1
|
Weiss BE, Gant JC, Lin RL, Gollihue JL, Kraner SD, Rucker EB, Katsumata Y, Jiang Y, Nelson PT, Wilcock DM, Sompol P, Thibault O, Norris CM. Loss of signaling fidelity between astrocyte endfeet and adjacent cerebral arterioles in an amyloid mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634584. [PMID: 39896447 PMCID: PMC11785167 DOI: 10.1101/2025.01.24.634584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While cerebrovascular dysfunction and reactive astrocytosis are extensively characterized hallmarks of Alzheimer's disease (AD) and related dementias, the dynamic relationship between reactive astrocytes and cerebral vessels remains poorly understood. Here, we used jGCaMP8f and two photon microscopy to investigate Ca 2+ signaling in multiple astrocyte subcompartments, concurrent with changes in cerebral arteriole activity, in fully awake eight-month-old male and female 5xFAD mice, a model for AD-like pathology, and wild-type (WT) littermates. In the absence of movement, spontaneous Ca 2+ transients in barrel cortex occurred more frequently in astrocyte somata, processes, and perivascular regions of 5xFAD mice. However, evoked arteriole dilations (in response to air puff stimulation of contralateral whiskers) and concurrent Ca 2+ transients across astrocyte compartments were reduced in 5xFAD mice relative to WTs. Synchronous activity within multi-cell astrocyte networks was also impaired in the 5xFAD group. Using a custom application to assess functional coupling between astrocyte endfeet and immediately adjacent arteriole segments, we detected deficits in Ca 2+ response probability in 5xFAD mice. Moreover, endfeet Ca 2+ transients following arteriole dilations exhibited a slower onset, reduced amplitude, and lacked relative proportionality to vasomotive activity compared to WTs. The results reveal nuanced alterations in 5xFAD reactive astrocytes highlighted by impaired signaling fidelity between astrocyte endfeet and cerebral arterioles. The results have important implications for the mechanistic underpinnings of brain hypometabolism and the disruption of neurophysiological communication found in AD and other neurodegenerative conditions. Significance Astrocytes are an essential component of the neurovascular unit. Chronically reactive astrocyte phenotypes are mechanistically linked to deleterious features of Alzheimer's disease (AD) including impaired cerebral blood flow, hypometabolism, and synapse dysfunction/loss. Here, we show that reactive astrocytes in a fully awake mouse model of AD-like amyloid pathology are spontaneously hyperactive, exhibit impaired functional connectivity, and respond to dilations in immediately adjacent arterioles with poor fidelity. The results reveal a key point of communication breakdown between the brain and the cerebrovasculature.
Collapse
|
2
|
Maillard P, Fletcher E, Carmichael O, Schwarz C, Seiler S, DeCarli C. Cerebrovascular markers of WMH and infarcts in ADNI: A historical perspective and future directions. Alzheimers Dement 2024; 20:8953-8968. [PMID: 39535353 DOI: 10.1002/alz.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
White matter hyperintensities (WMH) and infarcts found on magnetic resonance imaging (MR infarcts) are common biomarkers of cerebrovascular disease. In this review, we summarize the methods, publications, and conclusions stemming from the Alzheimer's Disease Neuroimaging Initiative (ADNI) related to these measures. We combine analysis of WMH and MR infarct data from across the three main ADNI cohorts with a review of existing literature discussing new methodologies and scientific findings derived from these data. Although ADNI inclusion criteria were designed to minimize vascular risk factors and disease, data across all the ADNI cohorts found consistent trends of increasing WMH volumes associated with advancing age, female sex, and cognitive impairment. ADNI, initially proposed as a study to investigate biomarkers of AD pathology, has also helped elucidate the impact of asymptomatic cerebrovascular brain injury on cognition within a cohort relatively free of vascular disease. Future ADNI work will emphasize additional vascular biomarkers. HIGHLIGHTS: White matter hyperintensities (WMHs) are common to advancing age and likely reflect brain vascular injury among older individuals. WMH and to a lesser extent, magnetic resonance (MR) infarcts, affect risk for transition to cognitive impairment. WMHs and MR infarcts are present, even among Alzheimer's Disease Neuroimaging Initiative (ADNI) participants highly selected to have Alzheimer's disease (AD) as the primary pathology. WMH burden in ADNI is greater among individuals with cognitive impairment and has been associated with AD neurodegenerative markers and cerebral amyloidosis. The negative additive effects of cerebrovascular disease appear present, even in select populations, and future biomarker work needs to further explore this relationship.
Collapse
Affiliation(s)
- Pauline Maillard
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Evan Fletcher
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Owen Carmichael
- Biomedical Imaging, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Stephan Seiler
- Department of Neurology, University of California at Davis, Sacramento, California, USA
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
3
|
Cha WJ, Yi D, Ahn H, Byun MS, Chang YY, Choi JM, Kim K, Choi H, Jung G, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Association between brain amyloid deposition and longitudinal changes of white matter hyperintensities. Alzheimers Res Ther 2024; 16:50. [PMID: 38454444 PMCID: PMC10918927 DOI: 10.1186/s13195-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Growing evidence suggests that not only cerebrovascular disease but also Alzheimer's disease (AD) pathological process itself cause cerebral white matter degeneration, resulting in white matter hyperintensities (WMHs). Some preclinical evidence also indicates that white matter degeneration may precede or affect the development of AD pathology. This study aimed to clarify the direction of influence between in vivo AD pathologies, particularly beta-amyloid (Aβ) and tau deposition, and WMHs through longitudinal approach. METHODS Total 282 older adults including cognitively normal and cognitively impaired individuals were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B PET for measuring Aβ deposition, [18F] AV-1451 PET for measuring tau deposition, and MRI scans with fluid-attenuated inversion recovery image for measuring WMH volume. The relationships between Aβ or tau deposition and WMH volume were examined using multiple linear regression analysis. In this analysis, baseline Aβ or tau were used as independent variables, and change of WMH volume over 2 years was used as dependent variable to examine the effect of AD pathology on increase of WMH volume. Additionally, we set baseline WMH volume as independent variable and longitudinal change of Aβ or tau deposition for 2 years as dependent variables to investigate whether WMH volume could precede AD pathologies. RESULTS Baseline Aβ deposition, but not tau deposition, had significant positive association with longitudinal change of WMH volume over 2 years. Baseline WMH volume was not related with any of longitudinal change of Aβ or tau deposition for 2 years. We also found a significant interaction effect between baseline Aβ deposition and sex on longitudinal change of WMH volume. Subsequent subgroup analyses showed that high baseline Aβ deposition was associated with increase of WMH volume over 2 years in female, but not in male. CONCLUSIONS Our findings suggest that Aβ deposition accelerates cerebral WMHs, particularly in female, whereas white matter degeneration appears not influence on longitudinal Aβ increase. The results also did not support any direction of influence between tau deposition and WMHs.
