1
|
Ferraz MR, Guimarães JS, Monteiro VU, Santos LN, Casimiro E Silva JS, Barbosa EDS, da Silva SDS. Effects of double neonatal stress on female rat sexual behaviour. Physiol Behav 2024; 287:114692. [PMID: 39265818 DOI: 10.1016/j.physbeh.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Neonatal stress affects psychological and physiological development and may be associated with affective disorders. The aim was to examine the effects of double neonatal stress (DNS) - a combination of limited bedding and nesting (LBN) and repeated maternal separation (MS) - on the oestrous cycle and sexual behaviour of adult female rats. LBN was achieved by removing part of the wood shavings from the boxes. In the control group, each box was lined with 100 g of wood shavings, while in the experimental group there were only 10 g of wood shavings. MS was performed from P1 (P0 = day of birth) to P15. At P90, the sexual response of females in oestrus was evaluated. Statistical analysis was performed using two-way analysis of variance followed by Tukey's test. The size and profile of the oestrous cycle and the sexual behaviour of female rats submitted to the DNS were considered, as well as the influence of female behaviour on the sexual response of male rats. Female rats submitted to DNS showed a reduction in the lordosis quotient, suggesting a reduction in female receptivity. These rats also showed a reduction in the number of hops and darts, the number of ear wiggles, and the genital exploration time rate, suggesting a reduction in proceptivity. The males that interacted with the females of the DNS group showed a reduction in intromission ratio. Experimental model that mimics neonatal factors that affect adult female sexual response will allow more effective interventions to prevent and treat such changes. In addition, analysis of the female sexual response makes it possible to assess the general state of health and quality of life. In female rats, DNS exerted inhibitory effects on sexual behaviour. LBN was probably the most important factor. In conclusion, combating childhood poverty can be a key measure to prevent problems in the sex life of adults and improve overall health.
Collapse
Affiliation(s)
- Marcos Rochedo Ferraz
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil.
| | - Jéssica Santos Guimarães
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| | - Vittoria Ugenti Monteiro
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| | - Larissa Nascimento Santos
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| | - Jéssica Sertório Casimiro E Silva
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| | - Elaine de Sousa Barbosa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| | - Stephen de Sousa da Silva
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, Rio de Janeiro, RJ CEP: 20551-030, Brazil
| |
Collapse
|
2
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
3
|
Joushi S, Taherizadeh Z, Eghbalian M, Esmaeilpour K, Sheibani V. Boosting decision-making in rat models of early-life adversity with environmental enrichment and intranasal oxytocin. Psychoneuroendocrinology 2024; 165:107050. [PMID: 38677097 DOI: 10.1016/j.psyneuen.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Impaired decision-making constitutes a fundamental issue in numerous psychiatric disorders. Extensive research has established that early life adversity (ELA) increases vulnerability to psychiatric disorders later in life. ELA in human neonates is associated with changes in cognitive, emotional, as well as reward-related processing. Maternal separation (MS) is an established animal model of ELA and has been shown to be associated with decision-making deficits. On the other hand, enriched environment (EE) and intranasal oxytocin (OT) administration have been demonstrated to have beneficial effects on decision-making in humans or animals. Given these considerations, our investigation sought to explore the impact of brief exposure to EE and intranasal OT administration on the decision-making abilities of adolescent rats that had experienced MS during infancy. The experimental protocol involved subjecting rat pups to the MS regimen for 180 min per day from postnatal day (PND) 1 to PND 21. Then, from PND 22 to PND 34, the rats were exposed to EE and/or received intranasal OT (2 μg/μl) for seven days. The assessment of decision-making abilities, using a rat gambling task (RGT), commenced during adolescence. Our findings revealed that MS led to impaired decision-making and a decreased percentage of advantageous choices. However, exposure to brief EE or intranasal OT administration mitigated the deficits induced by MS and improved the decision-making skills of maternally-separated rats. Furthermore, combination of these treatments did not yield additional benefits. These results suggest that EE and OT may hold promise as therapeutic interventions to enhance certain aspects of cognitive performance.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Cody CR, de la Villarmois EA, Fernandez AM, Lardizabal J, McKnight C, Tseng K, Brenhouse HC. Effects of early life adversity and adolescent basolateral amygdala activity on corticolimbic connectivity and anxiety behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586708. [PMID: 38853948 PMCID: PMC11160567 DOI: 10.1101/2024.03.26.586708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Early postnatal development of corticolimbic circuitry is shaped by the environment and is vulnerable to early life challenges. Prior work has shown that early life adversity (ELA) leads to hyperinnervation of glutamatergic basolateral amygdala (BLA) projections to the prefrontal cortex (PFC) in adolescence. While hyperinnervation is associated with later-life anxiety behaviors, the physiological changes underpinning corticolimbic and behavioral impacts of ELA are not understood. We tested whether postsynaptic BLA-driven PFC activity is enhanced in ELA-exposed animals, using the maternal separation (MS) model of ELA. PFC local-field potential following BLA stimulation was facilitated in MS-exposed adolescents. Since ELA increases activity of the early-developing BLA, while the PFC exhibits protracted development, we further examined impacts of glutamatergic BLA activity during early adolescence on later-life PFC innervation and heightened anxiety. In early adolescence, MS-exposed animals exhibited decreased anxiety-like behavior, and acute adolescent BLA inhibition induced behaviors that resembled those of MS animals. To examine long-lasting impacts of adolescent BLA activity on innervation, BLA-originating axonal boutons in the PFC were quantified in late adolescence after early adolescent BLA inhibition. We further tested whether late adolescent BLA-PFC changes were associated with anxious reactivity expressed as heightened acoustic startle responses. MS rearing increased BLA-PFC innervation and threat reactivity in late adolescence, however early adolescent BLA inhibition was insufficient to prevent MS effects, suggesting that earlier BLA activity or post-synaptic receptor rearrangement in the PFC drives altered innervation. Taken together, these findings highlight both pre- and postsynaptic changes in the adolescent BLA-PFC circuit following ELA.
Collapse
Affiliation(s)
- Caitlyn R Cody
- Psychology Department, Northeastern University, Boston MA 02115
| | | | | | | | - Chaney McKnight
- Psychology Department, Northeastern University, Boston MA 02115
| | - Kuei Tseng
- Department of Anatomy and Cell Biology, University of Illinois, Chicago IL 60612
| | | |
Collapse
|
5
|
Biswas B, Eapen V, Morris MJ, Jones NM. Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring. Biomolecules 2024; 14:197. [PMID: 38397434 PMCID: PMC10886936 DOI: 10.3390/biom14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Adversity during early life, a critical period for brain development, increases vulnerability and can have a lasting impact on the brain and behaviour of a child. However, the long-term effects of cumulative early-life stressors on brain and behaviour are not well known. We studied a 2-hit rat model of early-life adversity using maternal separation (MS) and immune activation (lipopolysaccharide (LPS)). Rat pups underwent MS for 15 (control) or 180 (MS) minutes per day from postnatal day (P)2-14 and were administered saline or LPS (intraperitoneal) on P3. Open-field (OFT) and object-place recognition tests were performed on rat offspring at P33-35 and P42-50, respectively. The pre-frontal cortex (PFC) and hippocampus were removed at the experimental endpoint (P52-55) for mRNA expression. MS induced anxiety-like behaviour in OFT in male and reduced locomotor activity in both male and female offspring. LPS induced a subtle decline in memory in the object-place recognition test in male offspring. MS increased glial fibrillary acidic protein (GFAP) and brain-derived neurotrophic factor expression in PFC and ionised calcium-binding adapter molecule-1 expression in male hippocampus. MS and LPS resulted in distinct behavioural phenotypes in a sex-specific manner. The combination of MS and LPS had a synergistic effect on the anxiety-like behaviour, locomotor activity, and GFAP mRNA expression outcomes.
Collapse
Affiliation(s)
- Bharti Biswas
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (B.B.); (V.E.)
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Valsamma Eapen
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (B.B.); (V.E.)
| | - Margaret J. Morris
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Nicole M. Jones
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
6
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
7
|
Sameei P, Fatehfar S, Abdollahzadeh N, Chodari L, Saboory E, Roshan-Milani S. The effects of forced exercise and zinc supplementation during pregnancy on prenatally stress-induced behavioral and neurobiological consequences in adolescent female rat offspring. Dev Psychobiol 2023; 65:e22411. [PMID: 37607889 DOI: 10.1002/dev.22411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/24/2023]
Abstract
Prenatal manipulations can lead to neurobehavioral changes in the offspring. In this study, individual and combined effects of forced exercise and zinc supplementation during pregnancy on prenatally restraint stress (PRS)-induced behavioral impairments, neuro-inflammatory responses, and oxidative stress have been investigated in adolescent female rat offspring. Pregnant rats were divided into five groups: control; restraint stress (RS); RS + exercise stress (RS + ES), RS + zinc supplementation (RS + Zn); and RS + ES + Zn. All the pregnant rats (except control) were exposed to RS from gestational days 15 to 19. Pregnant rats in ES groups were subjected to forced treadmill exercise (30 min/daily), and in Zn groups to zinc sulfate (30 mg/kg/orally), throughout the pregnancy. At postnatal days 25-27, anxiety-like and stress-coping behaviors were recorded, and the gene expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and the concentration of total antioxidant capacity were measured in the prefrontal cortex. PRS significantly enhanced anxiety, generated passive coping behaviors, increased IL-1β and TNF-α expression, and decreased the antioxidant capacity. ES potentiated while zinc reversed PRS-induced behavioral impairments. Prenatal zinc also restored the anti-inflammatory and antioxidant capacity but had no effect on additive responses imposed by the combination of RS and ES. Suppression of PRS-induced behavioral and neurobiological impairments by zinc suggests the probable clinical importance of zinc on PRS-induced changes on child temperament.
