1
|
Desai B, Adrish M, Mohan A, Lugogo NL. Biologics in Asthma: Emerging Biologics. Immunol Allergy Clin North Am 2024; 44:751-763. [PMID: 39389722 DOI: 10.1016/j.iac.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Advances in our understanding of asthma pathophysiology have led to the advent of multiple targeted asthma therapies such as biologics. However, partial response to biologics occurs, indicating residual disease activity in some patients. Hence, there exists a need for new therapies that focus on novel pathways, alongside perhaps evaluation of combination biologic therapies and modulators of downstream cytokine activation. Therefore, although our current focus is on biologics; it is critical to take a more holistic approach including consideration for nonbiologic therapies that have the potential to significantly advance asthma care.
Collapse
Affiliation(s)
- Brinda Desai
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Muhammad Adrish
- Department of Pulmonary & Critical Care, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Arjun Mohan
- Department of Medicine, University of Michigan, 300 North Ingalls Street, Suite 2d21, Ann Arbor, MI 48109, USA
| | - Njira L Lugogo
- Department of Medicine, University of Michigan, 300 North Ingalls Street, Suite 2c40, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Oğuzoğlu TÇ, Hanifehnezhad A, Khabbazi SD, Karayel-Hacıoğlu İ, Kaynarcalıdan O, Fırat Z, Filazi N, Erdem-Şahinkesen E, Gül B, Karabulut MC, Koba E, Adıgüzel E, Şenlik Eİ, Korkulu E, Demirden C, Şahinkesen İ, Ceylan A, Muratoğlu H, Vural S, Demirbağ Z, Özkul A. Immunogenicity and Protective Efficacy of Baculovirus-Expressed SARS-CoV-2 Envelope Protein in Mice as a Universal Vaccine Candidate. Vaccines (Basel) 2024; 12:977. [PMID: 39340009 PMCID: PMC11435448 DOI: 10.3390/vaccines12090977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
The envelope (env) protein of SARS-CoV-2, a pivotal component of the viral architecture, plays a multifaceted role in viral assembly, replication, pathogenesis, and ion channel activity. These features make it a significant target for understanding virus-host interactions and developing vaccines to combat COVID-19. Recent structural studies provide valuable insights into the conformational dynamics and membrane topology of the SARS-CoV-2 env protein, shedding light on its functional mechanisms. The strong homology and highly conserved structure of the SARS-CoV-2 env protein shape its immunogenicity and functional characteristics. This study examines the ability of the recombinant SARS-CoV-2 env protein to stimulate an immune response. In this study, recombinant envelope proteins were produced using the baculovirus expression system, and their potential efficacy was evaluated in both in vivo and in vitro models. Our results reveal that the env protein of SARS-CoV-2 stimulates humoral and cellular responses and highlight its potential as a promising vaccine candidate for combating the ongoing pandemic.
Collapse
Affiliation(s)
- Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Alireza Hanifehnezhad
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Saber Delpasand Khabbazi
- Department of Agriculture and Food, Institute of Hemp Research, Yozgat Bozok University, Yozgat 66900, Türkiye
| | - İlke Karayel-Hacıoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Onur Kaynarcalıdan
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Zehra Fırat
- Biotechnology Institute, Ankara University, Ankara 06560, Türkiye
| | - Nazlıcan Filazi
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Virology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay 31040, Türkiye
| | - Eda Erdem-Şahinkesen
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara 06100, Türkiye
| | - Buket Gül
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Muhammed Cesim Karabulut
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Enes Koba
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Ece Adıgüzel
- Republic of Türkiye Ministry of Agriculture and Forestry, Atkaracalar District Directorate, Çankırı 18310, Türkiye
| | - Elif İrem Şenlik
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Emrah Korkulu
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Virology, Faculty of Veterinary Medicine, Kafkas University, Kars 36000, Türkiye
| | - Cansu Demirden
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Republic of Türkiye Ministry of Agriculture and Forestry, East Anatolian Agricultural Research Institute, Erzurum 25090, Türkiye
| | - İlker Şahinkesen
- Diagen Biotechnological Systems Health Services and Automation Industry, Ankara 06070, Türkiye
| | - Ahmet Ceylan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Hacer Muratoğlu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Türkiye
| | - Sevil Vural
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Zihni Demirbağ
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Türkiye
| | - Aykut Özkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| |
Collapse
|
3
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Arapidi GP, Urban AS, Osetrova MS, Shender VO, Butenko IO, Bukato ON, Kuznetsov AA, Saveleva TM, Nos GA, Ivanova OM, Lopukhov LV, Laikov AV, Sharova NI, Nikonova MF, Mitin AN, Martinov AI, Grigorieva TV, Ilina EN, Ivanov VT, Govorun VM. Non-human peptides revealed in blood reflect the composition of intestinal microbiota. BMC Biol 2024; 22:178. [PMID: 39183269 PMCID: PMC11346180 DOI: 10.1186/s12915-024-01975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis. RESULTS Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota. Absolute quantitation by multiple reaction monitoring has confirmed the presence of bacterial peptides in the blood plasma and serum in the range of approximately 0.1 nM to 1 μM. The abundance of microbiota peptides reaches its maximum about 5 h after a meal. Most of the peptides correlate with the bacterial composition of the small intestine and are likely obtained by hydrolysis of membrane proteins with trypsin, chymotrypsin and pepsin - the main proteases of the gastrointestinal tract. The peptides have physicochemical properties that likely allow them to selectively pass the intestinal mucosal barrier and resist fibrinolysis. CONCLUSIONS The proposed approach to the identification of microbiota peptides in the blood, after additional validation, may be useful for determining the microbiota composition of hard-to-reach intestinal areas and monitoring the permeability of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation.
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Maria S Osetrova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Alexandr A Kuznetsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Tatjana M Saveleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Grigorii A Nos
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Leonid V Lopukhov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Alexander V Laikov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Nina I Sharova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Margarita F Nikonova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander N Mitin
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander I Martinov
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Tatiana V Grigorieva
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Elena N Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Vadim M Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| |
Collapse
|
5
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Jacobs I, Deleu S, Cremer J, De Hertogh G, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Eosinophil Depletion as a Potential Therapeutic Strategy in Acute and Chronic Intestinal Inflammation Based on a Dextran Sulfate Sodium Colitis Model. Inflamm Bowel Dis 2024:izae168. [PMID: 39107256 DOI: 10.1093/ibd/izae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND A role for eosinophils in intestinal inflammation and fibrosis in the context of inflammatory bowel disease has been suggested, yet the precise nature, whether causal or secondary remains debated. Hence, it remains unclear whether targeting eosinophils should be further explored as a treatment option in inflammatory bowel disease. METHODS Acute and chronic dextran sulfate sodium colitis was induced in wild-type C57BL/6 mice. Eosinophils were depleted by anti-CCR3 injections before colitis induction in a chronic model and after colitis onset in an acute model in order to investigate the impact of eosinophil depletion on pre-existing colitis. Inflammation was assessed using the disease activity index, macroscopic damage, and histological disease activity score. In the chronic model, fibrosis was assessed by examining colon weight/length ratio, collagen deposition through Martius Scarlet Blue staining, hydroxyproline assay, and COL1A1 expression. Protein and gene expression were assessed using the Meso Scale Discovery platform and real-time quantitative polymerase chain reaction. RESULTS In the acute and chronic colitis model, eosinophil depletion resulted in reduced disease activity and faster recovery, as observed via the total area under the curve of the disease activity index (P = .004 and P = .02, respectively), macroscopic damage score (P = .009 and P = .08, respectively), and histological disease activity score (P = .09 and P = .002, respectively). In the acute model, the accelerated recovery was accompanied by an increase in interleukin (IL)-10 (P = .03) and a decrease in IL-4 (P = .03) and IL-6 (P = .009). Colon weight/length ratio and collagen deposition were not affected by eosinophil depletion. CONCLUSIONS Eosinophil depletion prevents and decreases intestinal inflammation in a preclinical dextran sulfate sodium model without affecting fibrosis. These results pave the way for exploring eosinophil depletion as a novel treatment modality in addressing intestinal inflammation.