Collapse
Affiliation(s)
- Woo-Jin Cha
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary program of cognitive science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Jung-Min Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary program of cognitive science, Seoul National University College of Humanities, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Morales CD, Cotton-Samuel D, Lao PJ, Chang JF, Pyne JD, Alshikho MJ, Lippert RV, Bista K, Hale C, Edwards NC, Igwe KC, Deters K, Zimmerman ME, Brickman AM. Small vessel cerebrovascular disease is associated with cognition in prospective Alzheimer's clinical trial participants. Alzheimers Res Ther 2024; 16:25. [PMID: 38308344 PMCID: PMC10836014 DOI: 10.1186/s13195-024-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Secondary prevention clinical trials for Alzheimer's disease (AD) target amyloid accumulation in asymptomatic, amyloid-positive individuals, but it is unclear to what extent other pathophysiological processes, such as small vessel cerebrovascular disease, account for participant performance on the primary cognitive outcomes in those trials. White matter hyperintensities are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) that reflect small vessel cerebrovascular disease. They are associated with cognitive functioning in older adults and with clinical presentation and course of AD, particularly when distributed in posterior brain regions. The purpose of this study was to examine to what degree regional WMH volume is associated with performance on the primary cognitive outcome measure in the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study, a secondary prevention trial. METHODS Data from 1791 participants (59.5% women, mean age (SD) 71.6 (4.74)) in the A4 study and the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) companion study at the screening visit were used to quantify WMH volumes on T2-weighted fluid-attenuated inversion recovery (FLAIR) MR images. Cognition was assessed with the preclinical Alzheimer cognitive composite (PACC). We tested the association of total and regional WMH volumes with PACC performance, adjusting for age, education, and amyloid positivity status, with general linear models. We also considered interactions between WMH and amyloid positivity status. RESULTS Increased frontal and parietal lobe WMH volume was associated with poorer performance on the PACC. While amyloid positivity was also associated with lower cognitive test scores, WMH volumes did not interact with amyloid positivity status. CONCLUSION These results highlight the potential of small vessel cerebrovascular disease to drive AD-related cognitive profiles. Measures of small vessel cerebrovascular disease should be considered when evaluating outcome in trials, both as potential effect modifiers and as a possible target for intervention or prevention.
Collapse
Affiliation(s)
- Clarissa D Morales
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dejania Cotton-Samuel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Julia F Chang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jeffrey D Pyne
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohamad J Alshikho
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Rafael V Lippert
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Kelsang Bista
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Christiane Hale
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Natalie C Edwards
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Kacie Deters
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | | | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Caprihan A, Hillmer L, Erhardt EB, Adair JC, Knoefel JE, Prestopnik J, Rosenberg GA. A trichotomy method for defining homogeneous subgroups in a dementia population. Ann Clin Transl Neurol 2023; 10:1802-1815. [PMID: 37602520 PMCID: PMC10578887 DOI: 10.1002/acn3.51869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION Diagnosis of dementia in the aging brain is confounded by the presence of multiple pathologies. Mixed dementia (MX), a combination of Alzheimer's disease (AD) proteins with vascular disease (VD), is frequently found at autopsy, and has been difficult to diagnose during life. This report develops a method for separating the MX group and defining preclinical AD (presence of AD factors with normal cognition) and preclinical VD subgroups (presence of white matter damage with normal cognition). METHODS Clustering was based on three diagnostic axes: (1) AD factor (ADF) derived from cerebrospinal fluid proteins (Aβ42 and pTau), (2) VD factor (VDF) calculated from mean free water and peak width of skeletonized mean diffusivity in the white matter, and (3) Cognition (Cog) based on memory and executive function. The trichotomy method was applied to an Alzheimer's Disease Neuroimaging Initiative cohort (N = 538). RESULTS Eight biologically defined subgroups were identified which included the MX group with both high ADF and VDF (9.3%) and a preclinical VD group (3.9%), and a preclinical AD group (13.6%). Cog is significantly associated with both ADF and VDF, and the partial-correlation remains significant even when the effect of the other variable is removed (r(Cog, ADF/VDF removed) = 0.46, p < 10-28 and r(Cog, VDF/ADF removed) = 0.24, p < 10-7 ). DISCUSSION The trichotomy method creates eight biologically characterized patient groups, which includes MX, preclinical AD, and preclinical VD subgroups. Further longitudinal studies are needed to determine the utility of the 3-way clustering method with multimodal biological biomarkers.
Collapse
Affiliation(s)
| | - Laura Hillmer
- Center for Memory and AgingUniversity of New Mexico School of MedicineAlbuquerqueNew Mexico87106USA
| | - Erik Barry Erhardt
- Departments of Mathematics and StatisticsUniversity of New Mexico College of Arts and SciencesAlbuquerqueNew Mexico87106USA
| | - John C. Adair
- Center for Memory and AgingUniversity of New Mexico School of MedicineAlbuquerqueNew Mexico87106USA
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew Mexico87106USA
| | - Janice E. Knoefel
- Center for Memory and AgingUniversity of New Mexico School of MedicineAlbuquerqueNew Mexico87106USA
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew Mexico87106USA
| | - Jillian Prestopnik
- Center for Memory and AgingUniversity of New Mexico School of MedicineAlbuquerqueNew Mexico87106USA
| | - Gary A. Rosenberg
- Center for Memory and AgingUniversity of New Mexico School of MedicineAlbuquerqueNew Mexico87106USA
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew Mexico87106USA
| | | |
Collapse
|
6
|
Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 2023; 22:847-857. [PMID: 37454670 DOI: 10.1016/s1474-4422(23)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
For decades, the hypothesis that brain deposition of the amyloid β protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid β is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid β might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.