Collapse
Affiliation(s)
- Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naseh Abdollahzadeh
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Genetically predisposed and resilient animal models of depression reveal divergent responses to early-life adversity. Acta Neuropsychiatr 2023:1-13. [PMID: 37592838 DOI: 10.1017/neu.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Early-life adversity (ELA) is one of the strongest predictors of childhood depression that may be exacerbated by a genetic predisposition to develop depression. We therefore investigated the bio-behavioural effects of an early-life stressor in an accepted rodent model of depression. METHODS The Flinders sensitive line (FSL) and resistant line (FRL) rats were subjected to an early-life stressor, whereafter their bio-behavioural response during pubertal onset was evaluated. Male and female pups were maternally separated for 3 h per day from postnatal day 02 (PND02) to 17, when they were also weaned. Control animals were left undisturbed, until weaning on PND21. Depressive-like behaviour was analysed on PND21 and reassessed on PND36. Hippocampal monoamine levels, markers of oxidative stress and metabolic markers implicating mitochondrial function were also measured. RESULTS On PND21, the non-maternal separation and early weaning (non-MSEW) FSL rats spent 10% more time mobile than their FRL controls in the tail suspension test (TST) yet displayed increased depressive-like behaviour in the forced swim test (FST) on PND36. This depressive-like behaviour coincided with increased hippocampal norepinephrine levels, serotonin turnover and a dysfunctional redox state. Maternal separation and early weaning (MSEW) appeared to initially reduce early-life (PND21) depressive-like behaviour in the TST but then induced depressive-like behaviour on PND36 and increased norepinephrine levels more profoundly in the FRL rats. CONCLUSION These findings highlight the need to further investigate the stress response pathway in these animals and that the absence or presence of genetic susceptibility may influence the presentation of ELA effects.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Mavrenkova PV, Khlebnikova NN, Alchinova IB, Demorzhi MS, Shoibonov BB, Karganov MY. Effects of Maternal Separation and Subsequent Stress on Behaviors and Brain Monoamines in Rats. Brain Sci 2023; 13:956. [PMID: 37371434 DOI: 10.3390/brainsci13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Childhood adversity can induce maladaptive behaviors and increase risk for affective disorders, post-traumatic stress disorder, personality disorders, and vulnerability to stress in adulthood. Deprivation of maternal care interrupts brain development through the disturbance of various neurotransmitters, however, the details remain unclear. The features of the symptoms of disorders are largely determined by early stress protocol, genetic characteristics (line), and the sex of the animals. The purpose of current study was (1) to assess behavioral changes in adult Wistar rats of both sexes after early life stress; (2) to determine the levels of monoamines in brain structures involved in the motor, emotional, and social reactions in rats aged 1 and 2 months; and (3) to determine the level of monoamines after physical or emotional stress in adult rats. The rat pups were separated from their dams and isolated from siblings in tight boxes at a temperature of 22-23 °C for 6 h during postnatal days 2-18. The data were processed predominantly using two-way analysis of variance and the Newman-Keys test as the post hoc analysis. The adult rats demonstrated an increase in motor activity and aggressiveness and a decrease in levels of anxiety and sociability. Behavioral disturbances were accompanied by region-, sex-, and age-dependent changes in the levels of monoamines and their metabolites. The dopaminergic and noradrenergic systems were found to be sensitive to psycho-emotional stress.
Collapse
Affiliation(s)
- Polina V Mavrenkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Marina S Demorzhi
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Batozhab B Shoibonov
- P. K. Anokhin Institute of Normal Physiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail Yu Karganov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
10
|
Ismail A, Sial N, Rehman R, Abid S, Ismail MS. Survival, growth, behavior, hematology and serum biochemistry of mice under different concentrations of orally administered amorphous silica nanoparticle. Toxicol Rep 2023; 10:659-668. [PMID: 37274627 PMCID: PMC10238806 DOI: 10.1016/j.toxrep.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023] Open
Abstract
Silica nanoparticles (SiNPs) are used extensively in consumer products and biomedical research basically due to ease of production and low cost. However, insufficient literature is reported regarding the toxicity and biocompatibility of SiNPs. The present study aimed to investigate the potential role of amorphous SiNPs on survival, growth, behavioral alterations, hematology and serum biochemistry of mice at four concentrations (control, 50, 100 and 150 mg/kg/day) of an oral supplementation for a period of 3 months. Signs of toxicity (lethargy, nausea, coma, tremors, vomiting and diarrhea, etc.) were noted at 9:00 am and 9:00 pm (twice a day) and the body weight of each of these mice was measured every week. The data were subjected to mean, standard deviation (S.D). Moreover, One-Way Analysis of Variance (ANOVA) and Dunnett's test were applied for analysis of statistical significance between groups by using SPSS software, version 20. All the mice survived with minor alterations in behavior and no significant weight changes were observed during the stipulated time period. Complete blood count (CBC) analysis indicated non-significant (P ≥ 0.05) systemic dysfunctions of organ systems. However, there was elevation in the level of AST and ALT in the analysis of serum biochemistry, while the values of all other examined parameters were not-significant (P ≥ 0.05). The study concluded that orally administered large silica nanoparticles up to the dose level of 150 mg/kg/day are nontoxic for the in vivo use in mice.
Collapse
Affiliation(s)
- Amna Ismail
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Nuzhat Sial
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Rakhshanda Rehman
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Sobia Abid
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Shoaib Ismail
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| |
Collapse
|
11
|
Fang H, Li J, Lu L, Yang J, Feng H, Yin X, Wang S, He X, Song L, Shi Y, Gao Y, Shi H, Yin X. Long-lasting and sex-dependent effects of late lactational maternal deprivation on socioemotional behaviors in adult mice. Neurosci Lett 2023; 799:137096. [PMID: 36738955 DOI: 10.1016/j.neulet.2023.137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The lactation period is an important period for individual development and a sensitive period for the behavioral phenotypes and plasticity of individual offspring. Early life experiences (e.g., maternal deprivation (MD) and neglect) have significant long-lasting and dual effects on individual stress reactivities during adulthood. Theoretically, stress inoculation can improve the adaptive capacity of the body, but overstress can lead to dysfunction when adaptive mechanisms fail.To date, the potential effects of late lactational MD on the socioemotional behaviors of mouse offspring during adulthood are still not fully understood. In the present study, mice were subjected to early deprivation by individually separating pups from their dam for 0 min, 15 min, and 3 h per day from PND 13-25. The social dominance test (SDT), social interaction test (SI), open field test (OFT), and forced swim test (FST) were carried out during adulthood. The results showed that the social dominance of male mice in the 15 min/d MD group significantly increased, especially in low-rank mice. In the 3 h/d MD group, the social dominance of female mice was decreased, especially in the lower-rank mice. The anxiolytic and antidepressant-like effects of the 15 min/d MD group were significantly increased in male mice. Our study provides direct evidence that MD during late lactation period results in long-lasting effects on social dominance as well as on anxiety and depression phenotypes in a sex-dependent manner.
Collapse
Affiliation(s)
- Hanlu Fang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Liuhua Lu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jingyu Yang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China.
| | - Xi Yin
- Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
12
|
Cevik OS, Cevik K, Temel GO, Sahin L. Maternal separation increased memory function and anxiety without effects of environmental enrichment in male rats. Behav Brain Res 2023; 441:114280. [PMID: 36586488 DOI: 10.1016/j.bbr.2022.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on memory-related alterations. This study examined how environmental enrichment affected memory functions, anxiety level, Grin2a, Grin2b, BDNF, and cFos expressions in the maternally separated rats. There are seven groups in this study: control (C), maternal separation+standard cage (MS), maternal separation + enriched cage (MSE), enriched cage (E), the maternal separation that decapitated at postnatal 21 (MS21) and standard cage that decapitated at PN21 (C21) for hormone and gene expression analysis. The maternal separation procedure consisted of postnatal 21 days. Learning and memory performance were determined with the Morris water tank test; anxiety and locomotor activity were examined with the open field and elevated plus-maze test. The expression levels of genes were measured by the RT-PCR method. Blood corticosterone level was evaluated by the ELISA method. Results showed that MS increased memory performance, locomotor activity, and anxiety, but it did not change gene expression levels. An enriched environment did not change the memory performance, locomotor activity, and related gene expression levels. MSE group increased their memory performance, but the anxiety, locomotor activity, and gene expression level did not change. Grin2a, Grin2b, and BDNF gene expression and corticosterone levels increased in the MS21 group. Maternal separation increased memory performance, but it also increased anxiety. Environmental enrichment alone was insufficient to cause alterations in the memory performance.
