1
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
2
|
Jeong S, Park SM, Jo NR, Kwon JS, Lee J, Kim K, Go SM, Cai L, Ahn D, Lee SD, Hyun SH, Choi KC, Jeung EB. Pre-validation of an alternative test method for prediction of developmental neurotoxicity. Food Chem Toxicol 2022; 164:113070. [PMID: 35483486 DOI: 10.1016/j.fct.2022.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
Exposure to neurodevelopmental toxicants can cause permanent brain injury. Hance, determining the neurotoxicity of unknown substances is essential for the safety of substance. As an alternative method to animal studies, developmental neurotoxicity test (DNT) and the first discriminant function (DF) were established in previous study. This study aimed to increase the predictability of the DNT method and perform a mobility test. Two endpoints of 29 newly investigated substances were used to establish a second-generation DF (2nd GDF). As two endpoints, the half-inhibitory concentration of the cell viability (IC50) was determined using a cell counting kit-8 assay. The half-inhibitory concentration of differentiation (ID50) was determined by measuring the green fluorescent protein (GFP) intensity in 46C cells. The substances were treated dose-dependently to measure IC50 and ID50. The 2nd GDF classified 29 chemicals accurately as toxic and non-toxic. Four participants of three independent laboratories were enrolled to test the mobility. The results of the test set were highly accurate in reproducibility (100% of accuracy, sensitivity, and specificity) and mobility (accuracy 93.33%, sensitivity 90.91%, and specificity 100%). In conclusion, the protocol is transferable, reproducible, and accurate. Therefore, this could be a standardizing method for determining a neurotoxicant as an alternative for animal experiments.
Collapse
Affiliation(s)
- SunHwa Jeong
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seon-Mi Park
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Na Rea Jo
- Department of Information and Statistics (DIS), College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jin-Sook Kwon
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jimin Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - KangMin Kim
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seon Myeong Go
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (LVEB), College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology (LBI), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung Duck Lee
- Department of Information and Statistics (DIS), College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (LVEB), College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology (LBI), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology (LVBMB), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
3
|
Togo K, Fukusumi H, Shofuda T, Ohnishi H, Yamazaki H, Hayashi MK, Kawasaki N, Takei N, Nakazawa T, Saito Y, Baba K, Hashimoto H, Sekino Y, Shirao T, Mochizuki H, Kanemura Y. Postsynaptic structure formation of human iPS cell-derived neurons takes longer than presynaptic formation during neural differentiation in vitro. Mol Brain 2021; 14:149. [PMID: 34629097 PMCID: PMC8504131 DOI: 10.1186/s13041-021-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.
Collapse
Affiliation(s)
- Kazuyuki Togo
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, 371-8514, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Faculty of Social Welfare, Gunma University of Health and Welfare, Maebashi, Gunma, 371-0823, Japan
| | - Mariko Kato Hayashi
- School of Medicine, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan.,Department of Food Science and Nutrition, Faculty of Food and Health Sciences, Showa Women's University, Setagaya-ku, Tokyo, 154-8533, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, Osaka, 540-0006, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan.
| |
Collapse
|
4
|
Seeto WJ, Tian Y, Pradhan S, Kerscher P, Lipke EA. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902058. [PMID: 31468632 DOI: 10.1002/smll.201902058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Indexed: 06/10/2023]
Abstract
This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)-diacrylate, poly(ethylene glycol)-fibrinogen, and gelatin methacrylate. Cell-laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale-up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time-consuming and costly. Using a new molding technique, the microfluidic device employs a modified T-junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10-60 million cells mL-1 ) and a wide range of diameters (300-1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long-term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor-based cell expansion and differentiation, and high throughput tissue sphere-based drug testing assays.
Collapse
Affiliation(s)
- Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Shantanu Pradhan
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Petra Kerscher
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Fukusumi H, Handa Y, Shofuda T, Kanemura Y. Evaluation of the susceptibility of neurons and neural stem/progenitor cells derived from human induced pluripotent stem cells to anticancer drugs. J Pharmacol Sci 2019; 140:331-336. [PMID: 31501056 DOI: 10.1016/j.jphs.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023] Open
Abstract
Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons.