Collapse
Affiliation(s)
- William J Jagust
- School of Public Health, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Heinzinger N, Maass A, Berron D, Yakupov R, Peters O, Fiebach J, Villringer K, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Bartels C, Jessen F, Maier F, Glanz W, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Killimann I, Göerß D, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Dobisch L, Ewers M, Dechent P, Haynes JD, Scheffler K, Wolfsgruber S, Kleineidam L, Schmid M, Berger M, Düzel E, Ziegler G. Exploring the ATN classification system using brain morphology. Alzheimers Res Ther 2023; 15:50. [PMID: 36915139 PMCID: PMC10009950 DOI: 10.1186/s13195-023-01185-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The NIA-AA proposed amyloid-tau-neurodegeneration (ATN) as a classification system for AD biomarkers. The amyloid cascade hypothesis (ACH) implies a sequence across ATN groups that patients might undergo during transition from healthy towards AD: A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+. Here we assess the evidence for monotonic brain volume decline for this particular (amyloid-conversion first, tau-conversion second, N-conversion last) and alternative progressions using voxel-based morphometry (VBM) in a large cross-sectional MRI cohort. METHODS We used baseline data of the DELCODE cohort of 437 subjects (127 controls, 168 SCD, 87 MCI, 55 AD patients) which underwent lumbar puncture, MRI scanning, and neuropsychological assessment. ATN classification was performed using CSF-Aβ42/Aβ40 (A+/-), CSF phospho-tau (T+/-), and adjusted hippocampal volume or CSF total-tau (N+/-). We compared voxel-wise model evidence for monotonic decline of gray matter volume across various sequences over ATN groups using the Bayesian Information Criterion (including also ROIs of Braak stages). First, face validity of the ACH transition sequence A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was compared against biologically less plausible (permuted) sequences among AD continuum ATN groups. Second, we evaluated evidence for 6 monotonic brain volume progressions from A-T-N- towards A+T+N+ including also non-AD continuum ATN groups. RESULTS The ACH-based progression A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was consistent with cognitive decline and clinical diagnosis. Using hippocampal volume for operationalization of neurodegeneration (N), ACH was most evident in 9% of gray matter predominantly in the medial temporal lobe. Many cortical regions suggested alternative non-monotonic volume progressions over ACH progression groups, which is compatible with an early amyloid-related tissue expansion or sampling effects, e.g., due to brain reserve. Volume decline in 65% of gray matter was consistent with a progression where A status converts before T or N status (i.e., ACH/ANT) when compared to alternative sequences (TAN/TNA/NAT/NTA). Brain regions earlier affected by tau tangle deposition (Braak stage I-IV, MTL, limbic system) present stronger evidence for volume decline than late Braak stage ROIs (V/VI, cortical regions). Similar findings were observed when using CSF total-tau for N instead. CONCLUSION Using the ATN classification system, early amyloid status conversion (before tau and neurodegeneration) is associated with brain volume loss observed during AD progression. The ATN system and the ACH are compatible with monotonic progression of MTL atrophy. TRIAL REGISTRATION DRKS00007966, 04/05/2015, retrospectively registered.
Collapse
Affiliation(s)
- Nils Heinzinger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jochen Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jacob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Killimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | |
Collapse
|
8
|
Wu M, Schweitzer N, Iordanova BE, Halligan-Eddy E, Tudorascu DL, Mathis CA, Lopresti BJ, Kamboh MI, Cohen AD, Snitz BE, Klunk WE, Aizenstein HJ. In Pre-Clinical AD Small Vessel Disease is Associated With Altered Hippocampal Connectivity and Atrophy. Am J Geriatr Psychiatry 2023; 31:112-123. [PMID: 36274019 PMCID: PMC10768933 DOI: 10.1016/j.jagp.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Small Vessel Disease (SVD) is known to be associated with higher AD risk, but its relationship to amyloidosis in the progression of AD is unclear. In this cross-sectional study of cognitively normal older adults, we explored the interactive effects of SVD and amyloid-beta (Aβ) pathology on hippocampal functional connectivity during an associative encoding task and on hippocampal volume. METHODS This study included 61 cognitively normal older adults (age range: 65-93 years, age mean ± standard deviation: 75.8 ± 6.4, 41 [67.2%] female). PiB PET, T2-weighted FLAIR, T1-weighted and face-name fMRI images were acquired on each participant to evaluate brain Aβ, white matter hyperintensities (WMH+/- status), gray matter density, and hippocampal functional connectivity. RESULTS We found that, in WMH (+) older adults greater Aβ burden was associated with greater hippocampal local connectivity (i.e., hippocampal-parahippocampal connectivity) and lower gray matter density in medial temporal lobe (MTL), whereas in WMH (-) older adults greater Aβ burden was associated with greater hippocampal distal connectivity (i.e., hippocampal-prefrontal connectivity) and no changes in MTL gray matter density. Moreover, greater hippocampal local connectivity was associated with MTL atrophy. CONCLUSION These observations support a hippocampal excitotoxicity model linking SVD to neurodegeneration in preclinical AD. This may explain how SVD may accelerate the progression from Aβ positivity to neurodegeneration, and subsequent AD.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA.