Collapse
Affiliation(s)
- Ozge Selin Cevik
- Faculty of Medicine, Department of Physiology, Mersin University, Mersin, Turkey.
| | - Kenan Cevik
- Faculty of Medicine, Health Sciences Institute, Mersin University, Mersin, Turkey
| | - Gulhan Orekici Temel
- Faculty of Medicine, Department of Department of Biostatistics and Medical Informatics, Mersin University, Mersin, Turkey
| | - Leyla Sahin
- Faculty of Medicine, Department of Physiology, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Amini-Khoei H, Nasiri Boroujeni S, Lorigooini Z, Salehi A, Sadeghian R, Rahimi-Madiseh M. Implication of nitrergic system in the anticonvulsant effects of ferulic acid in pentylenetetrazole-induced seizures in male mice. J Basic Clin Physiol Pharmacol 2023; 34:197-203. [PMID: 34412169 DOI: 10.1515/jbcpp-2020-0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/17/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Seizures are abnormal discharge of neurons in the brain. Ferulic acid (FA) is a phenolic compound with antioxidant and neuroprotective effects. The present study aimed to investigate the role of the nitrergic system in the anticonvulsant effect of FA in pentylenetetrazol (PTZ)-induced seizures in male mice. METHODS 64 male Naval Medical Research Institute (NMRI) mice weighing 25-29 g were randomly divided into eight experimental groups (n=8). FA at doses 5, 10, and 40 mg/kg alone and in combination with L-nitro-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) or L-arginine (L-arg) (nitric oxide [NO] precursor) was administrated (intraperitoneal). PTZ was injected (i.v. route) 30 min after drugs administration (1 mL/min). Seizure onset time was recorded and the nitrite levels of prefrontal cortex and serum were determined by the Griess method. RESULTS FA at doses of 10 and 40 mg/kg significantly increased the seizure threshold as well as reduced the serum and brain NO levels in comparison to the saline-received group. Co-administration of the effective dose of FA (10 mg/kg) plus L-arg significantly decreased the seizure threshold in comparison to the effective dose of FA alone. Co-injection of the sub-effective dose of FA (5 mg/kg) with L-NAME significantly increased the seizure threshold as well as significantly decreased the brain NO level in comparison to the sub-effective dose of FA alone. CONCLUSIONS We showed that the nitrergic system, partially at least, mediated the anticonvulsant effect of FA in PTZ-induced seizures in mice. We concluded that L-NAME potentiated while L-arg attenuated the anticonvulsant effect of FA.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Salehi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
15
|
Kong W, Sun X, Yu S, Liu P, Zheng X, Zhang J, Zhu L, Jiang T, Jin M, Gao J, Fan X, Liu X, Liu L. Bile duct ligation increased dopamine levels in the cerebral cortex of rats partly due to induction of tyrosine hydroxylase. Br J Pharmacol 2023. [PMID: 36692417 DOI: 10.1111/bph.16041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver failure is associated with psychiatric alterations, partly resulting from the increased brain dopamine levels. We investigated the relationship between increased dopamine levels and mental abnormalities using bile duct ligation (BDL) rats and the mechanism by which liver failure increased dopamine levels in SH-SY5Y cells. Behavioural tests were carried out on day 13 and 27 following BDL, along with measurements of dopamine and metabolites, expressions of enzymes and transporters related to dopamine metabolism, and its transport into the cortex and the hippocampus. SH-SY5Y cells were used to investigate whether NH4 Cl, bile acids and bilirubin affected expression of tyrosine hydroxylase or not. Tyrosine hydroxylase (TH) expression in SH-SY5Y cells co-incubated with bilirubin and signal pathway inhibitors was measured. KEY RESULTS Open-field test results demonstrated BDL rats showed anxiety-like behaviour, accompanied by increased dopamine levels and expression of TH protein in the cortex. Membrane bound long form (MB)-COMT, slightly but significantly decreased. SH-SY5Y cells indicated that increased bilirubin levels was a factor in inducing TH expression. Both inhibitor of NF-κB pathway BAY 11-7082 and silencing NF-κB p65 reversed bilirubin-induced upregulation of TH protein. NF-κB activator TNF-α increased expression of TH protein. Roles of bilirubin in increases of TH protein expressions and dopamine levels were measured using hyperbilirubinemia rats. Anxiety-like behaviour, was associated with increased dopamine levels and TH protein expressions in hyperbilirubinemia rats. CONCLUSION AND IMPLICATIONS BDL significantly increased dopamine levels in rat cortex partly due to bilirubin-mediated TH induction. Increased bilirubin induced TH expression via activating NF-κB signalling pathway.
Collapse
Affiliation(s)
- Weimin Kong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, China
| | - Xueying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Siyu Yu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peihua Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoke Zheng
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Zhang
- Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan Normal University), Changsha, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianxin Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengmeng Jin
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinghui Gao
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaomin Fan
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Sex differences in addiction-relevant behavioral outcomes in rodents following early life stress. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37101684 PMCID: PMC10124992 DOI: 10.1016/j.addicn.2023.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, exposure to early life stress (ELS) is an established risk factor for the development of substance use disorders (SUDs) during later life. Similarly, rodents exposed to ELS involving disrupted mother-infant interactions, such as maternal separation (MS) or adverse caregiving due to scarcity-adversity induced by limited bedding and nesting (LBN) conditions, also exhibit long-term alterations in alcohol and drug consumption. In both humans and rodents, there is a range of addiction-related behaviors that are associated with drug use and even predictive of subsequent SUDs. In rodents, these include increased anxiety-like behavior, impulsivity, and novelty-seeking, altered alcohol and drug intake patterns, as well as disrupted reward-related processes involving consummatory and social behaviors. Importantly, the expression of these behaviors often varies throughout the lifespan. Moreover, preclinical studies suggest that sex differences play a role in how exposure to ELS impacts reward and addiction-related phenotypes as well as underlying brain reward circuitry. Here, addiction-relevant behavioral outcomes and mesolimbic dopamine (DA) dysfunction resulting from ELS in the form of MS and LBN are discussed with a focus on age- and sex-dependent effects. Overall, these findings suggest that ELS may increase susceptibility for later life drug use and SUDs by interfering with the normal maturation of reward-related brain and behavioral function.
Collapse
|
17
|
Chronic Inhibition of Aggressive Behavior Induces Behavioral Change in Mice. Behav Neurol 2022; 2022:7630779. [PMID: 36619803 PMCID: PMC9815925 DOI: 10.1155/2022/7630779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Suppression of anger is more common than its expression among Asian individuals. Emotional suppression is considered an unhealthy emotional regulation. Most studies on emotional suppression have concluded that suppression adversely affects social outcomes, with approximately 5% of the world's population suffering from emotional disorders. However, anger suppression has not received academic attention, and details of the effects of chronic anger suppression on the central nervous system remain unclear. In this study, we performed the resident-intruder test to investigate the effect of chronic suppression of aggressive behavior in mice using a behavioral test battery and to clarify whether suppression of this aggressive behavior is stressful for mice. Mice chronically inhibited aggressive behavior and lost weight. Mice with inhibited aggressive behavior showed a reduced percentage of immobility time during the tail suspension test as well as no changes in activity, anxiety-like behavior, muscle strength, or temperature sensitivity. This study provides scientific evidence for the effects of chronic aggressive behavior inhibition on the body and central nervous system.
Collapse
|
18
|
Alizadeh-Ezdini Z, Vatanparast J. Differential impact of two paradigms of early-life adversity on behavioural responses to social defeat in young adult rats and morphology of CA3 pyramidal neurons. Behav Brain Res 2022; 435:114048. [PMID: 35952779 DOI: 10.1016/j.bbr.2022.114048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) is an important factor in programing the brain for future response to stress, and resilience or vulnerability to stress-induced emotional disorders. The hippocampal formation, with essential roles in both regulating the stress circuitry and emotionality, contributes to this adaptive programing. Here, we examined the effects of early handling (EH) and maternal deprivation (MD) as mild and intense postnatal stressors, respectively, on the behavioural responses to social defeat stress in young adulthood. We also evaluated the interaction of mild and intense ELS with later social defeat (SD) stress on the morphology and dendritic spine density of Golgi-cox-stained CA3 hippocampal neurons. SD stress in adult rats, as expected, increased anxiety and depressive-like behaviours in the open field, elevated plus-maze and forced swimming test. These effects were associated with reduction of dendritic spines and soma size of CA3 neurons. Both behavioural and structural alterations were significantly ameliorated in socially defeated rats that experienced early handling (EH-SD). Basal dendrites of CA3 neurons in EH-SD rats also showed longer dendrites and more intersections with Sholl circles in the distal portion, compared to both control and SD rats. On the other hand, in socially defeated rats with maternal deprivation experience (MD-SD) the stress-induced behavioural and structural alterations were generally intensified compared to SD rats. In MD-SD rats, apical dendrites of CA3 neurons demonstrated remarkable retraction; an effect that was not detected in SD rats. The reduction of dendritic spines density on the apical dendrites of CA3 neurons was also more pronounced in MD-SD rats compared to SD rats. Dendritic arbors and spines comprise the major neuronal substrate for the circuit connectivity, and cell region-specific alterations of dendrites and spines in CA3 neurons reveal plausible mechanisms that can underlie the impact of different ELSs on risk for affective disorders in response to social stress in adulthood.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
19
|
Granata L, Parakoyi A, Brenhouse HC. Age- and sex-specific effects of maternal separation on the acoustic startle reflex in rats: early baseline enhancement in females and blunted response to ambiguous threat. Front Behav Neurosci 2022; 16:1023513. [PMID: 36386786 PMCID: PMC9643533 DOI: 10.3389/fnbeh.2022.1023513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Early life adversity (ELA) increases the incidence of later-life anxiety disorders. Dysregulated threat processing, including responsivity to ambiguous threats, is an indicator of anxiety disorders and can be influenced by childhood experiences. The acoustic startle response is a defensive reflex displayed by mammals when exposed to sudden intense stimuli reflecting individual variations in vigilance. These measures can be altered by previous experience and experimental modifications, including the introduction of unconditioned aversive stimuli. Rats emit ultrasonic vocalizations (USVs) in the 22 KHz range in negative contexts. As such, 22 KHz USVs are an ethologically relevant social cue of environmental threat shown to induce anxiety-like behavior in recipient rats. Because the timing of symptom manifestation after early life adversity can differ between sexes, the current study sought to identify the age- and sex-specific effects of daily maternal separation (MS) on responsivity to ambiguous threat in rats. In Experiment 1, rat pups underwent MS or control rearing from postnatal day (P) 2–20, then underwent behavioral testing beginning on P24, 34, or 54 to determine whether MS modified the baseline startle response or the modulation of startle by 22 KHz USVs. In Experiment 2, rats were tested in a light-enhanced startle paradigm at P54 after MS or control rearing to determine whether MS influenced light-enhanced startle. Results show an enhancement of the baseline startle magnitude by MS in females at P34. At P54, MS reduced the modulation of the startle response by 22 KHz USVs and prevented light-enhanced startle, indicating an MS-induced deficit in defensive responsivity when exposed to potential threat.