Collapse
Affiliation(s)
- Inge Jacobs
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sara Deleu
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, UZ Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Bram Verstockt
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Jacobs I, Ke BJ, Ceulemans M, Cremer J, D'Hoore A, Bislenghi G, Matteoli G, De Hertogh G, Sabino J, Ferrante M, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Fibrostricturing Crohn's Disease Is Marked by an Increase in Active Eosinophils in the Deeper Layers. Clin Transl Gastroenterol 2024; 15:e00706. [PMID: 38690831 PMCID: PMC11272291 DOI: 10.14309/ctg.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION Approximately 50% of patients with Crohn's disease (CD) develop intestinal strictures necessitating surgery. The immune cell distribution in these strictures remains uncharacterized. We aimed to identify the immune cells in intestinal strictures of patients with CD. METHODS During ileocolonic resections, transmural sections of terminal ileum were sampled from 25 patients with CD and 10 non-inflammatory bowel disease controls. Macroscopically unaffected, fibrostenotic, and inflamed ileum was collected and analyzed for immune cell distribution (flow cytometry) and protein expression. Collagen deposition was assessed through a Masson Trichrome staining. Eosinophil and fibroblast colocalization was assessed through immunohistochemistry. RESULTS The Masson Trichrome staining confirmed augmented collagen deposition in both the fibrotic and the inflamed regions, though with a significant increased collagen deposition in the fibrotic compared with inflamed tissue. Distinct Th1, Th2, regulatory T cells, dendritic cells, and monocytes were identified in fibrotic and inflamed CD ileum compared with unaffected ileum of patients with CD as non-inflammatory bowel disease controls. Only minor differences were observed between fibrotic and inflamed tissue, with more active eosinophils in fibrotic deeper layers and increased eosinophil cationic protein expression in inflamed deeper layers. Last, no differences in eosinophil and fibroblast colocalization were observed between the different regions. DISCUSSION This study characterized immune cell distribution and protein expression in fibrotic and inflamed ileal tissue of patients with CD. Immunologic, proteomic, and histological data suggest inflammation and fibrosis are intertwined, with a large overlap between both tissue types. However strikingly, we did identify an increased presence of active eosinophils only in the fibrotic deeper layers, suggesting their potential role in fibrosis development.
Collapse
Affiliation(s)
- Inge Jacobs
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Bo-Jun Ke
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Matthias Ceulemans
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - André D'Hoore
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gabriele Bislenghi
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gianluca Matteoli
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Gert De Hertogh
- Katholieke Universiteit Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - João Sabino
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Marc Ferrante
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium
| | - Tim Vanuytsel
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Bram Verstockt
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
8
|
Ellingsen DG, Sikkeland LIB, Lund MB, Skaugset NP, Ulvestad B. A study of inflammatory biomarkers in crystalline silica exposed rock drillers. Int Arch Occup Environ Health 2024; 97:587-595. [PMID: 38702427 PMCID: PMC11130035 DOI: 10.1007/s00420-024-02070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Crystalline silica (CS) exposure can cause serious lung disease in humans, but mechanisms of pulmonary toxicity have not been completely elucidated. AIMS To assess pro-inflammatory and anti-inflammatory biomarkers and biomarkers related to the development of chronic obstructive pulmonary disease and fibrosis in serum of rock drillers exposed to CS. METHODS Rock drillers (N = 123) exposed to CS and non-specified particulate matter (PM) were compared to 48 referents without current or past exposure to PM in a cross-sectional study. RESULTS The rock drillers had been exposed to CS for 10.7 years on average. Geometric mean (GM) current exposure was estimated to 36 µg/m3. Their GM concentration of matrix metalloproteinase 12 (MMP-12) was significantly higher (16 vs. 13 ng/L; p = 0.04), while interleukin (IL) 6 and IL-8 were significantly lower compared to the referents. Also pentraxin 3 was significantly lower (3558 vs. 4592 ng/L; p = 0.01) in the rock drillers. A dose-response relationship was observed between cumulative exposure to CS and MMP-12, the highest exposed subgroup having significantly higher MMP-12 concentrations than the referents. CONCLUSION Exposure to CS may increase circulating MMP-12 concentrations in a dose-response related fashion. The results may also suggest a down-regulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway.
| | - Liv Ingunn Bjoner Sikkeland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - May Britt Lund
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| | - Bente Ulvestad
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| |
Collapse
|
9
|
Tsukamoto Y, Ito Y, Obase Y, Takazono T, Nakada N, Ashizawa N, Hirayama T, Takeda K, Ide S, Iwanaga N, Tashiro M, Hosogaya N, Fukahori S, Fukushima C, Yanagihara K, Izumikawa K, Mukae H. Serum Cytokine Changes in a Patient with Chronic Pulmonary Aspergillosis Overlapping with Allergic Bronchopulmonary Aspergillosis. Intern Med 2024; 63:1659-1664. [PMID: 37899245 PMCID: PMC11189703 DOI: 10.2169/internalmedicine.2234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA) are diseases caused by Aspergillus infection, and CPA can develop from ABPA in some cases. We herein report a patient with CPA overlapping with ABPA. Serum cytokine levels were evaluated at 4 time points: the ABPA diagnosis, CPA diagnosis, 6 months after the start of voriconazole (VRCZ), and 12 months after re-administration of VRCZ. Interleukin (IL)-13 levels decreased upon glucocorticoid treatment, whereas IL-25 and IL-33 levels decreased rapidly with the initiation of antifungals. Early antifungal therapy may be important to control disease progression and prevent CPA overlap.
Collapse
Affiliation(s)
- Yusei Tsukamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Nana Nakada
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Shotaro Ide
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Masato Tashiro
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Japan
| | - Naoki Hosogaya
- Clinical Research Center, Nagasaki University Hosipital, Japan
| | - Susumu Fukahori
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
| | - Chizu Fukushima
- Clinical Research Center, Nagasaki University Hosipital, Japan
| | | | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
10
|
Kim J. Precision medicine to personalize medicine in allergic airway disease. Curr Opin Allergy Clin Immunol 2024; 24:109-113. [PMID: 38547381 DOI: 10.1097/aci.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of this study is to understand the approach to precision medicine and personalized medicine in the management of allergic airway disease. RECENT FINDINGS Identification of biomarkers as key tools used in precision medicine has led to the development of multiple biologic drugs being used as new treatments for allergic airway disease. SUMMARY In addition to these advances, there is still much needed effort to improve the feasibility and utility of integrating biologic omics data of precision medicine with physicochemical, behavioral, psychological, and social data to deliver optimized treatments that is personalized for each individual.
Collapse
Affiliation(s)
- Jean Kim
- Johns Hopkins University School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Division of Rhinology, Department of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
12
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
13
|
Garg D, Que LG, Ingram JL. Effects of biological therapies on patients with Type-2 high asthma and comorbid obesity. Front Pharmacol 2024; 14:1315540. [PMID: 38259298 PMCID: PMC10800376 DOI: 10.3389/fphar.2023.1315540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Over 20 million adults and 6 million children in the United States (US) have asthma, a chronic respiratory disease characterized by airway inflammation, bronchoconstriction, and mucus hypersecretion. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of diminished asthma control, increased submucosal eosinophilia, and reduced quality of life. A large subgroup of these patients experiences severe symptoms and recurrent exacerbations despite maximal dosage of standard asthma therapies. In the past two decades, the development of biological therapies has revolutionized the field and advanced our understanding of type 2 inflammatory biomarkers. However, patients with obesity and comorbid asthma are not principally considered in clinical trials of biologics. Large landmark cluster analyses of patients with asthma have consistently identified specific asthma phenotypes that associate with obesity but may be differentiated by age of asthma onset and inflammatory cell profiles in sputum. These patterns suggest that biologic processes driving asthma pathology are heterogenous among patients with obesity. The biological mechanisms driving pathology in patients with asthma and comorbid obesity are not well understood and likely multifactorial. Future research needs to be done to elicit the cellular and metabolic functions in the relationship of obesity and asthma to yield the best treatment options for this multiplex condition. In this review, we explore the key features of type 2 inflammation in asthma and discuss the effectiveness, safety profile, and research gaps regarding the currently approved biological therapies in asthma patients with obesity.