| | - Noah Schweitzer
- Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Bistra E Iordanova
- Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Edythe Halligan-Eddy
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Dana L Tudorascu
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA; Departments of Medicine and Biostatistics (DLT), University of Pittsburgh, Pittsburgh, PA
| | - Chester A Mathis
- Department of Radiology (CAM, BJL), University of Pittsburgh, Pittsburgh, PA
| | - Brian J Lopresti
- Department of Radiology (CAM, BJL), University of Pittsburgh, Pittsburgh, PA
| | - M Ilyas Kamboh
- Department of Human Genetics (MIK), University of Pittsburgh, Pittsburgh, PA
| | - Ann D Cohen
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Beth E Snitz
- Department of Neurology (BES), University of Pittsburgh, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Howard J Aizenstein
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
9
|
Tippett LJ, Cawston EE, Morgan CA, Melzer TR, Brickell KL, Ilse C, Cheung G, Kirk IJ, Roberts RP, Govender J, Griner L, Le Heron C, Buchanan S, Port W, Dudley M, Anderson TJ, Williams JM, Cutfield NJ, Dalrymple-Alford JC, Wood P. Dementia Prevention Research Clinic: a longitudinal study investigating factors influencing the development of Alzheimer's disease in Aotearoa, New Zealand. J R Soc N Z 2022; 53:489-510. [PMID: 39439970 PMCID: PMC11459802 DOI: 10.1080/03036758.2022.2098780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/04/2022] [Indexed: 10/15/2022]
Abstract
Aotearoa New Zealand's population is ageing. Increasing life expectancy is accompanied by increases in prevalence of Alzheimer's Disease (AD) and ageing-related disorders. The multicentre Dementia Prevention Research Clinic longitudinal study aims to improve understanding of AD and dementia in Aotearoa, in order to develop interventions that delay or prevent progression to dementia. Comprising research clinics in Auckland, Christchurch and Dunedin, this multi-disciplinary study involves community participants who undergo biennial investigations informed by international protocols and best practice: clinical, neuropsychological, neuroimaging, lifestyle evaluations, APOE genotyping, blood collection and processing. A key research objective is to identify a 'biomarker signature' that predicts progression from mild cognitive impairment to AD. Candidate biomarkers include: blood proteins and microRNAs, genetic, neuroimaging and neuropsychological markers, health, cultural, lifestyle, sensory and psychosocial factors. We are examining a range of mechanisms underlying the progression of AD pathology (e.g. faulty blood-brain barrier, excess parenchymal iron, vascular dysregulation). This paper will outline key aspects of the Dementia Prevention Research Clinic's research, provide an overview of data collection, and a summary of 266 participants recruited to date. The national outreach of the clinics is a strength; the heart of the Dementia Prevention Research Clinics are its people.
Collapse
Affiliation(s)
- Lynette J. Tippett
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Erin E. Cawston
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Catherine A. Morgan
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Tracy R. Melzer
- NZ-Dementia Prevention Research Clinic, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Kiri L. Brickell
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- School of Medicine, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Christina Ilse
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Gary Cheung
- NZ-Dementia Prevention Research Clinic, New Zealand
- Department of Psychological Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Ian J. Kirk
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Reece P. Roberts
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Jane Govender
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Leon Griner
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Campbell Le Heron
- NZ-Dementia Prevention Research Clinic, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Dept of Neurology, Canterbury District Health Board, Christchurch, New Zealand
| | - Sarah Buchanan
- NZ-Dementia Prevention Research Clinic, New Zealand
- Department of Neurology, Southern District Health Board, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Waiora Port
- NZ-Dementia Prevention Research Clinic, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Makarena Dudley
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Tim J. Anderson
- NZ-Dementia Prevention Research Clinic, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Dept of Neurology, Canterbury District Health Board, Christchurch, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Joanna M. Williams
- NZ-Dementia Prevention Research Clinic, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Nicholas J. Cutfield
- NZ-Dementia Prevention Research Clinic, New Zealand
- Department of Neurology, Southern District Health Board, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - John C. Dalrymple-Alford
- NZ-Dementia Prevention Research Clinic, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Phil Wood
- NZ-Dementia Prevention Research Clinic, New Zealand
- School of Medicine, University of Auckland, Auckland, New Zealand
- Ministry of Health, Wellington, New Zealand
- Department of Older Adults and Home Health, Waitemata District Health Board, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - the NZ-DPRC
- NZ-Dementia Prevention Research Clinic, New Zealand
| |
Collapse
|
10
|
Koncz R, Thalamuthu A, Wen W, Catts VS, Dore V, Lee T, Mather KA, Slavin MJ, Wegner EA, Jiang J, Trollor JN, Ames D, Villemagne VL, Rowe CC, Sachdev PS. The heritability of amyloid burden in older adults: the Older Australian Twins Study. J Neurol Neurosurg Psychiatry 2022; 93:303-308. [PMID: 34921119 DOI: 10.1136/jnnp-2021-326677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the proportional genetic contribution to the variability of cerebral β-amyloid load in older adults using the classic twin design. METHODS Participants (n=206) comprising 61 monozygotic (MZ) twin pairs (68 (55.74%) females; mean age (SD): 71.98 (6.43) years), and 42 dizygotic (DZ) twin pairs (56 (66.67%) females; mean age: 71.14 (5.15) years) were drawn from the Older Australian Twins Study. Participants underwent detailed clinical and neuropsychological evaluations, as well as MRI, diffusion tensor imaging (DTI) and amyloid PET scans. Fifty-eight participants (17 MZ pairs, 12 DZ pairs) had PET scans with 11Carbon-Pittsburgh Compound B, and 148 participants (44 MZ pairs, 30 DZ pairs) with 18Fluorine-NAV4694. Cortical amyloid burden was quantified using the centiloid scale globally, as well as the standardised uptake value ratio (SUVR) globally and in specific brain regions. Small vessel disease (SVD) was quantified using total white matter hyperintensity volume on MRI, and peak width of skeletonised mean diffusivity on DTI. Heritability (h2) and genetic correlations were measured with structural equation modelling under the best fit model, controlling for age, sex, tracer and scanner. RESULTS The heritability of global amyloid burden was moderate (0.41 using SUVR; 0.52 using the centiloid scale) and ranged from 0.20 to 0.54 across different brain regions. There were no significant genetic or environmental correlations between global amyloid burden and markers of SVD. CONCLUSION Amyloid deposition, the hallmark early feature of Alzheimer's disease, is under moderate genetic influence, suggesting a major environmental contribution that may be amenable to intervention.