Collapse
|
20
|
Hamdan JN, Sierra-Fonseca JA, Flores RJ, Saucedo S, Miranda-Arango M, O’Dell LE, Gosselink KL. Early-life adversity increases anxiety-like behavior and modifies synaptic protein expression in a region-specific manner. Front Behav Neurosci 2022; 16:1008556. [PMID: 36338879 PMCID: PMC9626971 DOI: 10.3389/fnbeh.2022.1008556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/29/2022] [Indexed: 02/11/2024] Open
Abstract
Early-life adversity (ELA) can induce persistent neurological changes and increase the risk for developing affective or substance use disorders. Disruptions to the reward circuitry of the brain and pathways serving motivation and emotion have been implicated in the link between ELA and altered adult behavior. The molecular mechanisms that mediate the long-term effects of ELA, however, are not fully understood. We examined whether ELA in the form of neonatal maternal separation (MatSep) modifies behavior and synaptic protein expression in adults. We hypothesized that MatSep would affect dopaminergic and glutamatergic signaling and enhance sensitivity to methamphetamine (Meth) reward or increase anxiety. Male Wistar rats were subjected to MatSep for 180 min/d on postnatal days (PND) 2-14 and allowed to grow to adulthood (PND 60) with no further manipulation. The hippocampus (Hipp), medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and caudate putamen (CPu) were isolated from one subgroup of animals and subjected to Western blot and protein quantitation for tyrosine hydroxylase (TH), α-synuclein (ALPHA), NMDA receptor (NMDAR), dopamine receptor-1 (D1) and -2 (D2), dopamine transporter (DAT), and postsynaptic density 95 (PSD95). Separate group of animals were tested for anxiety-like behavior and conditioned place preference (CPP) to Meth at 0.0, 0.1, and 1.0 mg/kg doses. MatSep rats displayed an increase in basal levels of anxiety-like behavior compared to control animals. MatSep rats also demonstrated CPP to Meth, but their responses did not differ significantly from controls at any drug dose. Increased NMDAR, D2, and ALPHA expression was observed in the NAc and CPu following MatSep; D2 and ALPHA levels were also elevated in the mPFC, along with DAT. MatSep rats had reduced D1 expression in the mPFC and Hipp, with the Hipp also showing a reduction in D2. Only the CPu showed elevated TH and decreased DAT expression levels. No significant changes were found in PSD95 expression in MatSep rats. In conclusion, ELA is associated with long-lasting and region-specific changes in synaptic protein expression that diminish dopamine neurotransmission and increase anxiety-like behavior in adults. These findings illustrate potential mechanisms through which ELA may increase vulnerability to stress-related illness.
Collapse
Affiliation(s)
- Jameel N. Hamdan
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
- Antharis Therapeutics, San Diego, CA, United States
| | - Jorge A. Sierra-Fonseca
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
- Department of Science, Chatham University, Pittsburgh, PA, United States
| | - Rodolfo J. Flores
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
- National Institutes of Health, National Institute of General Medical Sciences, Bethesda, MD, United States
| | - Sigifredo Saucedo
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Manuel Miranda-Arango
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Kristin L. Gosselink
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| |
Collapse
|
21
|
Améndola L, Weary D, Zobel G. Effects of personality on assessments of anxiety and cognition. Neurosci Biobehav Rev 2022; 141:104827. [PMID: 35970418 DOI: 10.1016/j.neubiorev.2022.104827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Individual variation in responses to commonly used tests of anxiety and spatial memory is often reported. While this variation is frequently considered to be 'noise', evidence suggests that it is, at least partially, related to consistent individual differences in behavioral responses (i.e., personality). The same tests used to assess anxiety are often used to profile personality traits, but personality differences are rarely considered when testing treatment differences in anxiety. Focusing on the rat literature, we describe fundamental principles involved in anxiety and spatial memory tests and we discuss how personality differences and housing conditions can influence behavioral responses in these tests. We propose that an opportunity exists to increase stress resiliency in environmentally sensitive individuals by providing environmental enrichment. We conclude by discussing different approaches to incorporating personality measures into the design and analysis of future studies; given the potential that variation masks research outcomes, we suggest that a strategy which considers the individual and its housing can contribute to improving research reproducibility.
Collapse
Affiliation(s)
- Lucia Améndola
- Animal Welfare Program, University of British Columbia, Canada.
| | - Daniel Weary
- Animal Welfare Program, University of British Columbia, Canada.
| | - Gosia Zobel
- Animal Behaviour and Welfare Team, AgResearch Ltd., Ruakura Research Centre, 10 Bisley Road, Private Bag 3123, Hamilton 3214, New Zealand.
| |
Collapse
|
22
|
Hegab IM, Yao B, Qian Z, Tan Y, Pu Q, Wang Z, Wang H, Su J. Examining sex disparities in risk/reward trade-offs in Smith's zokors, Eospalax smithii. Behav Processes 2022; 201:104716. [PMID: 35901938 DOI: 10.1016/j.beproc.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Risk taking is imperative for the survival and fitness of animals since they are constantly facing innumerable threats from various sources. Indeed, the ability of the individual to balance the costs and benefits of various options and adopt a wise decision is critical for the animal well-being. We modified several traditionally used anxiety tests [The modified light-dark box (mLDB), the modified open field test (mOFT) and the modified defensive withdrawal apparatus (mDWA)] by adding a palatable food reward within the anxiogenic zone which granted us to assess the sex differences in risk-taking behavior in Smith's zokors (Eospalax smithii), a typical subterranean rodent species endemic to the Qinghai-Tibetan Plateau. Concomitant with our working hypothesis, female zokors showed strong aversion and avoidance behavioral responses when tested in the mOFT and mDWA while there were no apparent sexually dimorphic behavioral changes when they were tested in the mLDB (Except for the percentage of food consumed and the latency till start feeding). Furthermore, comparison between the three behavioral paradigms revealed that both sexes showed different behavioral responses toward the different behavioral tests. Sex differences in repeatable behaviors were more profound in females than males. This might reflect different degrees of risk perception and emotionality that may differ considerably between the different models of anxiety. Our results highlighted the functional significance of a trade-off between risk and incentives in natural environment that both male and female zokors differ in the processing of risk assessment in the presence of a food reward.