Collapse
Affiliation(s)
- Hayato Fukusumi
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Yukako Handa
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
6
|
Matsushiro Y, Kato-Negishi M, Onoe H. Differentiation of 3D-shape-controlled mouse neural stem cell to neural tissues in closed agarose microchambers. Biotechnol Bioeng 2018; 115:1614-1623. [DOI: 10.1002/bit.26559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yuki Matsushiro
- Department of Mechanical Engineering; Faculty of Science and Technology; Keio University; Kohoku-ku Yokohama Japan
| | - Midori Kato-Negishi
- Institute of Industrial Science; The University of Tokyo; Meguro-ku Tokyo Japan
- Laboratory of Bio-Analytical Chemistry; Research Institute of Pharmaceutical Sciences; Faculty of Pharmacy; Musashino University; Nishitokyo-shi Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering; Faculty of Science and Technology; Keio University; Kohoku-ku Yokohama Japan
| |
Collapse
|
7
|
Fukusumi H, Handa Y, Shofuda T, Kanemura Y. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test. PeerJ 2018; 6:e4187. [PMID: 29312819 PMCID: PMC5756610 DOI: 10.7717/peerj.4187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022] Open
Abstract
Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue—derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.
Collapse
Affiliation(s)
- Hayato Fukusumi
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Yukako Handa
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Generation of Induced Pluripotent Stem Cells and Neural Stem/Progenitor Cells from Newborns with Spina Bifida Aperta. Asian Spine J 2017; 11:870-879. [PMID: 29279741 PMCID: PMC5738307 DOI: 10.4184/asj.2017.11.6.870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/13/2022] Open
Abstract
Study Design We established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods. Purpose We aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use. Overview of Literature SBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues. Methods Fibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology. Results We successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology. Conclusions We successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa.
Collapse
|
9
|
Hofrichter M, Nimtz L, Tigges J, Kabiri Y, Schröter F, Royer-Pokora B, Hildebrandt B, Schmuck M, Epanchintsev A, Theiss S, Adjaye J, Egly JM, Krutmann J, Fritsche E. Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res 2017; 25:72-82. [PMID: 29112887 DOI: 10.1016/j.scr.2017.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Developmental neurotoxicity (DNT) testing performed in rats is resource-intensive (costs, time, animals) and bears the issue of species extrapolation. Thus, reliable alternative human-based approaches are needed for predicting neurodevelopmental toxicity. Human induced pluripotent stem cells (hiPSCs) represent a basis for an alternative method possibly being part of an alternative DNT testing strategy. Here, we compared two hiPSC neural induction protocols resulting in 3D neurospheres: one using noggin and one cultivating cells in neural induction medium (NIM protocol). Performance of Nestin+/SOX2+ hiPSC-derived neural progenitor cells (NPCs) was compared to primary human NPCs. Generally, primary hNPCs first differentiate into Nestin+ and/or GFAP+ radial glia-like cells, while the hiPSC-derived NPCs (hiPSC-NPC) first differentiate into βIII-Tubulin+ neurons suggesting an earlier developmental stage of hiPSC-NPC. In the 'Neurosphere Assay', NIM generated hiPSC-NPC produced neurons with higher performance than with the noggin protocol. After long-term differentiation, hiPSC-NPC form neuronal networks, which become electrically active on microelectrode arrays after 85days. Finally, methylmercury chloride inhibits hiPSC-NPC and hNPC migration with similar potencies. hiPSC-NPCs-derived neurospheres seem to be useful for DNT evaluation representing early neural development in vitro. More system characterization by compound testing is needed to gain higher confidence in this method.
