions, Universidad Central de Bayamón, Bayamón, PR 00960, USA;
| | - Amanda Díaz-García
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Paola N. Vázquez
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - José M. Santiago
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Rüdiger W. Veh
- Charité–Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie, Centrum 2, Charitéplatz 1, D-10117 Berlin, Germany;
| | | | - Misty Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| |
Collapse
|
3
|
Kirichenko EY, Logvinov AK, Sehweil SMM, Bragin DE, Logvinova IK. Analysis of Connexin 43 and Spermine Co-localisation in Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:279-284. [PMID: 39400836 DOI: 10.1007/978-3-031-67458-7_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Gap junctions are channels between adjacent cells, contributing to the unhindered exchange of metabolites, second messengers, nucleotides, and other molecules. The functional status of gap junctions in brain tumours is underinvestigated. One avenue of research focuses on exploring the expression of polyamines and their co-localisation with the Connexin 43 (Cx43) in the growth zones of glioblastoma multiforme (GBM). The aim of this work was to analyse the expression of Cx43 and spermine in human GBM to reveal their roles in neuro-oncogenesis. Human GBM sample sections were used for the immunochemistry [glial fibrillary acidic protein (GFAP), Cx43, and spermine], confocal laser scanning microscopy, and electron immunohistochemistry. Immunofluorescent analysis revealed that the more extensive processes of GBM cells exhibit GFAP. All GBM samples (n = 10) exhibited positive Cx43 signals in the form of variously sized dots and lines. Cx43 formed dotted lines around cell bodies with segmented transformed nuclei, which were also present in the gliovascular complexes. Furthermore, spermine was overexpressed in all tumour samples (cytoplasm and large and thin tumour processes), including the areas of Cx43 localisation. Merging the Cx43 and spermine signals showed co-expression in the same regions: the membranes of individual cells and individual points on processes in the tumour tissue. Therefore, we established the staining of the co-localisation of Cx43 and the polyamine spermine within glioblastoma, revealing that tumour processes housing the polyamine indeed form gap junctions, suggesting their potential joint interaction. This finding indicates that glioma cells can integrate into the surrounding neural networks, potentially serving as a mechanism to release glycolysis products, relying on gap junction activity facilitated by spermine. Cx43 exhibits sensitivity to polyamines, which play a role in opening gap junctional channels. Furthermore, polyamines have been observed to eliminate the blockades caused by hydrogen ions and calcium, which is crucial for cellular physiology.
Collapse
Affiliation(s)
| | - Alexander K Logvinov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Salah M M Sehweil
- Department of Neurology and Nervous Diseases, Rostov State Medical University, Rostov-on-Don, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | |
Collapse
|
4
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
5
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
6
|
Benedikt J, Malpica-Nieves CJ, Rivera Y, Méndez-González M, Nichols CG, Veh RW, Eaton MJ, Skatchkov SN. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022; 12:biom12121812. [PMID: 36551240 PMCID: PMC9775384 DOI: 10.3390/biom12121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Christian J. Malpica-Nieves
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| | - Yomarie Rivera
- Department of Chiropractic, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | | | - Colin G. Nichols
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Charité, 10115 Berlin, Germany
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| |
Collapse
|
7
|
The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022; 10:biomedicines10071756. [PMID: 35885061 PMCID: PMC9312548 DOI: 10.3390/biomedicines10071756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.
Collapse
|
8
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
9
|
Volnova A, Tsytsarev V, Ganina O, Vélez-Crespo GE, Alves JM, Ignashchenkova A, Inyushin M. The Anti-Epileptic Effects of Carbenoxolone In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23020663. [PMID: 35054848 PMCID: PMC8775396 DOI: 10.3390/ijms23020663] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo. Based on the results obtained, we came to the conclusion that the astrocytic syncytium formed by GJ-associated astrocytes, which is responsible for the regulation of potassium, affects the formation of epileptic activity in astrocytes in vitro and epileptic seizure onset. This effect is probably an important, but not the only, mechanism by which CBX suppresses epileptic activity. It is likely that the mechanisms of selective inhibition of GJs between astrocytes will show important translational benefits in anti-epileptic therapies.