Collapse
Affiliation(s)
- Ibrahim M Hegab
- Department of Hygiene, Zoonoses and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhang Qian
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Haifang Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
23
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neurosci Res 2022; 180:58-71. [PMID: 35219722 DOI: 10.1016/j.neures.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
We hypothesized that there is a relationship between the orexinergic system (OX) alterations and changes elicited by escitalopram or venlafaxine in adult rats subjected to maternal separation (MS). This animal model of childhood adversity induces long-lasting consequences in adult physiology and behavior. Male Wistar rats from the control and MS groups were injected with escitalopram or venlafaxine (10 mg/kg) IP from postnatal day (PND) 69-89. Adult rats were subjected to behavioral assessment, estimation of hypothalamic-pituitary-adrenal (HPA) axis activity and analysis of the OX system (quantitative PCR and immunohistochemistry) in the hypothalamus and amygdala. MS caused anxiety- and depressive-like behavior, endocrine stress-related response, and up-regulation of the OX system in the hypothalamus. Escitalopram, but not venlafaxine, increased the activity of hypothalamic OX system in the control rats and both drugs had no effect on OXs in the MS group. The disturbed signaling of the OX pathway may be significant for harmful long-term consequences of early-life stress. Our data show that the normal brain and brain altered by MS respond differently to escitalopram. Presumably, anti-anxiety and antidepressant effects of this drug do not depend on the activity of hypothalamic OX system.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jedności 8, Sosnowiec 41-200, Poland
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| |
Collapse
|
24
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Sex- and Genotype-Dependent Nicotine-Induced Behaviors in Adolescent Rats with a Human Polymorphism (rs2304297) in the 3'-UTR of the CHRNA6 Gene. Int J Mol Sci 2022; 23:ijms23063145. [PMID: 35328565 PMCID: PMC8948824 DOI: 10.3390/ijms23063145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
In human adolescents, a single nucleotide polymorphism (SNP), rs2304297, in the 3′-UTR of the nicotinic receptor subunit gene, CHRNA6, has been associated with increased smoking. To study the effects of the human CHRNA6 3′-UTR SNP, our lab generated knock-in rodent lines with either C or G SNP alleles. The objective of this study was to determine if the CHRNA6 3′-UTR SNP is functional in the knock-in rat lines. We hypothesized that the human CHRNA6 3′-UTR SNP knock-in does not impact baseline but enhances nicotine-induced behaviors. For baseline behaviors, rats underwent food self-administration at escalating schedules of reinforcement followed by a locomotor assay and a series of anxiety tests (postnatal day (PN) 25-39). In separate cohorts, adolescent rats underwent 1- or 4-day nicotine pretreatment (2×, 30 μg/kg/0.1 mL, i.v.). After the last nicotine injection (PN 31), animals were assessed behaviorally in an open-field chamber, and brain tissue was collected. We show the human CHRNA6 3′-UTR SNP knock-in does not affect food reinforcement, locomotor activity, or anxiety. Further, 4-day, but not 1-day, nicotine exposure enhances locomotion and anxiolytic behavior in a genotype- and sex-specific manner. These findings demonstrate that the human CHRNA6 3′-UTR SNP is functional in our in vivo model.
Collapse
|
26
|
Joushi S, Esmaeilpour K, Masoumi-Ardakani Y, Esmaeili-Mahani S, Sheibani V. Effects of short environmental enrichment on early-life adversity induced cognitive alternations in adolescent rats. J Neurosci Res 2021; 99:3373-3391. [PMID: 34676587 DOI: 10.1002/jnr.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
Early-life experiences, including parental care, affect cognitive performance later in life. Being exposed to early-life maternal separation (MS) increases susceptibility to stress-related psychopathology. Previous studies suggest that MS could induce learning and memory impairments. Since enriched environment (EE) provides more opportunities for exploration and social interaction, in the present study we evaluated the effects of a short EE paradigm with a duration of 13 days on cognitive abilities of maternally separated rats (MS; 180 min/day, postnatal day (PND) 1-21) during adolescence in four experimental groups: Control, Control+EE, MS, and MS+EE. Plasma corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels were also measured in experimental animals. We also studied the induction of long-term potentiation (LTP) in the slices of hippocampal CA1 area. The behavioral and electrophysiological assessments were started at PND 35. MS caused higher basal CORT levels in plasma and impaired spatial learning, memory, and social interaction. LTP induction was also impaired in MS rats and plasma BDNF levels were reduced in these animals. MS also induced more anxiety-like behavior. Short EE reduced plasma CORT levels had the potential to improve locomotor activity and anxiety-like behavior in MS+EE rats and reversed MS-induced impairments of spatial learning, memory, and social behavior. LTP induction and plasma BDNF levels were also enhanced in MS+EE rats. We concluded that short EE might be considered as a therapeutic strategy for promoting cognition.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Hernandez-Baixauli J, Puigbò P, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Bas JMD, Mulero M. Alterations in Metabolome and Microbiome Associated with an Early Stress Stage in Male Wistar Rats: A Multi-Omics Approach. Int J Mol Sci 2021; 22:12931. [PMID: 34884735 PMCID: PMC8657954 DOI: 10.3390/ijms222312931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
28
|
Abdelwahab LA, Galal OO, Abd El-Rahman SS, El-Brairy AI, Khattab MM, El-Khatib AS. Targeting the oxytocin system to ameliorate early life depressive-like behaviors in maternally-separated rats. Biol Pharm Bull 2021; 44:1445-1457. [PMID: 34349049 DOI: 10.1248/bpb.b21-00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin (OXT) - "the love hormone" - has been involved in the anti-depressant activity of some selective serotonin reuptake inhibitors (SSRIs). The exact mechanism underlying the OXT pathway in depression is not fully clear. This study aimed to investigate the effect of OXT analogue, carbetocin (CBT) and the SSRI, escitalopram (ESCIT) on depressive-like behaviors following maternal separation (MS). It is worthy to mention that intranasal CBT has been approved by FDA for Prader-Willi syndrome. Adolescent Wistar albino maternally-separated rats were given CBT, (100 μg/animal/day via inhalation route), and, ESCIT, (20 mg kg-1, po) either alone or in combination for 7 days. Repeated 3-h MS demonstrated increased immobility time in forced swim test (FST) and decreased locomotor activity in open field test. MS elevated plasma level of adrenocortico-trophic hormone (ACTH) but notably reduced plasma OXT, with no effect on hippocampal OXT-R expression. Following MS, hippocampal contents of 5-hydroxytryptamine receptors (5HT1A-R), serotonin transporter (SERT) were increased. CBT and ESCIT corrected the behavioral dysfunction in FST and suppressed the high levels of ACTH. Additionally, both treatments boosted OXT level, reduced 5HT1A-R and normalized SERT contents, which reflects increased availability of serotonin. Finally, CBT markedly ameliorated the histopathological damage induced by MS and suppressed the increased glial fibrillary acidic protein. CBT and ESCIT manage depressive-like behavior by positively affecting serotonergic and oxytocinergic systems. Targeting OXT system -using CBT- ameliorated depressive like behaviors induced by maternal separation most probably via enhancing OXT plasma levels, attenuating hormonal ACTH and restoring the expression of hippocampal oxytocin and serotonin mechanisms.
Collapse
Affiliation(s)
- Lobna A Abdelwahab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Omneya O Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University (ACU)
| | | | - Amany I El-Brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
29
|
Sex-specific behavioral and structural alterations caused by early-life stress in C57BL/6 and BTBR mice. Behav Brain Res 2021; 414:113489. [PMID: 34303728 DOI: 10.1016/j.bbr.2021.113489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
Lately, the development of various mental illnesses, such as depression, personality disorders, and autism spectrum disorders, is often associated with traumatic events in childhood. Nonetheless, the mechanism giving rise to this predisposition is still unknown. Because the development of a disease often depends on a combination of a genetic background and environment, we decided to evaluate the effect of early-life stress on BTBR mice, which have behavioral, neuroanatomical, and physiological features of autism spectrum disorders. As early-life stress, we used prolonged separation of pups from their mothers in the first 2 weeks of life (3 h once a day). We assessed effects of the early-life stress on juvenile (postnatal day 23) and adolescent (postnatal days 37-38) male and female mice of strains C57BL/6 (B6) and BTBR. We found that in both strains, the early-life stress did not lead to changes in the level of social behavior, which is an important characteristic of autism-related behavior. Nonetheless, the early-life stress resulted in increased locomotor activity in juvenile BTBR mice. In adolescent mice, the stress early in life caused a low level of anxiety in B6 males and BTBR females and increased exploratory activity in adolescent BTBR males and females. In addition, adolescent B6 male and female mice with a history of the early-life stress tended to have a thinner motor cortex as assessed by magnetic resonance imaging. As compared to B6 mice, BTBR mice showed reduced levels of social behavior and exploratory activity but their level of locomotor activity was higher. BTBR mice had smaller whole-brain, cortical, and dorsal hippocampal volumes; decreased motor cortex thickness; and increased ventral-hippocampus volume as compared to B6 mice, and these parameters correlated with the level of exploratory behavior of BTBR mice. Overall, the effects of early postnatal stress are sex- and strain-dependent.
Collapse
|
30
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
31
|
Sex differences shape zebrafish performance in a battery of anxiety tests and in response to acute scopolamine treatment. Neurosci Lett 2021; 759:135993. [PMID: 34058290 DOI: 10.1016/j.neulet.2021.135993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Sex differences influence human and animal behavioral and pharmacological responses. The zebrafish (Danio rerio) is a powerful, popular model system in neuroscience and drug screening. However, the impact of zebrafish sex differences on their behavior and drug responses remains poorly understood. Here, we evaluate baseline anxiety-like behavior in adult male and female zebrafish, and its changes following an acute 30-min exposure to 800-μM scopolamine, a common psychoactive anticholinergic drug. Overall, we report high baseline anxiety-like behavior and more individual variability in locomotion in female zebrafish, as well as distinct, sex-specific (anxiolytic-like in females and anxiogenic-like in males) effects of scopolamine. Collectively, these findings reinforce the growing importance of zebrafish models for studying how both individual and sex differences shape behavioral and pharmacological responses.