Collapse
Affiliation(s)
- Diya Garg
- Department of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, Irvine, CA, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jennifer L. Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
14
|
Dawoodi S, Rizvi SAA, Zaidi AK. Innate immune responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:127-154. [PMID: 38237984 DOI: 10.1016/bs.pmbts.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides an overview of the innate immune response to SARS-CoV-2, focusing on the recognition, activation, and evasion strategies employed by the virus. The innate immune system plays a crucial role in the early defense against viral infections, and understanding its response to SARS-CoV-2 is essential for developing effective therapeutic approaches. The chapter begins by explaining the basics of the innate immune system, including its components and salient features. It discusses the various pattern recognition receptors involved in recognizing SARS-CoV-2, such as toll-like receptors, RIG-I-like receptors, NOD-like receptors, and other cytosolic sensors. The binding and entry of the virus into host cells and subsequent activation of innate immune cells, including neutrophils, monocytes, macrophages, dendritic cells, NK cells, and ILCs, are explored. Furthermore, the secretion of key cytokines and chemokines, including type I interferons, IL-6, IL-17, and TNF-alpha, is discussed as part of the innate immune response. The concept of PANoptosis, involving programmed cell death mechanisms, is introduced as a significant aspect of the response to SARS-CoV-2. The chapter also addresses the innate immune evasion strategies employed by SARS-CoV-2, which allow the virus to evade or subvert the host immune response, contributing to viral persistence. Understanding these strategies is crucial for developing targeted therapies against the virus.
Collapse
Affiliation(s)
- Sunny Dawoodi
- Anaesthesiologist, University Hospitals Birmingham and NHS Foundation Trust, United Kingdom
| | - Syed A A Rizvi
- College of Biomedical Sciences, Larkin University, Miami, Florida, United States.
| | | |
Collapse
|
15
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
16
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Mallick I, Panchal P, Kadam S, Mohite P, Scheele J, Seiz W, Agarwal A, Sharma OP. In-silico identification and prioritization of therapeutic targets of asthma. Sci Rep 2023; 13:15706. [PMID: 37735578 PMCID: PMC10514284 DOI: 10.1038/s41598-023-42803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Asthma is a "common chronic disorder that affects the lungs causing variable and recurring symptoms like repeated episodes of wheezing, breathlessness, chest tightness and underlying inflammation. The interaction of these features of asthma determines the clinical manifestations and severity of asthma and the response to treatment" [cited from: National Heart, Lung, and Blood Institute. Expert Panel 3 Report. Guidelines for the Diagnosis and Management of Asthma 2007 (EPR-3). Available at: https://www.ncbi.nlm.nih.gov/books/NBK7232/ (accessed on January 3, 2023)]. As per the WHO, 262 million people were affected by asthma in 2019 that leads to 455,000 deaths ( https://www.who.int/news-room/fact-sheets/detail/asthma ). In this current study, our aim was to evaluate thousands of scientific documents and asthma associated omics datasets to identify the most crucial therapeutic target for experimental validation. We leveraged the proprietary tool Ontosight® Discover to annotate asthma associated genes and proteins. Additionally, we also collected and evaluated asthma related patient datasets through bioinformatics and machine learning based approaches to identify most suitable targets. Identified targets were further evaluated based on the various biological parameters to scrutinize their candidature for the ideal therapeutic target. We identified 7237 molecular targets from published scientific documents, 2932 targets from genomic structured databases and 7690 dysregulated genes from the transcriptomics and 560 targets from genomics mutational analysis. In total, 18,419 targets from all the desperate sources were analyzed and evaluated though our approach to identify most promising targets in asthma. Our study revealed IL-13 as one of the most important targets for asthma with approved drugs on the market currently. TNF, VEGFA and IL-18 were the other top targets identified to be explored for therapeutic benefit in asthma but need further clinical testing. HMOX1, ITGAM, DDX58, SFTPD and ADAM17 were the top novel targets identified for asthma which needs to be validated experimentally.
Collapse
Affiliation(s)
- Ishita Mallick
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pradnya Panchal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Smita Kadam
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Priyanka Mohite
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Jürgen Scheele
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Werner Seiz
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Amit Agarwal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | | |
Collapse
|
19
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
20
|
Okragly AJ, Ryuzoji A, Wulur I, Daniels M, Van Horn RD, Patel CN, Benschop RJ. Binding, Neutralization and Internalization of the Interleukin-13 Antibody, Lebrikizumab. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00947-7. [PMID: 37310643 DOI: 10.1007/s13555-023-00947-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION IL-13 is the primary upregulated cytokine in atopic dermatitis (AD) skin and is the pathogenic mediator driving AD pathophysiology. Lebrikizumab, tralokinumab and cendakimab are therapeutic monoclonal antibodies (mAb) that target IL-13. METHODS We undertook studies to compare in vitro binding affinities and cell-based functional activities of lebrikizumab, tralokinumab and cendakimab. RESULTS Lebrikizumab bound IL-13 with higher affinity (as determined using surface plasma resonance) and slower off-rate. It was more potent in neutralizing IL-13-induced effects in STAT6 reporter and primary dermal fibroblast periostin secretion assays than either tralokinumab or cendakimab. Live imaging confocal microscopy was employed to determine the mAb effects on IL-13 internalization into cells via the decoy receptor IL-13Rα2, using A375 and HaCaT cells. The results showed that only the IL-13/lebrikizumab complex was internalized and co-localized with lysosomes, whereas IL-13/tralokinumab or IL-13/cendakimab complexes did not internalize. CONCLUSION Lebrikizumab is a potent, neutralizing high-affinity antibody with a slow disassociation rate from IL-13. Additionally, lebrikizumab does not interfere with IL-13 clearance. Lebrikizumab has a different mode of action to both tralokinumab and cendakimab, possibly contributing to the clinical efficacy observed by lebrikizumab in Ph2b/3 AD studies.
Collapse
Affiliation(s)
- Angela J Okragly
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Aya Ryuzoji
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Isabella Wulur
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Montanea Daniels
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert D Van Horn
- Flow Cytometry-Imaging Core Lab, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Chetan N Patel
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Benschop
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
21
|
Li S, Duan X, Jiang N, Jeyarajan AJ, Warner CA, Li Y, Xu M, Li X, Tan L, Li M, Shao T, Li S, Chen L, Gao Y, Han M, Lin W. Vaccination increased host antiviral gene expression and reduced COVID-19 severity during the Omicron variant outbreak in Fuyang City, China. Int Immunopharmacol 2023; 120:110333. [PMID: 37201409 DOI: 10.1016/j.intimp.2023.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Ning Jiang
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Xiuyong Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Lin Tan
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Ming Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| | - Mingfeng Han
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China.