Collapse
Affiliation(s)
- Rebecca Koncz
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia .,Specialty of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Concord, New South Wales, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Teresa Lee
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Melissa J Slavin
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Eva A Wegner
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Kew, Victoria, Australia.,National Ageing Research Institute, Parkville, Victoria, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | |
Collapse
|
11
|
Koncz R, Wen W, Makkar SR, Lam BCP, Crawford JD, Rowe CC, Sachdev P. The Interaction Between Vascular Risk Factors, Cerebral Small Vessel Disease, and Amyloid Burden in Older Adults. J Alzheimers Dis 2022; 86:1617-1628. [PMID: 35213365 DOI: 10.3233/jad-210358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) and Alzheimer's disease pathology, namely amyloid-β (Aβ) deposition, commonly co-occur. Exactly how they interact remains uncertain. OBJECTIVE Using participants from the Alzheimer's Disease Neuroimaging Initiative (n = 216; mean age 73.29±7.08 years, 91 (42.1%) females), we examined whether the presence of vascular risk factors and/or baseline cerebral SVD was related to a greater burden of Aβ cross-sectionally, and at 24 months follow-up. METHOD Amyloid burden, assessed using 18F-florbetapir PET, was quantified as the global standardized uptake value ratio (SUVR). Multimodal imaging was used to strengthen the quantification of baseline SVD as a composite variable, which included white matter hyperintensity volume using MRI, and peak width of skeletonized mean diffusivity using diffusion tensor imaging. Structural equation modelling was used to analyze the associations between demographic factors, Apolipoprotein E ɛ4 carrier status, vascular risk factors, SVD burden and cerebral amyloid. RESULTS SVD burden had a direct association with Aβ burden cross-sectionally (coeff. = 0.229, p = 0.004), and an indirect effect over time (indirect coeff. = 0.235, p = 0.004). Of the vascular risk factors, a history of hypertension (coeff. = 0.094, p = 0.032) and a lower fasting glucose at baseline (coeff. = -0.027, p = 0.014) had a direct effect on Aβ burden at 24 months, but only the direct effect of glucose persisted after regularization. CONCLUSION While Aβ and SVD burden have an association cross-sectionally, SVD does not appear to directly influence the accumulation of Aβ longitudinally. Glucose regulation may be an important modifiable risk factor for Aβ accrual over time.
Collapse
Affiliation(s)
- Rebecca Koncz
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia.,The University of Sydney Specialty of Psychiatry, Faculty of Medicine and Health, Concord, NSW, Australia.,Concord Repatriation General Hospital, Sydney Local Health District, Concord, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Steve R Makkar
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Ben C P Lam
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, UNSW Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
12
|
Scarth M, Rissanen I, Scholten RJPM, Geerlings MI. Biomarkers of Alzheimer's Disease and Cerebrovascular Lesions and Clinical Progression in Patients with Subjective Cognitive Decline: A Systematic Review. J Alzheimers Dis 2021; 83:1089-1111. [PMID: 34397412 DOI: 10.3233/jad-210218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early identification of Alzheimer's disease (AD) may be extremely beneficial for delaying disease progression. Subjective cognitive decline (SCD) may be an early indicator of AD pathology. Not all individuals with SCD will eventually develop AD, making it critical to identify biomarkers during the SCD stage which indicate likely clinical progression. OBJECTIVE The present review aims to summarize available data on structural MRI and cerebrospinal fluid (CSF) biomarkers and their association with clinical progression to mild cognitive impairment (MCI) or AD in people with SCD. METHODS Database searches were conducted using Embase and PubMed until June 2020. Longitudinal studies assessing biomarkers in individuals with SCD and assessing clinical progression to MCI/AD were included. Two assessors performed data extraction and assessed the risk of bias in the included studies. Data were synthesized narratively. RESULTS An initial search identified 1,065 papers; after screening and review 14 studies were included. Sample size of the included studies ranged from 28-674, mean age was 60.0-68.6 years, and 10.2%-52%of participants converted to MCI/AD. Lower levels of CSF Aβ 42 were consistently associated with clinical progression. Combination measures identifying an AD-like profile of Aβ 42 and tau levels were strongly associated with clinical progression. Biomarkers identified with structural MRI were less conclusive, as some studies found significant associations while others did not. CONCLUSION Biomarkers may be able to predict clinical progression in those with cognitive complaints. Aβ 42, or combinations of Aβ 42 and tau may be useful biomarkers in identifying individuals with SCD who will progress to MCI/AD.
Collapse
Affiliation(s)
- Morgan Scarth
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ina Rissanen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rob J P M Scholten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Caprihan A, Raja R, Hillmer LJ, Erhardt EB, Prestopnik J, Thompson J, Adair JC, Knoefel JE, Rosenberg GA. A double-dichotomy clustering of dual pathology dementia patients. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100011. [PMID: 34746872 PMCID: PMC8570532 DOI: 10.1016/j.cccb.2021.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Subcortical ischemic vascular disease (SIVD) and Alzheimer's disease (AD) related dementia can coexist in older subjects, leading to mixed dementia (MX). Identification of dementia sub-groups is important for designing proper treatment plans and clinical trials. METHOD An Alzheimer's disease severity (ADS) score and a vascular disease severity (VDS) score are calculated from CSF and MRI biomarkers, respectively. These scores, being sensitive to different Alzheimer's and vascular disease processes are combined orthogonally in a double-dichotomy plot. This formed an objective basis for clustering the subjects into four groups, consisting of AD, SIVD, MX and leukoaraiosis (LA). The relationship of these four groups is examined with respect to cognitive assessments and clinical diagnosis. RESULTS Cluster analysis had at least 83% agreement with the clinical diagnosis for groups based either on Alzheimer's or on vascular sensitive biomarkers, and a combined agreement of 68.8% for clustering the four groups. The VDS score was correlated to executive function (r = -0.28, p < 0.01) and the ADS score to memory function (r = -0.35, p < 0.002) after adjusting for age, sex, and education. In the subset of patients for which the cluster scores and clinical diagnoses agreed, the correlations were stronger (VDS score-executive function: r = -0.37, p < 0.006 and ADS score-memory function: r = -0.58, p < 0.0001). CONCLUSIONS The double-dichotomy clustering based on imaging and fluid biomarkers offers an unbiased method for identifying mixed dementia patients and selecting better defined sub-groups. Differential correlations with neuropsychological tests support the hypothesis that the categories of dementia represent different etiologies.