Collapse
|
32
|
Holubová-Kroupová A, Šlamberová R. Perinatal Stress and Methamphetamine Exposure Decreases Anxiety-Like Behavior in Adult Male Rats. Front Behav Neurosci 2021; 15:648780. [PMID: 33994969 PMCID: PMC8116599 DOI: 10.3389/fnbeh.2021.648780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) is an illicit synthetic psychostimulant drug, and its abuse is growing worldwide. MA has been reported as the primary drug of choice, by drug-abusing women, during pregnancy. Since MA easily crosses the placental barrier, the fetus is exposed to MA in a similar fashion to the mother. This study aimed to evaluate the effect of long-term perinatal stressors and drug exposure on anxiety-like behavior in adult male rats using the open field test (OF) and elevated plus maze (EPM). Dams were divided into three groups according to drug treatment during pregnancy: controls (C), saline-SA [subcutaneous (s.c.), 1 ml/kg], and MA (s.c., 5 mg/kg). Litters were divided into four groups according to postnatal stressors: non-stressed controls (N), maternal separation (S), maternal cold water stress (W), and maternal separation plus maternal cold water stress (SW). Forty-five minutes before testing (in both OF and EPM), one-half of adult male rats received an (s.c.) injection of MA and the other half received an SA injection. Prenatal MA/stress exposure did not affect anxiety-like behavior in adult male rats in both tests. In the OF, an acute MA dose in adulthood increased the time spent in the central disk area, decreased time spent in the corners, and decreased time spent immobile and grooming. Also, postnatal stress increased time spent in the central disk area, decreased time spent in corners, and increased mobility compared to controls. All groups of rats exposed to postnatal stressors spent significantly less time in the closed arms of the EPM compared to controls. Overall, our results indicate that early postnatal stress and a single acute MA administration in adulthood decreases the parameters of anxiety-like behavior in adult male rats regardless of prenatal MA exposure. Moreover, postnatal stress via maternal separation impacts the effect of acute MA administration in adulthood. Long-term postnatal stress may thus result in improved adaptation to subsequent stressful experiences later in life.
Collapse
Affiliation(s)
- Anna Holubová-Kroupová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
33
|
Boroujeni SN, Lorigooini Z, Boldaji FR, Amini-Khoei H. Diosgenin via NMDA Receptor Exerted Anxiolytic-like Effect on Maternally Separated Mice. Curr Pharm Des 2021; 27:440-445. [PMID: 32679011 DOI: 10.2174/1381612826666200717083211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Anxiety is one of the most common psychiatric disorders that lead to the disruption of daily life and also the quality of life. Routine medications have many side effects and cause physical dependence and psychosocial addiction. Diosgenin is a phytosteroid found in a number of herbs. The present study aimed to investigate the anxiolytic-like effect of diosgenin in the maternal separation model in male mice focusing on the role of NMDA receptors. MATERIALS AND METHODS Maternal separation (MS) paradigm was performed daily (3 h) from postnatal day (PND) 2-14. Male mice were treated with different doses of diosgenin to find effective and sub-effective doses. In the next step, mice were treated with an effective dose of diosgenin plus NMDA and or a sub-effective dose of diosgenin plus ketamine (NMDA antagonist). Valid behavioral tests for the evaluation of anxiety-like behavior were performed. Then, mice were euthanized, the hippocampus was dissected out and gene expression of NMDA receptors (NR2a and NR2b subunits) was assessed. RESULTS MS provokes anxiety-like behaviors in the open field test (OFT) and elevated plus maze (EPM) test. Diosgenin significantly mitigated the negative effects of MS. Co-administration of NMDA attenuated anxiolyticlike effect of the effective dose of diosgenin, while ketamine potentiated the anxiolytic effect of sub-effective dose of diosgenin. Furthermore, MS increased the expression of the NMDA receptor in the hippocampus which to some extent modulated with diosgenin. CONCLUSION Diosignin has an anxiolytic-like effect on MS mice which at least, in part, mediated through NMDA receptors.
Collapse
Affiliation(s)
- Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Rahimi Boldaji
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
34
|
Athanassi A, Dorado Doncel R, Bath KG, Mandairon N. Relationship between depression and olfactory sensory function: a review. Chem Senses 2021; 46:6383453. [PMID: 34618883 PMCID: PMC8542994 DOI: 10.1093/chemse/bjab044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Romane Dorado Doncel
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Kevin G Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University Medical College, New York, NY, 10032, USA
| | - Nathalie Mandairon
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| |
Collapse
|
35
|
Intranasal oxytocin administration facilitates the induction of long-term potentiation and promotes cognitive performance of maternally separated rats. Psychoneuroendocrinology 2021; 123:105044. [PMID: 33227537 DOI: 10.1016/j.psyneuen.2020.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Maternal separation (MS) is known to induce permanent changes in the central nervous system and is associated with increased levels of anxiety and cognitive impairments. The neuropeptide oxytocin (OT) has been implicated in a broad spectrum of social and nonsocial and behaviors. Since it plays a significant role in learning and memory and enhances synaptic plasticity, we hypothesized that OT may affect MS-induced changes in synaptic plasticity and cognitive performance. Rat pups underwent MS protocol for 180 min/day from postnatal day (PND) 1-21. OT was administered intranasally (2 μg/μl, 7 days) to control and MS groups from PND 22-34. Plasma corticosterone (CORT) levels, anxiety-like behavior, sociability, learning and memory were measured in adolescent rats. In addition, extracellular evoked field excitatory postsynaptic potentials (fEPSP) were also recorded from hippocampal slices. MS induced higher plasma CORT levels and impaired social interaction, learning and memory. Moreover, MS reduced locomotor activity and increased anxiety-like behavior. Intranasal OT could overcome MS-induced deficits and promoted sociability, learning and memory of MS rats. OT also enhanced locomotor activity in the open field and decreased anxiety-like behavior. Obtained results showed that long term potentiation (LTP) was not induced in MS animals. However, OT injection overcame the MS-induced impairment in LTP generation in CA1 area of the hippocampus.
Collapse
|
36
|
Mahmoodkhani M, Amini M, Derafshpour L, Ghasemi M, Mehranfard N. Negative relationship between brain α 1A-AR neurotransmission and βArr2 levels in anxious adolescent rats subjected to early life stress. Exp Brain Res 2020; 238:2833-2844. [PMID: 33025031 DOI: 10.1007/s00221-020-05937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress is correlated with the development of anxiety-related behavior in adolescence, but underlying mechanisms remain poorly known. The α1A-adrenergic receptor (AR) is linked to mood regulation and its function is assumed to be regulated by β-arrestins (βArrs) via desensitization and downregulation. Here, we investigated correlation between changes in α1A-AR and βArr2 levels in the prefrontal cortex (PFC) and hippocampus of adolescent and adult male rats subjected to maternal separation (MS) and their relationship with anxiety-like behavior in adolescence. MS was performed 3 h per day from postnatal days 2-11 and anxiety-like behavior was evaluated in the elevated plus-maze and open field tests. The protein levels were examined using western blot assay. MS decreased α1A-AR expression and increased βArr2 expression in both brain regions of adolescent rats, while induced reverse changes in adulthood. MS adolescent rats demonstrated higher anxiety-type behavior and lower activity in behavioral tests than controls. Decreased α1A-AR levels in MS adolescence strongly correlated with reduced time spent in the open field central area, consistent with increased anxiety-like behavior. An anxiety-like phenotype was mimicked by acute and chronic treatment of developing rats with prazosin, an α1A-AR antagonist, suggesting α1A-AR downregulation may facilitate anxiety behavior in MS adolescent rats. Together, our results indicate a negative correlation between α1A-AR neurotransmission and βArr2 levels in both adults and anxious-adolescent rats and suggest that increased βArr2 levels may contribute to posttranslational regulation of α1A-AR and modulation of anxiety-like behavior in adolescent rats. This may provide a path to develop more effective anxiolytic treatments.