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
23
|
Ahlberg E, Al-Kaabawi A, Thune R, Simpson MR, Pedersen SA, Cione E, Jenmalm MC, Tingö L. Breast milk microRNAs: Potential players in oral tolerance development. Front Immunol 2023; 14:1154211. [PMID: 36999032 PMCID: PMC10045994 DOI: 10.3389/fimmu.2023.1154211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex biological fluid contains numerous immunologically active factors such as microorganisms, immunoglobulins, cytokines and microRNAs (miRNAs). Here, we set out to predict the function of the top 10 expressed miRNAs in human breast milk, focusing on their relevance in oral tolerance development and allergy prevention in the infant. The top expressed miRNAs in human breast milk were identified on basis of previous peer-reviewed studies gathered from a recent systematic review and an updated literature search. The miRNAs with the highest expression levels in each study were used to identify the 10 most common miRNAs or miRNA families across studies and these were selected for subsequent target prediction. The predictions were performed using TargetScan in combination with the Database for Annotation, Visualization and Integrated Discovery. The ten top expressed miRNAs were: let-7-5p family, miR-148a-3p, miR-30-5p family, miR-200a-3p + miR-141-3p, miR-22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p family, miR-200b/c-3p and miR-429-3p. The target prediction identified 3,588 potential target genes and 127 Kyoto Encyclopedia of Genes and Genomes pathways; several connected to the immune system, including TGF-b and T cell receptor signaling and T-helper cell differentiation. This review highlights the role of breast milk miRNAs and their potential contribution to infant immune maturation. Indeed, breast milk miRNAs seem to be involved in several pathways that influence oral tolerance development.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahmed Al-Kaabawi
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rebecka Thune
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, NTNU University Library, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Maria Christina Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina Tingö
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
- Food and Health Programme, Örebro University, Örebro, Sweden
- *Correspondence: Lina Tingö,
| |
Collapse
|
24
|
Brusselle G, Quirce S, Papi A, Kuna P, Chipps BE, Hanania NA, Blaiss M, Msihid J, Jacob-Nara JA, Deniz Y, Rowe PJ, Gall R, Ortiz B, Djandji M, Radwan A. Dupilumab Efficacy in Patients With Uncontrolled or Oral Corticosteroid-Dependent Allergic and Nonallergic Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:873-884.e11. [PMID: 36572184 DOI: 10.1016/j.jaip.2022.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Type 2 cytokines IL-4/IL-5/IL-13 play an important role in pathogenesis of type 2 conditions, including asthma. Dupilumab, a human monoclonal antibody, blocks the shared receptor component for IL-4/IL-13, inhibiting signaling. In phase 2b (P2B) (NCT01854047) and phase 3 VENTURE (NCT02528214), dupilumab reduced annualized severe exacerbation rates (AER), improved forced expiratory volume in 1 second (FEV1), and was generally well tolerated in patients with uncontrolled, moderate-to-severe, or oral corticosteroid (OCS)-dependent severe asthma. OBJECTIVE The post hoc assessment of dupilumab efficacy versus placebo in P2B and VENTURE in patients stratified by allergic status. METHODS Allergic asthma was defined as total serum IgE ≥30 IU/mL and ≥1 perennial aeroallergen-specific IgE ≥0.35 kU/L at baseline. AER, prebronchodilator (BD) FEV1, FEV1/forced vital capacity (FVC) ratio, asthma control (5-item Asthma Control Questionnaire), health-related quality of life (HRQoL; Asthma Quality of Life Questionnaire), type 2 biomarkers, specific IgE, and OCS reduction (VENTURE only) were assessed. RESULTS In patients with allergic asthma, dupilumab (P2B: pooled 200/300 mg; VENTURE: 300 mg) every 2 weeks versus placebo reduced AER (P2B: -60%, P < .01; VENTURE: -72%, P < .001), and, in P2B, increased pre-BD FEV1 (P < .01) and FEV1/FVC (P < .05). In both studies, dupilumab significantly improved asthma control and HRQoL and reduced most type 2 biomarkers. Dupilumab significantly reduced OCS use in VENTURE. Similar benefits were observed in patients without evidence of allergic asthma. CONCLUSIONS Dupilumab significantly reduced AER and improved lung function, asthma control, and HRQoL in patients with or without evidence of allergic asthma.
Collapse
Affiliation(s)
- Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | - Santiago Quirce
- Division of Internal Medicine, Asthma and Allergy, Hospital Universitario La Paz, IdiPAZ, CIBERES, Madrid, Spain
| | - Alberto Papi
- Respiratory Medicine Unit, University of Ferrara, S. Anna University Hospital, Ferrara, Italy
| | - Piotr Kuna
- Medical University of Łódź, Łódź, Poland
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas
| | - Michael Blaiss
- Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, Ga
| | - Jérôme Msihid
- Department of Immunology, Sanofi, Chilly-Mazarin, France
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Paul J Rowe
- Department of Immunology, Sanofi, Bridgewater, NJ
| | | | | | | | - Amr Radwan
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| |
Collapse
|
25
|
Kandil R, Baldassi D, Böhlen S, Müller JT, Jürgens DC, Bargmann T, Dehmel S, Xie Y, Mehta A, Sewald K, Merkel OM. Targeted GATA3 knockdown in activated T cells via pulmonary siRNA delivery as novel therapy for allergic asthma. J Control Release 2023; 354:305-315. [PMID: 36634709 PMCID: PMC7614985 DOI: 10.1016/j.jconrel.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Sebastian Böhlen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - David C Jürgens
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Tonia Bargmann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yuran Xie
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Katherina Sewald
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
26
|
Nagai T, Terada N, Fujii M, Nagata Y, Nakahara K, Mukai S, Okasho K, Kamiyama Y, Akamatsu S, Kobayashi T, Iida K, Denawa M, Hagiwara M, Inoue T, Ogawa O, Kamoto T. Identification of the α2 chain of interleukin-13 receptor as a potential biomarker for predicting castration resistance of prostate cancer using patient-derived xenograft models. Cancer Rep (Hoboken) 2023; 6:e1701. [PMID: 36806727 PMCID: PMC9939991 DOI: 10.1002/cnr2.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Several treatment strategies use upfront chemotherapy or androgen receptor axis-targeting therapies for metastatic prostate cancer. However, there are no useful biomarkers for selecting appropriate patients who urgently require these treatments. METHODS Novel patient-derived xenograft (PDX) castration-sensitive and -resistant models were established and gene expression patterns were comprehensively compared. The function of a gene highly expressed in the castration-resistant models was evaluated by its overexpression in LNCaP prostate cancer cells. Protein expression in the tumors and serum of patients was examined by immunohistochemistry and ELISA, and correlations with castration resistance were analyzed. RESULTS Expression of the α2 chain of interleukin-13 receptor (IL13Rα2) was higher in castration-resistant PDX tumors. LNCaP cells overexpressing IL13Rα2 acquired castration resistance in vitro and in vivo. In tissue samples, IL13Rα2 expression levels were significantly associated with castration-resistant progression (p < 0.05). In serum samples, IL13Rα2 levels could be measured in 5 of 28 (18%) castration-resistant prostate cancer patients. CONCLUSION IL13Rα2 was highly expressed in castration-resistant prostate cancer PDX models and was associated with the castration resistance of prostate cancer cells. It might be a potential tissue and serum biomarker for predicting castration resistance in prostate cancer patients.
Collapse
Affiliation(s)
- Takahiro Nagai
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Naoki Terada
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Masato Fujii
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Yasuhisa Nagata
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Kozue Nakahara
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Shoichiro Mukai
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| | - Kosuke Okasho
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yuki Kamiyama
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takashi Kobayashi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Kei Iida
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and AndrologyMie University Graduate School of MedicineTsuJapan
| | - Osamu Ogawa
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Toshiyuki Kamoto
- Department of UrologyMiyazaki University Graduate School of MedicineMiyazakiJapan
| |
Collapse
|
27
|
Pathinayake PS, Awatade NT, Wark PAB. Type 2 Immunity and Its Impact on COVID-19 Infection in the Airways. Viruses 2023; 15:402. [PMID: 36851616 PMCID: PMC9967553 DOI: 10.3390/v15020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 immune responses are characterized by elevated type 2 cytokines and blood eosinophilia. Emerging evidence suggests that people with chronic type 2 inflammatory lung diseases are not particularly susceptible to SARS-CoV-2 infection. Intriguingly, recent in vitro, ex vivo research demonstrates type 2 cytokines, particularly IL-13, reduce the risk of SARS-CoV-2 infection in the airway epithelium. IL-13 treatment in airway epithelial cells followed by SARS-CoV-2 diminished viral entry, replication, spread, and cell death. IL-13 reduces the expression of the angiotensin-converting enzyme 2 (ACE2) receptor in the airway epithelium and transmembrane serine protease 2 (TMPRSS2), particularly in ciliated cells. It also alters the cellular composition toward a secretory-cell-rich phenotype reducing total ciliated cells and, thus, reducing viral tropism. IL-13 enhances Muc5ac mucin and glycocalyx secretion in the periciliary layer, which acts as a physical barrier to restrict virus attachment. Moreover, type 2 airway immune cells, such as M2 alveolar macrophages, CD4+ tissue-resident memory T cells, and innate lymphoid 2 cells, may also rescue type 2 airways from SARS-CoV-2-induced adverse effects. In this review, we discuss recent findings that demonstrate how type 2 immunity alters immune responses against SARS-CoV-2 and its consequences on COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Prabuddha S. Pathinayake
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Nikhil T. Awatade
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Peter A. B. Wark
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
28
|
Mäki-Opas I, Hämäläinen M, Moilanen E, Scotece M. TRPA1 as a potential factor and drug target in scleroderma: dermal fibrosis and alternative macrophage activation are attenuated in TRPA1-deficient mice in bleomycin-induced experimental model of scleroderma. Arthritis Res Ther 2023; 25:12. [PMID: 36698198 PMCID: PMC9875496 DOI: 10.1186/s13075-023-02994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere, Finland.