Collapse
Affiliation(s)
| | - Rajikha Raja
- The Mind Research Network, Albuquerque, NM, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laura J. Hillmer
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Erik Barry Erhardt
- Departments of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Jill Prestopnik
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Jeffrey Thompson
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - John C Adair
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Janice E. Knoefel
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
14
|
Drake JD, Chambers AB, Ott BR, Daiello LA. Peripheral Markers of Vascular Endothelial Dysfunction Show Independent but Additive Relationships with Brain-Based Biomarkers in Association with Functional Impairment in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1553-1565. [PMID: 33720880 PMCID: PMC8150492 DOI: 10.3233/jad-200759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cerebrovascular dysfunction confers risk for functional decline in Alzheimer's disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. OBJECTIVE We utilized Alzheimer's Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. METHODS Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). RESULTS Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ42 (all < p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. CONCLUSION Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.
Collapse
Affiliation(s)
- Jonathan D Drake
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Alison B Chambers
- Department of Medicine, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Brian R Ott
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Lori A Daiello
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | | |
Collapse
|
15
|
Kang SH, Kim ME, Jang H, Kwon H, Lee H, Kim HJ, Seo SW, Na DL. Amyloid Positivity in the Alzheimer/Subcortical-Vascular Spectrum. Neurology 2021; 96:e2201-e2211. [PMID: 33722997 DOI: 10.1212/wnl.0000000000011833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated the frequency of β-amyloid (Aβ) positivity in 9 groups classified according to a combination of 3 different cognition states and 3 distinct levels of white matter hyperintensities (WMH) (minimal, moderate, and severe) and aimed to determine which factors were associated with Aβ after controlling for WMH and vice versa. METHODS A total of 1,047 individuals with subjective cognitive decline (SCD, n = 294), mild cognitive impairment (MCI, n = 237), or dementia (n = 516) who underwent Aβ PET scans were recruited from the memory clinic at Samsung Medical Center in Seoul, Korea. We investigated the following: (1) Aβ positivity in the 9 groups, (2) the relationship between Aβ positivity and WMH severity, and (3) clinical and genetic factors independently associated with Aβ or WMH. RESULTS Aβ positivity increased as the severity of cognitive impairment increased (SCD [15.7%], MCI [43.5%], and dementia [76.2%]), whereas it decreased as the severity of WMH increased (minimal [54.5%], moderate [53.9%], and severe [41.0%]) or the number of lacunes (0 [59.0%], 1-3 [42.0%], and >3 [23.4%]) increased. Aβ positivity was associated with higher education, absence of diabetes, and presence of APOE ε4 after controlling for cognitive and WMH status. CONCLUSION Our analysis of Aβ positivity involving a large sample classified according to the stratified cognitive states and WMH severity indicates that Alzheimer and cerebral small vessel diseases lie on a continuum. Our results offer clinicians insightful information about the association among Aβ, WMH, and cognition.
Collapse
Affiliation(s)
- Sung Hoon Kang
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Monica Eunseo Kim
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hyemin Jang
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hojeong Kwon
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hyejoo Lee
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Duk L Na
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The relationship between hypertension and Alzheimer's disease (AD) is complex and varies across the lifespan. Studies have suggested that midlife hypertension is a risk factor for AD, although studies of late life hypertension have suggested that it either has no effect or a weak protective effect. RECENT FINDINGS Animal models of induced and spontaneous hypertension have found that AD pathological change (β-amyloid plaques and tau tangles) occurs within weeks of a hypertensive insult. Human imaging and autopsy studies indicate that midlife and late life hypertension are associated with increased AD pathological change. Meta-analyses of longitudinal studies indicate that midlife rather than late life hypertension is a risk factor for AD. New areas of research have suggested that rather than mean blood pressure (BP), it is the negative BP trajectories or the variability of BP that contributes to AD. In a number of meta-analyses of antihypertensive medications and their effect on AD, there were weak associations between improved AD outcomes and treatment. SUMMARY The combined analysis of animal, human clinical/pathological, epidemiological and drug trial data indicates that hypertension increases the risk of AD and treatment of hypertension may be an appropriate preventive measure.
Collapse
|
17
|
White Matter Hyperintensities Contribute to Language Deficits in Primary Progressive Aphasia. Cogn Behav Neurol 2020; 33:179-191. [PMID: 32889950 DOI: 10.1097/wnn.0000000000000237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the contribution of white matter hyperintensities (WMH) to language deficits while accounting for cortical atrophy in individuals with primary progressive aphasia (PPA). METHOD Forty-three individuals with PPA completed neuropsychological assessments of nonverbal semantics, naming, and sentence repetition plus T2-weighted and fluid-attenuated inversion recovery scans. Using three visual scales, we rated WMH and cerebral ventricle size for both scan types. We used Spearman correlations to evaluate associations between the scales and scans. To test whether visual ratings-particularly of WMH-are associated with language, we compared a base model (including gray matter component scores obtained via principal component analysis, age, and days between assessment and MRI as independent variables) with full models (ie, the base model plus visual ratings) for each language variable. RESULTS Visual ratings were significantly associated within and between scans and were significantly correlated with age but not with other vascular risk factors. Only the T2 scan ratings were associated with language abilities. Specifically, controlling for other variables, poorer naming was significantly related to larger ventricles (P = 0.033) and greater global (P = 0.033) and periventricular (P = 0.049) WMH. High global WMH (P = 0.034) were also correlated with worse sentence repetition skills. CONCLUSION Visual ratings of global brain health were associated with language deficits in PPA independent of cortical atrophy and age. While WMH are not unique to PPA, measuring WMH in conjunction with cortical atrophy may elucidate more accurate brain structure-behavior relationships in PPA than cortical atrophy measures alone.