Collapse
Affiliation(s)
- Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Laura Nimtz
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Yaschar Kabiri
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Martin Schmuck
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Stephan Theiss
- Institute of clinical neuroscience and medical psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
10
|
Bamba Y, Kanemura Y, Okano H, Yamasaki M. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells. J Neurosci Methods 2017; 289:57-63. [DOI: 10.1016/j.jneumeth.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
11
|
Dixon AR, Ramirez Y, Haengel K, Barald KF. A drop array culture for patterning adherent mouse embryonic stem cell-derived neurospheres. J Tissue Eng Regen Med 2016; 12:e379-e383. [PMID: 27943657 DOI: 10.1002/term.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/01/2016] [Accepted: 12/06/2016] [Indexed: 01/24/2023]
Abstract
New therapeutic approaches for repairing an injured or degenerating nervous system have accelerated the development of methods to generate populations of neurons derived from various stem cell sources efficiently. Many of these methods require the generation of neurospheres. Here a simple technique is described for creating an array of adherent mouse embryonic stem cell (mESC)-derived neurospheres using a conventional plastic culture dish and a patterning template. mESC-derived neurospheres are confined to circular (4-mm diameter), gel-coated regions within an array. The adherent neurosphere arrays require 3 days to prepare from an mESC source; they can be maintained in 15 μl drops of medium, and exhibit extensive neurite elaboration after 8 days of cultivation. Additionally, the potential of treating the adherent neurospheres in selected drops of an array is demonstrated with a variety of differentiation-inducing reagents and subsequently individually analysing such neurospheres for gene expression, protein levels and morphological development. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Angela R Dixon
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Yadah Ramirez
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn Haengel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Sugai K, Fukuzawa R, Shofuda T, Fukusumi H, Kawabata S, Nishiyama Y, Higuchi Y, Kawai K, Isoda M, Kanematsu D, Hashimoto-Tamaoki T, Kohyama J, Iwanami A, Suemizu H, Ikeda E, Matsumoto M, Kanemura Y, Nakamura M, Okano H. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Mol Brain 2016; 9:85. [PMID: 27642008 PMCID: PMC5027634 DOI: 10.1186/s13041-016-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Collapse
Affiliation(s)
- Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, 183-8561, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | | | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Mol Brain 2016; 9:70. [PMID: 27431206 PMCID: PMC4950778 DOI: 10.1186/s13041-016-0246-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/24/2016] [Indexed: 12/26/2022] Open
Abstract
Background Lissencephaly, or smooth brain, is a severe congenital brain malformation that is thought to be associated with impaired neuronal migration during corticogenesis. However, the exact etiology of lissencephaly in humans remains unknown. Research on congenital diseases is limited by the shortage of clinically derived resources, especially for rare pediatric diseases. The research on lissencephaly is further limited because gyration in humans is more evolved than that in model animals such as mice. To overcome these limitations, we generated induced pluripotent stem cells (iPSCs) from the umbilical cord and peripheral blood of two lissencephaly patients with different clinical severities carrying alpha tubulin (TUBA1A) missense mutations (Patient A, p.N329S; Patient B, p.R264C). Results Neural progenitor cells were generated from these iPSCs (iPSC-NPCs) using SMAD signaling inhibitors. These iPSC-NPCs expressed TUBA1A at much higher levels than undifferentiated iPSCs and, like fetal NPCs, readily differentiated into neurons. Using these lissencephaly iPSC-NPCs, we showed that the neurons derived from the iPSCs obtained from Patient A but not those obtained from Patient B showed abnormal neurite extension, which correlated with the pathological severity in the brains of the patients. Conclusion We established iPSCs derived from lissencephaly patients and successfully modeled one aspect of the pathogenesis of lissencephaly in vitro using iPSC-NPCs and iPSC-derived neurons. The iPSCs from patients with brain malformation diseases helped us understand the mechanism underlying rare diseases and human corticogenesis without the use of postmortem brains. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0246-y) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins. Stem Cells Int 2016; 2016:7235757. [PMID: 27212953 PMCID: PMC4861799 DOI: 10.1155/2016/7235757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/28/2016] [Indexed: 11/17/2022] Open
Abstract
Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.
Collapse
|
15
|
Crook JM, Wallace G, Tomaskovic-Crook E. The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Rev Neurother 2015; 15:295-304. [PMID: 25664599 DOI: 10.1586/14737175.2015.1013096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Collapse
Affiliation(s)
- Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | |
Collapse
|
16
|
Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Konagaya S, Kato K, Nakaji-Hirabayashi T, Iwata H. Selective and rapid expansion of human neural progenitor cells on substrates with terminally anchored growth factors. Biomaterials 2013; 34:6008-14. [DOI: 10.1016/j.biomaterials.2013.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022]
|