| | - Mari Hämäläinen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Morena Scotece
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland ,grid.428472.f0000 0004 1794 2467Current affiliation: Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
29
|
Lin H, Del Rio Castillo AE, González VJ, Jacquemin L, Panda JK, Bonaccorso F, Vázquez E, Bianco A. Effects of industrially produced 2-dimensional molybdenum disulfide materials in primary human basophils. NANOIMPACT 2023; 29:100451. [PMID: 36626980 DOI: 10.1016/j.impact.2023.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
MoS2 has been increasingly used in place of graphene as a flexible and multifunctional 2D material in many biomedical applications such as cancer detection and drug delivery, which makes it crucial to evaluate downstream compatibility in human immune cells. Molybdenum is a component of stainless-steel stent implants and has previously been implicated in stent hypersensitivity. In view of this, it is important to ascertain the effect of MoS2 on allergy-relevant cells. Basophils are a less commonly used immune cell type. Unlike mast cells, basophils can be easily derived from primary human blood and can act as a sentinel for allergy. However, merely testing any one type of MoS2 in basophils could result in different biological results. We thus decided to compare 2D MoS2 from the two companies BeDimensional© (BD) and Biograph Solutions (BS), manufactured with two different but commonly exploited methods (BD, deoxycholate surfactant in a high-pressure liquid exfoliation, and BS using glycine in ball-milling exfoliation) to elucidate immunological end-points common to both MoS2 and to demonstrate the need for biological verification for end-users who may require a change of supplier. We report higher histamine production in human basophils with MoS2. No effects on either surface basophil activation markers CD63 and CD203c or reactive oxygen species (ROS) production and cell viability were observed. However, different cytokine production patterns were evidenced. IL-6 and IL-1β but not TNF and GM-CSF were increased for both MoS2. BS-MoS2 increased IL-4, while BD-MoS2 decreased IL-4 and increased IL-13. Molybdate ion itself only increased IL-1β and IL-4. Deoxycholate surfactant decreased viability at 18 h and increased ROS upon basophil activation. Therefore, these results demonstrate the safety of MoS2 in human basophils in general and highlight the importance of considering manufacturer additives and variability when selecting and investigating 2D materials such as MoS2.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | | | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg 67000, France.
| |
Collapse
|
30
|
Jain S, Dhall A, Patiyal S, Raghava GPS. In Silico Tool for Identification, Designing, and Searching of IL13-Inducing Peptides in Antigens. Methods Mol Biol 2023; 2673:329-338. [PMID: 37258925 DOI: 10.1007/978-1-0716-3239-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interleukins are a distinctive class of molecules exhibiting various immune signaling functions. Immunoregulatory cytokine, Interleukin 13 (IL13), is primarily synthesized by activated T-helper 2 cells, mast cells, and basophils. IL13, is known to stimulate many allergic and autoimmune diseases, such as asthma, rheumatoid arthritis, systemic sclerosis, ulcerative colitis, airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition to such disorders, IL13 also leads to carcinogenesis by inhibiting tumor immunosurveillance. Due to its role in various diseases, predicting IL13-inducing peptides or regions in a protein is vital to designing safe protein vaccines and therapeutics. IL13pred is an in silico tool which aids in identifying, predicting, and designing IL13-inducing peptides. The IL13pred web server and standalone package is easily accessible at ( https://webs.iiitd.edu.in/raghava/il13pred/ ).
Collapse
Affiliation(s)
- Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
31
|
Affiliation(s)
| | - Ann Mullally
- Brigham and Women's Hospital
- Dana-Farber Cancer Institute
- Broad Institute
| |
Collapse
|
32
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
33
|
Rabe KF, FitzGerald JM, Bateman ED, Castro M, Pavord ID, Maspero JF, Busse WW, Izuhara K, Daizadeh N, Ortiz B, Pandit-Abid N, Rowe PJ, Deniz Y. Dupilumab Is Effective in Patients With Moderate-to-Severe Uncontrolled GINA-Defined Type 2 Asthma Irrespective of an Allergic Asthma Phenotype. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2916-2924.e4. [PMID: 36028446 DOI: 10.1016/j.jaip.2022.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Global Initiative for Asthma report recommends consideration of add-on biologics for patients with type 2 inflammation (blood eosinophils ≥150 cells/μL, fractional exhaled nitric oxide [Feno] ≥20 parts per billion or allergic asthma) whose asthma cannot be controlled by high-dose inhaled corticosteroids. In QUEST (NCT02414854), add-on dupilumab versus placebo was efficacious in patients with uncontrolled, moderate to severe asthma, including those with eosinophils greater than or equal to 150 cells/μL and/or Feno greater than or equal to 25 parts per billion. OBJECTIVE To assess dupilumab efficacy in patients with a type 2 phenotype in the presence or absence of allergic asthma phenotype. METHODS Patients aged 12 years or older received add-on dupilumab 200/300 mg versus matched placebo every 2 weeks for 52 weeks. Allergic asthma phenotype was defined as baseline serum total IgE greater than or equal to 30 IU/mL and 1 or more perennial aeroallergen-specific IgE level greater than or equal to 0.35 kU/L. Annualized rate of severe asthma exacerbations and changes from study baseline in prebronchodilator and postbronchodilator FEV1 were evaluated in patients with allergic and nonallergic phenotype with baseline blood eosinophils greater than or equal to 150 cells/μL and/or Feno greater than or equal to 20 parts per billion. RESULTS Of 1902 patients in QUEST, 83.3% had eosinophils and/or Feno above Global Initiative for Asthma thresholds; 56.9% had evidence for allergic asthma. Dupilumab significantly reduced the rate of severe asthma exacerbations in patients with (48.8%) and without (64.0%) evidence of allergic asthma and improved prebronchodilator and postbronchodilator FEV1 in patients with elevated type 2 biomarkers, irrespective of whether they showed evidence of an allergic asthma phenotype. CONCLUSIONS In patients with type 2 biomarkers over Global Initiative for Asthma thresholds, dupilumab significantly reduced exacerbations and improved lung function. Efficacy was not impacted by allergic status.
Collapse
Affiliation(s)
- Klaus F Rabe
- Lungen Clinic Grosshansdorf (member of the German Center for Lung Research [DZL]), Airway Research Center North, Grosshansdorf, Germany; Christian-Albrechts University of Kiel (member of the German Center for Lung Research [DZL]), Airway Research Center North, Kiel, Germany.