Collapse
|
18
|
Sekikawa A, Higashiyama A, Lopresti BJ, Ihara M, Aizenstein H, Watanabe M, Chang Y, Kakuta C, Yu Z, Mathis C, Kokubo Y, Klunk W, Lopez OL, Kuller LH, Miyamoto Y, Cui C. Associations of equol-producing status with white matter lesion and amyloid-β deposition in cognitively normal elderly Japanese. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12089. [PMID: 33117881 PMCID: PMC7580022 DOI: 10.1002/trc2.12089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Equol, a metabolite of a soy isoflavone transformed by the gut microbiome, is anti-oxidant and anti-amyloidogenic. We assessed the associations of equol with white matter lesion normalized to total brain volume (WML%) and amyloid beta (Aβ) deposition. METHODS From 2016 to 2018, 91 cognitively normal elderly Japanese aged 75 to 89 underwent brain magnetic resonance imaging and positron emission tomography using 11C-Pittsburgh compound-B. Serum equol was measured using stored samples from 2008 to 2012. Equol producers were defined as individuals with serum levels >0. Producers were further divided into high (> the median) and low (≤ the median) producers. RESULTS The median (interquartile range) WML% was 1.10 (0.59 to 1.61); 24.2% were Aβ positive, and 51% were equol producers. Equol-producing status (non-producers, low and high) was significantly inversely associated with WML%: 1.19, 0.89, and 0.58, respectively (trend P < .01). Equol-producing status was not associated with Aβ status. DISCUSSION A randomized-controlled trial of equol targeting WML volume is warranted.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aya Higashiyama
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Brian J Lopresti
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Masafumi Ihara
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Howard Aizenstein
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Makoto Watanabe
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Yuefang Chang
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chikage Kakuta
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Zheming Yu
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chester Mathis
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yoshihioro Kokubo
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Oscar L. Lopez
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lewis H. Kuller
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yoshihiro Miyamoto
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
- Open Innovation CenterNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Chendi Cui
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
19
|
Heinen R, Groeneveld ON, Barkhof F, de Bresser J, Exalto LG, Kuijf HJ, Prins ND, Scheltens P, van der Flier WM, Biessels GJ. Small vessel disease lesion type and brain atrophy: The role of co-occurring amyloid. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12060. [PMID: 32695872 PMCID: PMC7364862 DOI: 10.1002/dad2.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/05/2022]
Abstract
INTRODUCTION It is unknown whether different types of small vessel disease (SVD), differentially relate to brain atrophy and if co-occurring Alzheimer's disease pathology affects this relation. METHODS In 725 memory clinic patients with SVD (mean age 67 ± 8 years, 48% female) we compared brain volumes of those with moderate/severe white matter hyperintensities (WMHs; n = 326), lacunes (n = 132) and cerebral microbleeds (n = 321) to a reference group with mild WMHs (n = 197), also considering cerebrospinal fluid (CSF) amyloid status in a subset of patients (n = 488). RESULTS WMHs and lacunes, but not cerebral microbleeds, were associated with smaller gray matter (GM) volumes. In analyses stratified by CSF amyloid status, WMHs and lacunes were associated with smaller total brain and GM volumes only in amyloid-negative patients. SVD-related atrophy was most evident in frontal (cortical) GM, again predominantly in amyloid-negative patients. DISCUSSION Amyloid status modifies the differential relation between SVD lesion type and brain atrophy in memory clinic patients.
Collapse
Affiliation(s)
- Rutger Heinen
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Onno N. Groeneveld
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Institutes of Neurology & Healthcare EngineeringUniversity College London (UCL)LondonUK
| | - Jeroen de Bresser
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Lieza G. Exalto
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Hugo J. Kuijf
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Niels D. Prins
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Brain Research CenterAmsterdamthe Netherlands
| | - Philip Scheltens
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Brain Research CenterAmsterdamthe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Geert Jan Biessels
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | | |
Collapse
|
20
|
Petersen M, Frey BM, Schlemm E, Mayer C, Hanning U, Engelke K, Fiehler J, Borof K, Jagodzinski A, Gerloff C, Thomalla G, Cheng B. Network Localisation of White Matter Damage in Cerebral Small Vessel Disease. Sci Rep 2020; 10:9210. [PMID: 32514044 PMCID: PMC7280237 DOI: 10.1038/s41598-020-66013-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a widespread condition associated to stroke, dementia and depression. To shed light on its opaque pathophysiology, we conducted a neuroimaging study aiming to assess the location of CSVD-induced damage in the human brain network. Structural connectomes of 930 subjects of the Hamburg City Health Study were reconstructed from diffusion weighted imaging. The connectome edges were partitioned into groups according to specific schemes: (1) connection to grey matter regions, (2) course and length of underlying streamlines. Peak-width of skeletonised mean diffusivity (PSMD) - a surrogate marker for CSVD - was related to each edge group's connectivity in a linear regression analysis allowing localisation of CSVD-induced effects. PSMD was associated with statistically significant decreases in connectivity of most investigated edge groups except those involved in connecting limbic, insular, temporal or cerebellar regions. Connectivity of interhemispheric and long intrahemispheric edges as well as edges connecting subcortical and frontal brain regions decreased most severely with increasing PSMD. In conclusion, MRI findings of CSVD are associated with widespread impairment of structural brain network connectivity, which supports the understanding of CSVD as a global brain disease. The pattern of regional preference might provide a link to clinical phenotypes of CSVD.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Engelke
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Borof
- Epidemiological study center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jagodzinski
- Epidemiological study center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Das S, Zhang Z, Ang LC. Clinicopathological overlap of neurodegenerative diseases: A comprehensive review. J Clin Neurosci 2020; 78:30-33. [PMID: 32354648 DOI: 10.1016/j.jocn.2020.04.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Clinical and neuropathological overlap of two or more neurodegenerative diseases (ND) is not an uncommon occurrence yet is still underdiagnosed in clinical neurological and neuropathological. The authors present a clinicopathological overview of the current understanding of overlapping ND's with the hope that this review will encourage further studies that are required to investigate the effect of such overlaps on clinical presentations and how often clinical presentations raise the suspicion of multiple ND's. The authors suggest that as more patients with overlapping ND's come to light, traditional classification system of ND's may need to be modified.