Collapse
Affiliation(s)
- Anna Volnova
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia;
- Correspondence: (A.V.); (M.I.)
| | | | - Olga Ganina
- Nevsky Center of Scientific Collaboration, 192119 St. Petersburg, Russia;
| | - Grace E. Vélez-Crespo
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
| | - Janaina M. Alves
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
| | - Alla Ignashchenkova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia;
- Nevsky Center of Scientific Collaboration, 192119 St. Petersburg, Russia;
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
- Correspondence: (A.V.); (M.I.)
| |
Collapse
|
10
|
Kovács Z, Skatchkov SN, Veh RW, Szabó Z, Németh K, Szabó PT, Kardos J, Héja L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front Cell Neurosci 2022; 15:787319. [PMID: 35069115 PMCID: PMC8770812 DOI: 10.3389/fncel.2021.787319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central Del Caribe, Bayamon, PR, United States
- Department of Biochemistry, Universidad Central Del Caribe, Bayamon, PR, United States
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
11
|
Makletsova MG, Rikhireva GT, Kirichenko EY, Trinitatsky IY, Vakulenko MY, Ermakov AM. The Role of Polyamines in the Mechanisms of Cognitive Impairment. NEUROCHEM J+ 2022; 16. [PMCID: PMC9575633 DOI: 10.1134/s1819712422030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract—As the population ages, age-related cognitive impairments are becoming an increasingly pressing problem. Currently, the role of polyamines (putrescine, spermidine, and spermine) in the pathogenesis of cognitive impairments of various origin is actively discussed. It was shown that the content of polyamines in the brain tissue decreases with age. Exogenous administration of polyamines makes it possible to avoid cognitive impairment and/or influence the pathogenetic processes associated with disease progression. There are 3 known ways that polyamines can enter the human body: food, synthesis by intestinal bacteria, and biosynthesis in the body. Currently, one of the most promising approaches to the prevention of cognitive impairment is the use of foods with a high content of polyamines, as well as the use of various probiotics that affect intestinal bacteria that synthesize polyamines. Since 2018, in a number of European countries projects have been launched aimed at evaluation of the impact of a diet high in polyamines on cognitive processes. The review, based on analysis of modern scientific literature and the authors' own data, presents material on the effect of polyamines on cognitive processes and the role of polyamines in the regulation of neurotransmitter processes, and discusses the role of polyamines in cognitive disorders in mental and neurological diseases.
Collapse
Affiliation(s)
| | - G. T. Rikhireva
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - A. M. Ermakov
- Don State Technical University, Rostov-on-Don, Russia
| |
Collapse
|
12
|
Aczél T, Körtési T, Kun J, Urbán P, Bauer W, Herczeg R, Farkas R, Kovács K, Vásárhelyi B, Karvaly GB, Gyenesei A, Tuka B, Tajti J, Vécsei L, Bölcskei K, Helyes Z. Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J Headache Pain 2021; 22:117. [PMID: 34615455 PMCID: PMC8493693 DOI: 10.1186/s10194-021-01285-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Herczeg
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Bernadett Tuka
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
13
|
Kirichenko EY, Skatchkov SN, Ermakov AM. Structure and Functions of Gap Junctions and Their Constituent Connexins in the Mammalian CNS. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2021; 15:107-119. [PMID: 34512926 PMCID: PMC8432592 DOI: 10.1134/s1990747821020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous data obtained in the last 20 years indicate that all parts of the mature central nervous system, from the retina and olfactory bulb to the spinal cord and brain, contain cells connected by gap junctions (GJs). The morphological basis of the GJs is a group of joined membrane hemichannels called connexons, the subunit of each connexon is the protein connexin. In the central nervous system, connexins show specificity and certain types of them are expressed either in neurons or in glial cells. Connexins and GJs of neurons, combining certain types of inhibitory hippocampal and neocortical neuronal ensembles, provide synchronization of local impulse and rhythmic activity, thalamocortical conduction, control of excitatory connections, which reflects their important role in the processes of perception, concentration of attention and consolidation of memory, both on the cellular and at the system level. Connexins of glial cells are ubiquitously expressed in the brain, and the GJs formed by them provide molecular signaling and metabolic cooperation and play a certain role in the processes of neuronal migration during brain development, myelination, tissue homeostasis, and apoptosis. At the same time, mutations in the genes of glial connexins, as well as a deficiency of these proteins, are associated with such diseases as congenital neuropathies, hearing loss, skin diseases, and brain tumors. This review summarizes the existing data of numerous molecular, electrophysiological, pharmacological, and morphological studies aimed at progress in the study of the physiological and pathophysiological significance of glial and neuronal connexins and GJs for the central nervous system.