| | - J Mark FitzGerald
- The Centre for Lung Health, University of British Columbia, Vancouver, BC, Canada
| | - Eric D Bateman
- University of Cape Town Lung Institute, Cape Town, South Africa; University of Cape Town, Cape Town, South Africa
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kan
| | - Ian D Pavord
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jorge F Maspero
- Allergy and Respiratory Medicine, Fundación CIDEA, Buenos Aires, Argentina
| | - William W Busse
- UW Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | | | | | | | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| |
Collapse
|
34
|
Bakhshian Nik A, Alvarez-Argote S, O'Meara CC. Interleukin 4/13 signaling in cardiac regeneration and repair. Am J Physiol Heart Circ Physiol 2022; 323:H833-H844. [PMID: 36149768 PMCID: PMC9602781 DOI: 10.1152/ajpheart.00310.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Interleukin 4 (IL4) and interleukin 13 (IL13) are closely related cytokines that have been classically attributed to type II immunity, namely, differentiation of T-helper 2 (TH2) cells and alternative activation of macrophages. Although the role of IL4/13 has been well described in various contexts such as defense against helminth parasites, pathogenesis of allergic disease, and several models of wound healing, relatively little is known about the role of IL4/13 in the heart following injury. Emerging literature has identified various roles for IL4/13 in animal models of cardiac regeneration as well as in the adult mammalian heart following myocardial injury. Notably, although IL4 and IL13 signal to hematopoietic cell types following myocardial infarction (MI) to promote wound healing phenotypes, there is substantial evidence that these cytokines can signal directly to non-hematopoietic cell types in the heart during development, homeostasis, and following injury. Comprehensive understanding of the molecular and cellular actions of IL4/13 in the heart is still lacking, but overall evidence to date suggests that activation of these cytokines results in beneficial outcomes with respect to cardiac repair. Here, we aim to comprehensively review the role of IL4 and IL13 and their prospective mechanisms in cardiac regeneration and repair.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Santiago Alvarez-Argote
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
35
|
Abdo W, Haziri I, Dmerdash M, Alnasser SM, Hakamy A, Ali E, Soliman SA, Abd-Elhafeez HH, Abd-Eldayem AM. Anatabine attenuates ovalbumin-induced asthma via oxidative stress and inflammation mitigation and Nrf2/HO-1 signaling upregulation in rats. Life Sci 2022; 308:120954. [PMID: 36103960 DOI: 10.1016/j.lfs.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
AIMS Asthma affects a large number of people worldwide and is characterized by chronic allergic airway inflammation. Anatabine is a natural alkaloid that is structurally similar to nicotine and found in the Solanaceae family of plants, with anti-inflammatory properties. Consequently, this study aimed to evaluate the potential therapeutic effect of anatabine against asthma. MAIN METHODS Ovalbumin was used to induce asthma in rats. Two asthmatic groups were treated with low and high doses of anatabine. KEY FINDINGS Asthmatic animals experienced increased total leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF), bronchitis, and bronchopneumonia associated with mast cell infiltration. Additionally, inducible nitric oxide synthase immunostaining was observed, with decreased pulmonary antioxidant capacity and enzymes and decreased Nrf2 and HO-1 gene expression while increased NFκB-P65 expression. Interestingly, asthmatic animals treated with anatabine at both doses showed dose-dependently decreased inflammatory cells and cytokine levels within BALF reduced inflammation in the airways through decreased mast cell infiltration within lung tissues and increased antioxidant enzymes and Nrf2 and Ho-1 expression levels. SIGNIFICANCE Our results highlight the potential beneficial effect of anatabine against asthma through anti-inflammatory and antioxidant mechanisms. Therefore, anatabine is a promising candidate for pulmonary asthma treatment.
Collapse
Affiliation(s)
- Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Imer Haziri
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina" Hasan Prishtin", 10000 Pristina, Kosovo.
| | - Mohamed Dmerdash
- Anatomy Department, Faculty of Medicine Al-Azhar University, Cairo 11884, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia.
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Ehab Ali
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Egypt.
| | | | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
36
|
Alqahtani T, Parveen S, Alghazwani Y, Alharbi HM, Gahtani RM, Hussain N, Rehman KU, Hussain M. Pharmacological Validation for the Folklore Use of Ipomoea nil against Asthma: In Vivo and In Vitro Evaluation. Molecules 2022; 27:4653. [PMID: 35889525 PMCID: PMC9324646 DOI: 10.3390/molecules27144653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which may demonstrate as more potent, economically affordable, having an improved antioxidant profile and providing evidence as exclusive therapeutic agents in respiratory pharmacology. In vitro antioxidant temperament was executed by DPPH, TFC, TPC and HPLC in addition to enzyme inhibition (cholinesterase) analysis; a bronchodilator assay on rabbit’s trachea as well as in vivo OVA-induced allergic asthmatic activity was performed on mice. In vitro analysis of 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) expressed as % inhibition 86.28 ± 0.25 with IC50 17.22 ± 0.56 mol/L, TPC 115.5 ± 1.02 mg GAE/g of dry sample, TFC 50.44 ± 1.06 mg QE/g dry weight of sample, inhibition in cholinesterase levels for acetyl and butyryl with IC50 (0.60 ± 0.67 and 1.5 ± 0.04 mol/L) in comparison with standard 0.06 ± 0.002 and 0.30 ± 0.003, respectively, while HPLC characterization of In.Cr confirmed the existence with identification as well as quantification of various polyphenolics and flavonoids i.e., gallic acid, vanillic acid, chlorogenic acid, quercetin, kaempferol and others. However, oral gavage of In.Cr at different doses in rabbits showed a better brochodilation profile as compared to carbachol and K+-induced bronchospasm. More significant (p < 0.01) reduction in OVA-induced allergic hyper-responses i.e., inflammatory cells grade, antibody IgE as well as altered IFN-α in airways were observed at three different doses of In.Cr. It can be concluded that sound mechanistic basis i.e., the existence of antioxidants: various phenolic and flavonoids, calcium antagonist(s) as well as enzymes’ inhibition profile, validates folkloric consumptions of this traditionally used plant to treat ailments of respiration.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Sajida Parveen
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (Y.A.)
| | - Hanan M. Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm A-Qura University, Makkah 21955, Saudi Arabia;
| | - Reem M. Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Kashif ur Rehman
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| | - Musaddique Hussain
- Faculty of Pharmacy, TheIslamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.P.); (K.u.R.)
| |
Collapse
|
37
|
Wu L, Zhao W, Tang S, Chen R, Ji M, Yang X. Role of ILC2s in Solid Tumors: Facilitate or Inhibit? Front Immunol 2022; 13:886045. [PMID: 35720302 PMCID: PMC9203687 DOI: 10.3389/fimmu.2022.886045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are important mediators of type 2 immunity and play an important role in allergic diseases, helminth infections, and tissue fibrosis. However, the role of ILC2s in tumor immunity requires further elucidation. Studies over the past decade have reported that ILC2s play a promoting or suppressing role in different tumors. Here we reviewed the role of ILC2s in solid tumors demonstrating that ILC2s act as a crucial regulator in tumor immunity. We proposed that ILC2s could be an important predictor for tumor prognosis and a new therapeutic target after immunotherapy resistance. In conclusion, our study shed new light on modifying and targeting ILC2s for anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Mei Ji
- *Correspondence: Mei Ji, ; Xin Yang,
| | - Xin Yang
- *Correspondence: Mei Ji, ; Xin Yang,
| |
Collapse
|
38
|
Tiwari D, Ahuja N, Kumar S, Kalra R, Nanduri R, Gupta S, Khare AK, Bhagyaraj E, Arora R, Gupta P. Nuclear receptor Nr1d1 alleviates asthma by abating GATA3 gene expression and Th2 cell differentiation. Cell Mol Life Sci 2022; 79:308. [PMID: 35596832 PMCID: PMC11073070 DOI: 10.1007/s00018-022-04323-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
Nuclear receptors are a unique family of transcription factors that play cardinal roles in physiology and plethora of human diseases. The adopted orphan nuclear receptor Nr1d1 is a constitutive transcriptional repressor known to modulate several biological processes. In this study, we found that Nr1d1 plays a decisive role in T helper (Th)-cell polarization and transcriptionally impedes the formation of Th2 cells by directly binding to the promoter region of GATA binding protein 3 (GATA3) gene. Nr1d1 interacts with its cellular companion, the nuclear receptor corepressor and histone deacetylase 3 to form a stable repression complex on the GATA3 promoter. The presence of Nr1d1 also imparts protection against associated inflammatory responses in murine model of asthma and its ligand SR9011 eased disease severity by suppressing Th2 responses. Moreover, Chip-seq profiling uncovered Nr1d1 interactions with other gene subsets that impedes Th2-linked pathways and regulates metabolism, immunity and brain functions, therefore, providing empirical evidence regarding the genetic link between asthma and other comorbid conditions. Thus, Nr1d1 emerges as a molecular switch that could be targeted to subdue asthma.