Collapse
Affiliation(s)
- Maryam Mahmoodkhani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amini
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
37
|
Lorigooini Z, Nasiri Boroujeni S, Balali-Dehkordi S, Ebrahimi L, Bijad E, Rahimi-Madiseh M, Amini-Khoei H. Possible involvement of NMDA receptor in the anxiolytic-like effect of caffeic acid in mice model of maternal separation stress. Heliyon 2020; 6:e04833. [PMID: 32944669 PMCID: PMC7481568 DOI: 10.1016/j.heliyon.2020.e04833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aim Anxiety disorders are one of the most common psychiatric disorders worldwide. Common anti-anxiety medications are associated with several side effects. Caffeic acid (CA) is a phenolic compound with several pharmacological effects. The aim of this study was to investigate the anxiolytic-like effect of CA in maternally separated (MS) mice focusing on the possible involvement of the NMDA receptor. Materials and methods In this study, we used the MS paradigm (as a valid animal model of anxiety) in male mice and examined their anxiety-like behavior in postnatal day (PND) 45. The animals were divided into 12 experimental groups. Mice treated with CA alone and in combination with the NMDA receptor agonist/antagonist and then using open field (OFT) and elevated plus maze (EPM) anxiety-like behavior was assessed. Finally, the expression of NMDA receptor subtypes was assessed in the hippocampus using RT- PCR. Results Finding showed that CA exerted anxiolytic –like effects in the OFT and EPM tests. We showed that administration of effective dose of NMDA significantly reversed the anxiolytic-like effect of effective dose of CA and co-administration of ketamine (a NMDA receptor antagonist) significantly potentiated the effect of sub-effective dose of CA. Furthermore, ketamine enhanced the CA-reducing effect on NMDA receptors in the MS mice. Conclusion Our finding demonstrated that, probably at least, NMDA receptors are involved in the anxiety-like properties of CA in MS mice.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Ebrahimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
38
|
Kelly AM, Ong JY, Witmer RA, Ophir AG. Paternal deprivation impairs social behavior putatively via epigenetic modification to lateral septum vasopressin receptor. SCIENCE ADVANCES 2020; 6:eabb9116. [PMID: 32917597 PMCID: PMC7467705 DOI: 10.1126/sciadv.abb9116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Although it is well appreciated that the early-life social environment asserts subsequent long-term consequences on offspring brain and behavior, the specific mechanisms that account for this relationship remain poorly understood. Using a novel assay that forced biparental pairs or single mothers to prioritize caring for offspring or themselves, we investigated the impact of parental variation on adult expression of nonapeptide-modulated behaviors in prairie voles. We demonstrated that single mothers compensate for the lack of a co-parent. Moreover, mothers choose to invest in offspring over themselves when faced with a tradeoff, whereas fathers choose to invest in themselves. Furthermore, our study suggests a pathway whereby variation in parental behavior (specifically paternal care) may lead to alterations in DNA methylation within the vasopressin receptor 1a gene and gene expression in the lateral septum. These differences are concomitant with changes in social approach, a behavior closely associated with septal vasopressin receptor function.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jie Yuen Ong
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Ruth A Witmer
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Early-life stress affects drug abuse susceptibility in adolescent rat model independently of depression vulnerability. Sci Rep 2020; 10:13326. [PMID: 32769999 PMCID: PMC7414128 DOI: 10.1038/s41598-020-70242-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
The development of substance abuse problems occurs due to a diverse combination of risk factors. Among these risks, studies have reported depression and early-life stress as of importance. These two factors often occur simultaneously, however, there is a lack of understanding of how their combined effect may impact vulnerability to drug abuse in adolescence. The present study used rats with different vulnerability to depression (Wistar and Wistar-Kyoto) to investigate the impact of maternal separation (MS) on emotional state and drug addiction vulnerability during the adolescence period. Mothers and their litters were subjected to MS (180 min/day) from postnatal day 2 to 14. The offspring emotional state was assessed by observing their exploratory behavior. Drug abuse vulnerability was assessed through conditioning to cocaine. MS impacted the emotional state in both strains. Wistar responded with increased exploration, while Wistar-Kyoto increased anxiety-like behaviours. Despite the different coping strategies displayed by the two strains when challenged with the behavioural tests, drug conditioning was equally impacted by MS in both strains. Early-life stress appears to affect drug abuse vulnerability in adolescence independently of a depression background, suggesting emotional state as the main driving risk factor.
Collapse
|
40
|
Malcon LMC, Wearick-Silva LE, Zaparte A, Orso R, Luft C, Tractenberg SG, Donadio MVF, de Oliveira JR, Grassi-Oliveira R. Maternal separation induces long-term oxidative stress alterations and increases anxiety-like behavior of male Balb/cJ mice. Exp Brain Res 2020; 238:2097-2107. [PMID: 32656651 DOI: 10.1007/s00221-020-05859-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 01/23/2023]
Abstract
Early life stress (ELS) exposure is a well-known risk factor for the development of psychiatric conditions, including anxiety disorder. Preclinical studies show that maternal separation (MS), a classical model of ELS, causes hypothalamic-pituitary-adrenal (HPA) axis alterations, a key contributor to the stress response modulation. Given that HPA axis activation has been shown to induce oxidative stress, it is possible to hypothesize that oxidative stress mediates the relationship between chronic ELS exposure and the development of several disorders. Here, we investigate the effects of MS in the oxidative status [plasma and brain reduced glutathione, catalase and thiobarbituric acid reactive substances (TBARS)], metabolism (glucose, triglycerides and cholesterol) and anxiety-like behaviors in adult Balb/cJ mice. In short, we found that MS increased anxiety-like behaviors in the open field, light/dark test but not in the elevated-plus maze. Animals also presented increased circulating cholesterol, increased TBARS in the plasma and decreased catalase in the hippocampus. Our findings suggest that MS induces long-term alterations in oxidative stress and increased anxiety-like behaviors.
Collapse
Affiliation(s)
- Luiza Martins Costa Malcon
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinicius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil. .,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
de Bem GF, Okinga A, Ognibene DT, da Costa CA, Santos IB, Soares RA, Silva DLB, da Rocha APM, Isnardo Fernandes J, Fraga MC, Filgueiras CC, Manhães AC, Soares de Moura R, Resende AC. Anxiolytic and antioxidant effects of Euterpe oleracea Mart. (açaí) seed extract in adult rat offspring submitted to periodic maternal separation. Appl Physiol Nutr Metab 2020; 45:1277-1286. [PMID: 32516542 DOI: 10.1139/apnm-2020-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many studies suggest a protective role of phenolic compounds in mood disorders. We aimed to assess the effect of Euterpe oleracea (açaí) seed extract (ASE) on anxiety induced by periodic maternal separation (PMS) in adult male rats. Animals were divided into 6 groups: control, ASE, fluoxetine (FLU), PMS, PMS+ASE, and PMS+FLU. For PMS, pups were separated daily from the dam for 3 h between postnatal day (PN) 2 and PN21. ASE (200 mg·kg-1·day-1) and FLU (10 mg·kg-1·day-1) were administered by gavage for 34 days after stress induction, starting at PN76. At PN106 and PN108, the rats were submitted to open field (OF) and forced swim tests, respectively. At PN110, the rats were sacrificed by decapitation. ASE increased time spent in the center area in the OF test, glucocorticoid receptors in the hypothalamus, tropomyosin receptor kinase B (TRKB) levels in the hippocampus, and nitrite levels and antioxidant activity in the brain stem (PMS+ASE group compared with PMS group). ASE also reduced plasma corticotropin-releasing hormone levels, adrenal norepinephrine levels, and oxidative damage in the brain stem in adult male offspring submitted to PMS. In conclusion, ASE treatment has an anti-anxiety effect in rats submitted to PMS by reducing hypothalamic-pituitary-adrenal axis reactivity and increasing the nitric oxide (NO)-brain-derived neurotrophic factor (BDNF)-TRKB pathway and antioxidant defense in the central nervous system. Novelty ASE has anti-anxiety and antioxidant effects in early-life stress. ASE reduces hypothalamic-pituitary-adrenal axis reactivity. The anxiolytic effect of ASE may involve activation of the NO-BDNF-TRKB pathway in the central nervous system.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Anicet Okinga
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ricardo Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dafne Lopes Beserra Silva
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ana Paula Machado da Rocha
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jemima Isnardo Fernandes
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Mabel Carneiro Fraga
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cláudio Carneiro Filgueiras
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Alex Christian Manhães
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| |
Collapse
|
42
|
Wang D, Levine JLS, Avila-Quintero V, Bloch M, Kaffman A. Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Transl Psychiatry 2020; 10:174. [PMID: 32483128 PMCID: PMC7264128 DOI: 10.1038/s41398-020-0856-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanisms by which childhood maltreatment increases anxiety is unclear, but a propensity for increased defensive behavior in rodent models of early life stress (ELS) suggests that work in rodents may clarify important mechanistic details about this association. A key challenge in studying the effects of ELS on defensive behavior in rodents is the plethora of inconsistent results. This is particularly prominent with the maternal separation (MS) literature, one of the most commonly used ELS models in rodents. To address this issue we conducted a systematic review and meta-analysis, examining the effects of MS on exploratory-defensive behavior in mice and rats using the open field test (OFT) and the elevated plus maze (EPM). This search yielded a total of 49 studies, 24 assessing the effect of MS on behavior in the EPM, 11 tested behavior in the OFT, and 14 studies provided data on both tasks. MS was associated with increased defensive behavior in rats (EPM: Hedge's g = -0.48, p = 0.02; OFT: Hedge's g = -0.33, p = 0.05), effect sizes that are consistent with the anxiogenic effect of early adversity reported in humans. In contrast, MS did not alter exploratory behavior in mice (EPM: Hedge's g = -0.04, p = 0.75; OFT: Hedge's g = -0.03, p = 0.8). There was a considerable amount of heterogeneity between studies likely related to the lack of standardization of the MS protocol. Together, these findings suggest important differences in the ability of MS to alter circuits that regulate defensive behaviors in mice and rats.
Collapse
Affiliation(s)
- Daniel Wang
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA
| | - Jessica L. S. Levine
- grid.47100.320000000419368710Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, CT 06519 USA
| | - Victor Avila-Quintero
- grid.47100.320000000419368710Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, CT 06519 USA
| | - Michael Bloch
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511 USA ,grid.47100.320000000419368710Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, CT 06519 USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
| |
Collapse
|
43
|
Lundberg S, Nylander I, Roman E. Behavioral Profiling in Early Adolescence and Early Adulthood of Male Wistar Rats After Short and Prolonged Maternal Separation. Front Behav Neurosci 2020; 14:37. [PMID: 32265671 PMCID: PMC7096550 DOI: 10.3389/fnbeh.2020.00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Early-life stress and its possible correlations to genes, environment, and later health outcomes can only be studied retrospectively in humans. Animal models enable the exploration of such connections with prospective, well-controlled study designs. However, with the recent awareness of replicability issues in preclinical research, the reproducibility of results from animal models has been highlighted. The present study aims to reproduce the behavioral effects of maternal separation (MS) previously observed in the multivariate concentric square fieldTM (MCSF) test. A second objective was to replicate the adolescent behavioral profiles previously described in the MCSF test. Male rats, subjected to short or prolonged MS or standard rearing, were subjected to behavioral testing in early adolescence and early adulthood. As seen in previous studies, the behavioral effects of MS in the MCSF were small at both tested time points. When tested in early adolescence, the animals exhibited a similar behavioral profile as previously seen, and the finding of adolescent behavioral types was also reproduced. The distribution of animals into the behavioral types was different than in the initial study, but in a manner consistent with developmental theories, as the current cohort was younger than the previous. Notably, the Shelter seeker behavioral type persisted through development, while the Explorer type did not. The lack of basal behavioral effect after MS is in line with the literature on this MS paradigm; the working hypothesis is that the prolonged MS gives rise to a phenotype predisposed to negative health outcomes but which is not apparent without additional provocation.