Collapse
Affiliation(s)
- E Yu Kirichenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090 Russia
| | - S N Skatchkov
- Department of Biochemistry, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA.,Department of Physiology, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA
| | - A M Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, 344003 Russia
| |
Collapse
|
14
|
Uptake of Biotinylated Spermine in Astrocytes: Effect of Cx43 siRNA, HIV-Tat Protein and Polyamine Transport Inhibitor on Polyamine Uptake. Biomolecules 2021; 11:biom11081187. [PMID: 34439853 PMCID: PMC8391674 DOI: 10.3390/biom11081187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.
Collapse
|
15
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
17
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|
18
|
Malpica-Nieves CJ, Rivera-Aponte DE, Tejeda-Bayron FA, Mayor AM, Phanstiel O, Veh RW, Eaton MJ, Skatchkov SN. The involvement of polyamine uptake and synthesis pathways in the proliferation of neonatal astrocytes. Amino Acids 2020; 52:1169-1180. [PMID: 32816168 PMCID: PMC7908810 DOI: 10.1007/s00726-020-02881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Polyamines (PAs), such as spermidine (SPD) and spermine (SPM), are essential to promote cell growth, survival, proliferation, and longevity. In the adult central nervous system (CNS), SPD and SPM are accumulated predominantly in healthy adult glial cells where PA synthesis is not present. To date, the accumulation and biosynthesis of PAs in developing astrocytes are not well understood. The purpose of the present study was to determine the contribution of uptake and/or synthesis of PAs using proliferation of neonatal astrocytes as an endpoint. We inhibited synthesis of PAs using α-difluoromethylornithine (DFMO; an inhibitor of the PA biosynthetic enzyme ornithine decarboxylase (ODC)) and inhibited uptake of PAs using trimer44NMe (PTI; a novel polyamine transport inhibitor). DFMO, but not PTI alone, blocked proliferation, suggesting that PA biosynthesis was present. Furthermore, exogenous administration of SPD rescued cell proliferation when PA synthesis was blocked by DFMO. When both synthesis and uptake of PAs were inhibited (DFMO + PTI), exogenous SPD no longer supported proliferation. These data indicate that neonatal astrocytes synthesize sufficient quantities of PAs de novo to support cell proliferation, but are also able to import exogenous PAs. This suggests that the PA uptake mechanism is present in both neonates as well as in adults and can support cell proliferation in neonatal astrocytes when ODC is blocked.
Collapse
Affiliation(s)
- Christian J Malpica-Nieves
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - David E Rivera-Aponte
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Flavia A Tejeda-Bayron
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Angel M Mayor
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, FL, 32816, USA
| | - Rüdiger W Veh
- Institut für Zell- Und Neurobiologie, Charité, 10117, Berlin, Germany
| | - Misty J Eaton
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA.
- Department of Physiology, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA.
| |
Collapse
|
19
|
Liu J, Qu C, Han C, Chen MM, An LJ, Zou W. Potassium channels and their role in glioma: A mini review. Mol Membr Biol 2020; 35:76-85. [PMID: 32067536 DOI: 10.1080/09687688.2020.1729428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
K+ channels regulate a multitude of biological processes and play important roles in a variety of diseases by controlling potassium flow across cell membranes. They are widely expressed in the central and peripheral nervous system. As a malignant tumor derived from nerve epithelium, glioma has the characteristics of high incidence, high recurrence rate, high mortality rate, and low cure rate. Since glioma cells show invasive growth, current surgical methods cannot completely remove tumors. Adjuvant chemotherapy is still needed after surgery. Because the blood-brain barrier and other factors lead to a lower effective concentration of chemotherapeutic drugs in the tumor, the recurrence rate of residual lesions is extremely high. Therefore, new therapeutic methods are needed. Numerous studies have shown that different K+ channel subtypes are differentially expressed in glioma cells and are involved in the regulation of the cell cycle of glioma cells to arrest them at different stages of the cell cycle. Increasing evidence suggests that K+ channels express in glioma cells and regulate glioma cell behaviors such as cell cycle, proliferation and apoptosis. This review article aims to summarize the current knowledge on the function of K+ channels in glioma, suggests K+ channels participating in the development of glioma.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Meng Chen
- Company of Qingdao Re-Store Life Sciences, Qingdao, China
| | - Li-Jia An
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China.,Company of Qingdao Re-Store Life Sciences, Qingdao, China
| |
Collapse
|
20
|