Collapse
Affiliation(s)
- Drishti Tiwari
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| | - Nancy Ahuja
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashi Kalra
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ravikanth Nanduri
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Shalini Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Asheesh Kumar Khare
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Ella Bhagyaraj
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Rashmi Arora
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pawan Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
39
|
Sharif M, Anjum I, Shabbir A, Mushtaq MN. Immunomodulatory and anti-inflammatory effects of Aerva lanata in ovalbumin induced allergic asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115087. [PMID: 35143934 DOI: 10.1016/j.jep.2022.115087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aerva lanata Linn. (A. lanata) is traditionally used for cough, sore throat and asthma. AIM OF STUDY The aim of the present study was to investigate the immunomodulatory and anti-inflammatory potentials of A. lanata in allergic asthmatic mice. MATERIALS AND METHODS BALB/c mice were administered with three different (methanol, n-hexane and ethyl acetate) extracts of A. lanata two weeks after immunization with ovalbumin and continued for 7 days. Inflammatory cells count was estimated in blood and broncho-alveolar lavage fluid (BALF). RT-PCR was used to find out mRNA expression levels of inflammatory mediators. GC-MS analysis was also carried out. RESULTS Among three extracts of A. lanata, ethyl acetate extract ameliorated (p < 0.001) count of inflammatory cells both blood and BALF remarkably. This study indicated that ethyl acetate extract of A. lanata lowered (p < 0.001) the level of inflammatory modulator TNF-α and IgE antibodies. A. lanata reduced (p < 0.001) interleukin 4, 5, 13 and enhanced (p < 0.001) expression levels of AQP1 and AQP5 in asthmatic mice. GC-MS analysis of ethyl acetate fraction indicated the presence of various anti-oxidant phyto-constituents. The groups treated with A. lanata improved inflammatory, goblet cells hyperplasia scoring and alveolar thickening. CONCLUSIONS The anti-asthmatic effect of A. lanata might be contributed by the suppression of edema, pro-inflammatory cytokines and IgE antibodies, and elevation of aquaporin expression levels, suggesting future study and clinical trials to propose it as a candidate to treat allergic asthma. The anti-oxidant phytochemicals present in A. lanata might be responsible for such potential.
Collapse
Affiliation(s)
- Mariam Sharif
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Pakistan; Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | | |
Collapse
|
40
|
Jain S, Dhall A, Patiyal S, Raghava GPS. IL13Pred: A method for predicting immunoregulatory cytokine IL-13 inducing peptides. Comput Biol Med 2022; 143:105297. [PMID: 35152041 DOI: 10.1016/j.compbiomed.2022.105297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Interleukin 13 (IL-13) is an immunoregulatory cytokine, primarily released by activated T-helper 2 cells. IL-13 induces the pathogenesis of many allergic diseases, such as airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition, IL-13 inhibits tumor immunosurveillance, leading to carcinogenesis. Since elevated IL-13 serum levels are severe in COVID-19 patients, predicting IL-13 inducing peptides or regions in a protein is vital to designing safe protein therapeutics particularly immunotherapeutic. OBJECTIVE The present study describes a method to develop, predict, design, and scan IL-13 inducing peptides. METHODS The dataset experimentally validated 313 IL-13 inducing peptides, and 2908 non-inducing homo-sapiens peptides extracted from the immune epitope database (IEDB). A total of 95 key features using the linear support vector classifier with the L1 penalty (SVC-L1) technique was extracted from the originally generated 9165 features using Pfeature. These key features were ranked based on their prediction ability, and the top 10 features were used to build machine learning prediction models. Various machine learning techniques were deployed to develop models for predicting IL-13 inducing peptides. These models were trained, tested, and evaluated using five-fold cross-validation techniques; the best model was evaluated on an independent dataset. RESULTS Our best model based on XGBoost achieves a maximum AUC of 0.83 and 0.80 on the training and independent dataset, respectively. Our analysis indicates that certain SARS-COV2 variants are more prone to induce IL-13 in COVID-19 patients. CONCLUSION The best performing model was incorporated in web-server and standalone package named 'IL-13Pred' for precise prediction of IL-13 inducing peptides. For large dataset analysis standalone package of IL-13Pred is available at (https://webs.iiitd.edu.in/raghava/il13pred/) webserver and over GitHub link: https://github.com/raghavagps/il13pred.
Collapse
Affiliation(s)
- Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
41
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
42
|
IL4Rα and IL13Rα1 Are Involved in the Development of Human Gallbladder Cancer. J Pers Med 2022; 12:jpm12020249. [PMID: 35207737 PMCID: PMC8875933 DOI: 10.3390/jpm12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gallbladder cancer is commonly associated with inflammation, which indicates that inflammation-related cytokines and cytokine receptors are related to the progression of gallbladder cancers. Interleukin 4 (IL4) is a well-known cytokine that promotes the differentiation of naive helper T cells (Th0) to T helper type 2 cells (Th2). IL13 is a cytokine that is secreted by Th2 cells. IL4 and IL13 are closely related in immune responses. However, the role of IL4Rα and IL13Rα1 signaling pathway has not been fully understood in the development of gallbladder cancer. Methods: In human gallbladder carcinomas, the expression of IL4Rα and IL13Rα1 were evaluated with immunohistochemical staining in tissue microarray tissue sections. After knockdown of IL4Rα or IL13Rα1, cell assays to measure the proliferation and apoptosis and Western blotting analysis were conducted in SNU308 human gallbladder cancer cells. Since Janus kinases2 (JAK2) was considered as one of the down-stream kinases under IL4Rα and IL13Rα1 complex, the same kinds of experiments were performed in SNU308 cells treated with AZD1480, Janus-associated kinases2 (JAK2) inhibitor, to demonstrate the cytotoxic effect of AZD1480 in SNU308 cells. Results: Immunohistochemical expression of IL4Rα was significantly associated with the expression of IL13Rα1 in human carcinoma tissue. In univariate analysis, nuclear expression of IL4Rα, cytoplasmic expression of IL4Rα, nuclear expression of IL13Rα1, and cytoplasmic expression of IL13Rα1 were significantly associated with shorter overall survival and shorter relapse-free survival. Multivariate analysis revealed nuclear expression of IL4Rα as an independent poor prognostic indicator of overall survival and relapse-free survival. Then, we found that knockdown of IL4Rα or IL13Rα1 decreased viability and induced apoptosis in SNU308 cells via activation of FOXO3 and similarly, AZD1480 decreased viability and induced apoptosis in SNU308 cells with dose dependent manner. Conclusions: Taken together, our results suggest that IL4Rα and IL13Rα1 might be involved in the development of human gallbladder cancer cells and IL4Rα and IL13Rα1 complex/JAK2 signaling pathway could be efficient therapeutic targets for gallbladder cancer treatment.
Collapse
|
43
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Gudjonsdottir J, Roth B, Lovén G, Ohlsson B, Hagander L, Salö M. An Evaluation of Serum IgE and Th2-Associated Interleukins in Children With Uncomplicated and Complicated Appendicitis. Front Pediatr 2022; 10:884138. [PMID: 35586830 PMCID: PMC9108389 DOI: 10.3389/fped.2022.884138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathogenesis of appendicitis is not understood completely and establishing a correct diagnosis can be clinically challenging. Previous investigations have shown an association between a T helper cell (Th)2-mediated inflammatory response, for example immunoglobulin E (IgE)-mediated allergy, and a decreased risk of complicated appendicitis. The present study aimed to evaluate differences in serum concentrations of IgE and Th2-associated interleukins (IL) in children with uncomplicated and complicated appendicitis. METHOD A prospective study including children <15 years with appendicitis. Blood samples were collected preoperatively at the time of clinical assessment at the Pediatric Emergency Department and analyzed for concentrations of serum total IgE and IL-4, IL-9, and IL-13. Associations with complicated appendicitis were evaluated through logistic regression adjusting for age, appendicolith, and symptom duration. RESULTS 138 children with confirmed appendicitis were included. The median age was 10 (IQR 8-12) years, 87 (63%) were boys and 58 (42%) had complicated appendicitis. Children with complicated appendicitis had significantly higher concentrations of IL-9 and IL-13 compared to children with uncomplicated appendicitis. In the univariate logistic regression, high concentrations of IL-13 were associated with an increased risk of complicated appendicitis [OR 1.02 (95% CI 1.01-1.04) p = 0.005], which remained in the multivariate analysis [aOR 1.02 (95% CI 1.01-1.04), p = 0.01]. Serum concentrations of IgE, IL-4, and IL-9 did not significantly affect the risk of complicated appendicitis. CONCLUSION High levels of IL-13 seem to be associated with an increased risk of complicated appendicitis. This is incongruent with the hypothesis of an Th1/Th17-driven inflammation in this type of appendicitis.