Collapse
Affiliation(s)
- Stina Lundberg
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
Ueno H, Takahashi Y, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Sci Rep 2020; 10:3509. [PMID: 32103098 PMCID: PMC7044437 DOI: 10.1038/s41598-020-60530-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Mice are the most commonly used laboratory animals for studying diseases, behaviour, and pharmacology. Behavioural experiment battery aids in evaluating abnormal behaviour in mice. During behavioural experiments, mice frequently experience human contact. However, the effects of repeated handling on mice behaviour remains unclear. To minimise mice stress, methods of moving mice using transparent tunnels or cups have been recommended but are impractical in behavioural tests. To investigate these effects, we used a behavioural test battery to assess differences between mice accustomed to the experimenter’s handling versus control mice. Repeatedly handled mice gained slightly more weight than control mice. In behavioural tests, repeatedly handled mice showed improved spatial cognition in the Y-maze test and reduced anxiety-like behaviour in the elevated plus-maze test. However, there was no change in anxiety-like behaviour in the light/dark transition test or open-field test. Grip strength, rotarod, sociability, tail suspension, Porsolt forced swim, and passive avoidance tests revealed no significant differences between repeatedly handled and control mice. Our findings demonstrated that mice repeatedly handled by the experimenter before behavioural tests showed reduced anxiety about high altitudes and improved spatial cognition, suggesting that repeated contact can affect the results of some behavioural tests.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
45
|
de Souza JA, do Amaral Almeida LC, Tavares GA, Falcão LDAL, Beltrão LC, Costa FCO, de Souza FL, da Silva MC, de Souza SL. Dual exposure to stress in different stages of development affects eating behavior of male Wistar rats. Physiol Behav 2020; 214:112769. [DOI: 10.1016/j.physbeh.2019.112769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
|
46
|
Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, Cunningham MG, Ferris CF, Brenhouse HC. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife 2020; 9:52651. [PMID: 31958061 PMCID: PMC7010412 DOI: 10.7554/elife.52651] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to early-life adversity (ELA) increases the risk for psychopathologies associated with amygdala-prefrontal cortex (PFC) circuits. While sex differences in vulnerability have been identified with a clear need for individualized intervention strategies, the neurobiological substrates of ELA-attributable differences remain unknown due to a paucity of translational investigations taking both development and sex into account. Male and female rats exposed to maternal separation ELA were analyzed with anterograde tracing from basolateral amygdala (BLA) to PFC to identify sex-specific innervation trajectories through juvenility (PD28) and adolescence (PD38;PD48). Resting-state functional connectivity (rsFC) was assessed longitudinally (PD28;PD48) in a separate cohort. All measures were related to anxiety-like behavior. ELA-exposed rats showed precocial maturation of BLA-PFC innervation, with females affected earlier than males. ELA also disrupted maturation of female rsFC, with enduring relationships between rsFC and anxiety-like behavior. This study is the first providing both anatomical and functional evidence for sex- and experience-dependent corticolimbic development. Having a traumatic childhood increases the risk a person will develop anxiety disorders later in life. Early life adversity affects men and women differently, but scientists do not yet know why. Learning more could help scientists develop better ways to prevent or treat anxiety disorders in men and women who experienced childhood trauma. Anxiety occurs when threat-detecting brain circuits turn on. These circuits begin working in infancy, and during childhood and adolescence, experiences shape the brain to hone the body’s responses to perceived threats. Two areas of the brain that are important hubs for anxiety-related brain circuits include the basolateral amygdala (BLA) and the prefrontal cortex (PFC). Now, Honeycutt et al. show that rats that experience early life adversity develop stronger connections between the BLA and PFC, and these changes occur earlier in female rats. In the experiments, one group of rats was repeatedly separated from their mothers and littermates (an early life trauma), while a second group was not. Honeycutt et al. examined the connections between the BLA and PFC in the two groups at three different time periods during their development: the juvenile stage, early adolescence, and late adolescence. The experiments showed stronger connections between the BLA and PFC begin to appear earlier in juvenile traumatized female rats. But these changes did not appear in their male counterparts until adolescence. Lastly, the rats that developed these strengthened BLA-PFC connections also behaved more anxiously later in life. This may mean that the ideal timing for interventions may be different for males and females. More work is needed to see if these results translate to humans and then to find the best times and methods to help people who experienced childhood trauma.
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Miles G Cunningham
- Laboratory for Neural Reconstruction, Department of Psychiatry, McLean Hospital, Belmont, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| |
Collapse
|
47
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Nisar S, Farooq RK, Nazir S, Alamoudi W, Alhibshi A. Exposure to early life adversity alters the future behavioral response to a stressful challenge in BALB/C mice. Physiol Behav 2019; 210:112622. [PMID: 31325513 DOI: 10.1016/j.physbeh.2019.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 12/01/2022]
Abstract
Depression is considered as a maladaptive response to stress in adult life. Exposure to stress in early childhood is recognized as a risk factor for being unable to adapt to environmental changes in adult life. Early life stress (ELS) has been modelled in animals to help understand the behavioral outcome of the adversity. Periodic maternal separation (MS) in rodents for the first two weeks of life is one such model. We used MS as a form of ELS in Balb/c mice to study its effect on a stressful challenge encountered in adult life. According to our results, exposure to MS predisposed mice to an altered behavioral response. However, this response was not worsened by exposure to restraint stress (RS) experienced in early adult life. This controversy may be attributed to methodological and biological variations among animals as well as humans.
Collapse
Affiliation(s)
- Safia Nisar
- Pakistan Biological Safety Association PBSA, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia.
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
49
|
Yang R, Sun H, Wu Y, Lu G, Wang Y, Li Q, Zhou J, Sun H, Sun L. Long-Lasting Sex-Specific Effects Based On Emotion- and Cognition-Related Behavioral Assessment of Adult Rats After Post-Traumatic Stress Disorder From Different Lengths of Maternal Separation. Front Psychiatry 2019; 10:289. [PMID: 31231246 PMCID: PMC6558979 DOI: 10.3389/fpsyt.2019.00289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Adverse early life stress is a major cause of vulnerability to various mental disorders in adulthood, including post-traumatic stress disorder (PTSD). Recent studies have suggested that early life stress can help the body adapt optimally when faced with stressful trauma in adult life. An interaction may exist between early life stress (e.g., childhood trauma) and vulnerability to PTSD. This study aimed to evaluate emotion-related behaviors and verify the long-lasting effects of cognitive aspects of PTSD after exposure to severe adverse early life stress, such as long-term separation. Adverse early life stress was simulated by subjecting rats to 3 or 6 consecutive hours of maternal separation (MS) daily, from postnatal day (PND) 2 to PND 14. Single-prolonged stress (SPS) was simulated on PND 80 to imitate other adulthood stresses of PTSD with gender divisions (M-MS3h-PTSD, F-MS3h-PTSD, M-MS6h-PTSD, F-MS6h-PTSD, M-PTSD, and F-PTSD). After the MS and PTSD sessions, behavioral tests were conducted to assess the effectiveness of these treatments, which included an open field test (OFT), elevated plus maze test (EPMT), water maze test (WMT), and forced swimming test (FST) to detect anxiety-like behavior (OFT and EPMT), memory behavior (WMT), and depressive behavior (FST). The M-MS3h-PTSD group had fewer time entries into the open arms of EPMT than the F-MS3h-PTSD group, and the M-MS6h-PTSD group demonstrated fewer up-right postures in the OFT than the F-MS6h-PTSD group. The M-MS3h-PTSD group exhibited more exploratory behavior than the M-MS6h-PTSD and M-PTSD groups in the OFT. Less exploratory behavior was observed in the F-MS3h-PTSD group than in the F-MS6h-PTSD group, which demonstrated significantly increased freezing times in the FST compared to the F-PTSD group. The WMT revealed significant differences in learning and memory performance between the M-MS3h-PTSD group and other treatment groups, which were not found in the female rats. These findings demonstrate that an early stressful experience, such as MS, may be involved in helping the body adapt optimally when faced with additional trauma in adulthood, although mild early life stress might benefit learning and memory among males.
Collapse
Affiliation(s)
- Rucui Yang
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Haoran Sun
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yani Wu
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, Hong Kong
| | - Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
50
|
Marks WN, Zabder NK, Cain SM, Snutch TP, Howland JG. The T-type calcium channel antagonist, Z944, alters social behavior in Genetic Absence Epilepsy Rats from Strasbourg. Behav Brain Res 2019; 361:54-64. [DOI: 10.1016/j.bbr.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
|