Li K, Zhou H, Zhan L, Shi Z, Sun W, Liu D, Liu L, Liang D, Tan Y, Xu W, Xu E. Hypoxic Preconditioning Maintains GLT-1 Against Transient Global Cerebral Ischemia Through Upregulating Cx43 and Inhibiting c-Src. Front Mol Neurosci 2018; 11:344. [PMID: 30323740 PMCID: PMC6172853 DOI: 10.3389/fnmol.2018.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
Transient global cerebral ischemia (tGCI) causes excessive release of glutamate from neurons. Astrocytic glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) together play a predominant role in maintaining glutamate at normal extracellular concentrations. Though our previous studies reported the alleviation of tGCI-induced neuronal death by hypoxic preconditioning (HPC) in hippocampal Cornu Ammonis 1 (CA1) of adult rats, the underlying mechanism has not yet been fully elaborated. In this study, we aimed to investigate the roles of GLT-1 and GS in the neuroprotection mediated by HPC against tGCI and to ascertain whether these roles can be regulated by connexin 43 (Cx43) and cellular-Src (c-Src) activity. We found that HPC decreased the level of extracellular glutamate in CA1 after tGCI via maintenance of GLT-1 expression and GS activity. Inhibition of GLT-1 expression with dihydrokainate (DHK) or inhibition of GS activity with methionine sulfoximine (MSO) abolished the neuroprotection induced by HPC. Also, HPC markedly upregulated Cx43 and inhibited p-c-Src expression in CA1 after tGCI, whereas inhibition of Cx43 with Gap26 dramatically reversed this effect. Furthermore, inhibition of p-c-Src with 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo (3, 4-d) pyrimidine (PP2) decreased c-Src activity, increased protein levels of GLT-1 and Cx43, enhanced GS activity, and thus reduced extracellular glutamate level in CA1 after tGCI. Collectively, our data demonstrated that reduced extracellular glutamate induced by HPC against tGCI through preventing the reduction of GLT-1 expression and maintaining GS activity in hippocampal CA1, which was mediated by upregulating Cx43 expression and inhibiting c-Src activity.
Collapse
Affiliation(s)
- Kongping Li
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Huarong Zhou
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhe Shi
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Liu Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Donghai Liang
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yafu Tan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wensheng Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
21
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|
22
|
Polyamines preserve connexin 43-mediated gap junctional communication during intracellular hypercalcemia and acidosis. Neuroreport 2018; 28:208-213. [PMID: 28134630 DOI: 10.1097/wnr.0000000000000746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the regulation, formation, and gating of connexin-based gap junction channels occur in various disorders. It has been shown that H and Ca are involved in the regulation of gap junctional communication. Ischemia-induced intracellular acidification and Ca overload lead to closure of gap junctions and inhibit an exchange by ions and small molecules throughout the network of cells in the heart, brain, and other tissues. In this study, we examined the role of the polyamines in the regulation of connexin 43 (Cx43)-based gap junction channels under elevated intracellular concentrations of hydrogen ([H]i) and calcium ([Ca]i) ions. Experiments, conducted in Novikoff and A172 human glioblastoma cells, which endogenously express Cx43, showed that polyamines prevent downregulation of Cx43-mediated gap junctional communication caused by elevated [Ca]i and [H]i, accompanying ischemic and other pathological conditions. siRNA knockdown of Cx43 significantly reduces gap junctional communication, indicating that Cx43 gap junctions are the targets for spermine regulation.
Collapse
|
23
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Abstract
The content of spermidine and spermine in mammalian cells has important roles in protein and nucleic acid synthesis and structure, protection from oxidative damage, activity of ion channels, cell proliferation, differentiation, and apoptosis. Spermidine is essential for viability and acts as the precursor of hypusine, a post-translational addition to eIF5A allowing the translation of mRNAs encoding proteins containing polyproline tracts. Studies with Gy mice and human patients with the very rare X-linked genetic condition Snyder-Robinson syndrome that both lack spermine synthase show clearly that the correct spermine:spermidine ratio is critical for normal growth and development.
Collapse
Affiliation(s)
- Anthony E Pegg
- From the Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
25
|
Signor C, Temp FR, Mello CF, Oliveira MS, Girardi BA, Gais MA, Funck VR, Rubin MA. Intrahippocampal infusion of spermidine improves memory persistence: Involvement of protein kinase A. Neurobiol Learn Mem 2016; 131:18-25. [DOI: 10.1016/j.nlm.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
|
26
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
27
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|