Collapse
Affiliation(s)
- Johanna Gudjonsdottir
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden.,Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gustav Lovén
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lars Hagander
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden.,Department of Pediatric Surgery, Skåne University Hospital, Lund, Sweden
| | - Martin Salö
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden.,Department of Pediatric Surgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
45
|
Zhao W, Mi Y, Zhao Y, Deng C, Yu R, Mei Q, Cheng Y. 7-Amino acid peptide (7P) decreased airway inflammation and hyperresponsiveness in a murine model of asthma. Eur J Pharmacol 2021; 912:174576. [PMID: 34673034 DOI: 10.1016/j.ejphar.2021.174576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
A 7-amino acid peptide (7P), (Gly-Gln-Thr-Tyr-Thr-Ser-Gly) is one of the synthesized mimic polypeptides, which is the second envelope protein at hypervariable region 1 of chronic hepatitis C virus (HCV HVR1). It contributed to the anti-inflammatory reaction and inhibited lung Th9 responses in asthma through binding to CD81. In this study, we examined the effects of 7P on bronchoconstriction, acute inflammation of the airways, and lung Th2-type responses during allergic lung inflammation. Our results determined that 7P decreased bronchoconstriction and inhibited both acute inflammatory cytokines (TNFα, IL-1β, and IL-6) and Th2 cell cytokine responses (IL-5, IL-4, and IL-13) during allergic lung inflammation. 7P directly inhibited lung Th2 cell differentiation (7P: 5.1% vs. vehicle:12.2% and control 7P:12.2%) and suppressed airway inflammatory cytokine signal transduction to decrease Th2 cell response. Overall, 7P significantly decreased airway hyperresponsiveness (AHR), airway inflammation, and Th2 responses, which may serve as a novel therapeutic candidate during allergic lung inflammation.
Collapse
Affiliation(s)
- Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Yahui Mi
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Yanying Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China.
| | - Chloe Deng
- Opsimath Services, El Monte, CA, 91733-2228, USA.
| | - Ruihe Yu
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China; Shanghai Feichang Biotechnology Co.Ltd, Shanghai, China.
| | - Qibing Mei
- Luzhou New Drug Evaluation and Research Center, Luzhou, 646000, Sichuan Province, PR China.
| | - Yun Cheng
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing, 210036, Jiangsu Province, PR China; Shanghai Feichang Biotechnology Co.Ltd, Shanghai, China.
| |
Collapse
|
46
|
Czysz AH, Mason BL, Li Q, Chin-Fatt C, Minhajuddin A, Carmody T, Trivedi MH. Comparison of inflammatory markers as moderators of depression outcomes: A CO-MED study. J Affect Disord 2021; 295:1066-1071. [PMID: 34706415 DOI: 10.1016/j.jad.2021.08.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prior work suggests some individual immunomarkers may be useful moderators of treatment response between antidepressant medications. The relative moderating effect of individual immunomarkers remains unclear. It is also unknown whether combinations of immunomarkers have a superior moderating effect compared to any individual immunomarker. METHODS Baseline immunomarker levels were assayed using multiplex from a subset of participants in the CO-MED trial (n = 143). Individual and combinations of 19 immunomarkers were modeled as moderators between the three treatment arms (escitalopram monotherapy, escitalopram-bupropion and venlafaxine-mirtazapine) across a variety of depression outcomes. RESULTS Only IL-13 demonstrated a consistent moderating effect across all depression outcome measures. High IL-13 (>20 pg/ml) was associated with higher remission rates to bupropion-escitalopram (67%) versus escitalopram (24%) whereas low IL-13 was associated higher remission rates to escitalopram (59%) versus bupropion-escitalopram (38%). A similar, but weaker moderating effect was observed with venlafaxine-mirtazapine versus escitalopram. The addition of multiple immunomarkers did not consistently improve predictive modeling. LIMITATIONS This is a secondary analysis of a single clinical trial with a relatively small sample size per treatment arm. The testing of specific individual and combinations of biomarkers was data-driven. CONCLUSIONS Among 19 immunomarkers, Il-13 was the best single moderator of treatment outcome. Combinations of immunomarkers were not meaningfully superior to Il-13.
Collapse
Affiliation(s)
- Andrew H Czysz
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Brittany L Mason
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Qiwei Li
- Department of Mathematical Sciences, University of Texas Dallas, Richardson, TX, United States of America
| | - Cherise Chin-Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Abu Minhajuddin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Thomas Carmody
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
47
|
Abstract
Recent therapeutic advances in the management of asthma have underscored the importance of eosinophilia and the role of pro-eosinophilic mediators such as IL-5 in asthma. Given that a subset of patients with COPD may display peripheral eosinophilia similar to what is observed in asthma, a number of recent studies have implied that eosinophilic COPD is a distinct entity. This review will seek to contrast the mechanisms of eosinophilia in asthma and COPD, the implications of eosinophilia for disease outcome, and review current data regarding the utility of peripheral blood eosinophilia in the management of COPD patients.
Collapse
|
48
|
Jacobs I, Ceulemans M, Wauters L, Breynaert C, Vermeire S, Verstockt B, Vanuytsel T. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? Front Immunol 2021; 12:754413. [PMID: 34737752 PMCID: PMC8560962 DOI: 10.3389/fimmu.2021.754413] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic conditions, except for the esophagus which is normally devoid of eosinophils. Research on eosinophils has primarily focused on anti-helminth responses and type 2 immune disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation and fibrosis has been limited. With a shift in research focus from adaptive to innate immunity and the fact that the eosinophilic granules are filled with inflammatory mediators, eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current review we summarize eosinophil characteristics and recruitment as well as the current knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in inflammatory bowel disease and other chronic inflammatory conditions, and we identify research gaps which should be covered in the future.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucas Wauters
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of General Internal Medicine, Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Piao X, Jiang SH, Wang JN, Wu J, Xu WC, Li LQ, Xue Z, Yu JE. Pingchuan formula attenuates airway mucus hypersecretion via regulation of the PNEC-GABA-IL13-Muc5ac axis in asthmatic mice. Biomed Pharmacother 2021; 140:111746. [PMID: 34062412 DOI: 10.1016/j.biopha.2021.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/AIMS Asthma is a common chronic respiratory disease. It has been reported that Pingchuan formula (PCF) can control asthma attacks by reducing airway inflammation, muscle spasm and mucus secretion. However, PCF's mechanism for reducing airway mucus hypersecretion remains unclear. This study aimed to investigate the effect of PCF on airway mucus secretion in asthmatic mice and to explore changes in the PNEC-GABA-IL13-Muc5ac axis. METHODS Male Babl/c mice were used to establish the asthma model via sensitisation with OVA. Mice were randomly divided into Normal, OVA, DEX, and PCF groups. After treatment, lung histopathology was observed with H&E and PAS staining. BALF levels of IL-5 and IL-13 were detected using ELISA. The levels of mRNA and protein expression for GAD1, GABAARβ1, GABAARα1 and Muc5ac in the lung tissue were measured by RT-PCR and Western blot assays. PNECs were observed with AgNOR staining. RESULTS PCF treatment effectively reduced goblet cell (P < 0.01) and PNEC (P < 0.05) proliferation, lung tissue inflammation and airway mucus hypersecretion. In addition, PCF also markedly downregulated mRNA and protein expression of GAD1, GABAARβ1, GABAARα1 and Muc5ac (P < 0.05, compared with OVA), thus inhibiting the GABA-IL-13 pathway in the lung tissue of asthmatic mice. CONCLUSION These findings suggest that PCF controls asthma attacks by reducing airway inflammation and mucus hypersecretion via the PNEC-GABA-IL13-Muc5ac axis.
Collapse
Affiliation(s)
- Xiang Piao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| | - Shen-Hua Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Jia-Ni Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jie Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China
| | - Wan-Chao Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Li-Qing Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| | - Jian-Er Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai 200071, China.
| |
Collapse
|
50
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|