Collapse
Affiliation(s)
- Sumit Das
- Department of Laboratory Medicine and Pathology (Neuropathology), University of Alberta Hospital, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| | - Zach Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Lee Cyn Ang
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
22
|
Titheradge D, Isaac M, Bremner S, Tabet N. Cambridge Cognitive Examination and Hachinski Ischemic Score as predictors of MRI confirmed pathology in dementia: A cross-sectional study. Int J Clin Pract 2020; 74:e13446. [PMID: 31750588 DOI: 10.1111/ijcp.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022] Open
Abstract
AIMS AND BACKGROUND Dementia is diagnosed through a combination of clinical assessment, cognitive assessment tools and neuroimaging. The aim of this retrospective, naturalistic study was to explore the association between the clinical assessment tools used in a memory clinic and the findings of Magnetic Resonance Imaging (MRI) scans in patients with dementia. METHODS Data were collected through routine clinical practice for all patients assessed at a memory assessment clinic in East Sussex, UK. Included patients had an MRI scan and received a formal diagnosis of dementia. Multinomial logistic regression was used to investigate the associations between atrophy on MRI with age, gender, Cambridge Cognitive Examination (CAMCOG) and Hachinski Ischemic Score (HIS). Ordinal logistic regression was used to study the associations between vascular findings on MRI with age, gender, CAMCOG and HIS. Because of the distribution of HIS scores a cut-off of 1 or greater was used in the regression analysis. RESULTS Male gender was associated with an increased likelihood of moderate atrophy (relative risk ratio (RRR) = 1.99, 95% confidence interval (CI) = 1.04-3.82), severe atrophy (RRR = 3.04, 95% CI = 1.38-6.68) and regional atrophy (RRR = 2.25, 95% CI = 1.26-4.00) on MRI. An increase of one point on the CAMCOG was associated with a decreased risk of regional atrophy (RRR = 0.98, 95% CI = 0.96-1.00) on MRI. There were no significant associations between age, or HIS, and atrophy on MRI. An increase in age of one year was associated with an increase in severity of vascular pathology reported on MRI (OR = 1.08, 95% CI = 1.05-1.12). Male gender was associated with reduced severity of vascular pathology reported on MRI (OR = 0.53, 95% CI = 0.36-0.78). There were no associations between CAMCOG, or HIS, and vascular pathology on MRI. DISCUSSION Our data show that CAMCOG was associated with MRI findings of regional atrophy and vascular pathology was greater in older patients. We highlight the importance of using a multi-modal approach to dementia diagnosis.
Collapse
Affiliation(s)
| | - Mokhtar Isaac
- Sussex Partnership NHS Foundation Trust, Worthing, UK
| | | | - Naji Tabet
- Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
23
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Moghekar A, Gottesman RF, Singh B, Martinez O, Fletcher E, DeCarli C, Albert M. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease. Neurology 2019; 94:e950-e960. [PMID: 31888969 DOI: 10.1212/wnl.0000000000008864] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Recent studies suggest that white matter hyperintensities (WMH) on MRI, which primarily reflect small vessel cerebrovascular disease, may play a role in the evolution of Alzheimer disease (AD). In a longitudinal study, we investigated whether WMH promote the progression of AD pathology, or alter the association between AD pathology and risk of progression from normal cognition to mild cognitive impairment (MCI). METHODS Two sets of analyses were conducted. The relationship between whole brain WMH load, based on fluid-attenuated inversion recovery MRI, obtained in initially cognitively normal participants (n = 274) and time to onset of symptoms of MCI (n = 60) was examined using Cox regression models. In a subset of the participants with both MRI and CSF data (n = 204), the interaction of WMH load and CSF AD biomarkers was also evaluated. RESULTS Baseline WMH load interacted with CSF total tau (t-tau) with respect to symptom onset, but not with CSF β-amyloid 1-42 or phosphorylated tau (p-tau) 181. WMH volume was associated with time to symptom onset of MCI among individuals with low t-tau (hazard ratio [HR] 1.35, confidence interval [CI] 1.06-1.73, p = 0.013), but not those with high t-tau (HR 0.86, CI 0.56-1.32, p = 0.47). The rate of change in the CSF biomarkers over time was not associated with the rate of change in WMH volumes. CONCLUSION These results suggest that WMH primarily affect the risk of progression when CSF measures of neurodegeneration or neuronal injury (as reflected by t-tau) are low. However, CSF biomarkers of amyloid and p-tau and WMH appear to have largely independent and nonsynergistic effects on the risk of progression to MCI.
Collapse
Affiliation(s)
- Anja Soldan
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis.
| | - Corinne Pettigrew
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Yuxin Zhu
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Mei-Cheng Wang
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Abhay Moghekar
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Rebecca F Gottesman
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Baljeet Singh
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Oliver Martinez
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Evan Fletcher
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Charles DeCarli
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Marilyn Albert
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | | |
Collapse
|
24
|
Weaver NA, Doeven T, Barkhof F, Biesbroek JM, Groeneveld ON, Kuijf HJ, Prins ND, Scheltens P, Teunissen CE, van der Flier WM, Biessels GJ. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions. Neurobiol Aging 2019; 84:225-234. [DOI: 10.1016/j.neurobiolaging.2019.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
25
|
Bazzigaluppi P, Beckett TL, Koletar MM, Hill ME, Lai A, Trivedi A, Thomason L, Dorr A, Gallagher D, Librach CL, Joo IL, McLaurin J, Stefanovic B. Combinatorial Treatment Using Umbilical Cord Perivascular Cells and Aβ Clearance Rescues Vascular Function Following Transient Hypertension in a Rat Model of Alzheimer Disease. Hypertension 2019; 74:1041-1051. [PMID: 31476904 PMCID: PMC6739147 DOI: 10.1161/hypertensionaha.119.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Transient hypertension is a risk factor for Alzheimer disease (AD), but the effects of this interaction on brain vasculature are understudied. Addressing vascular pathology is a promising avenue to potentiate the efficacy of treatments for AD. We used arterial spin labeling magnetic resonance imaging to longitudinally assess brain vascular function and immunohistopathology to examine cerebrovascular remodeling and amyloid load. Hypertension was induced for 1 month by administration of l-NG-nitroarginine-methyl-ester in TgF344-AD rats at the prodromal stage. Following hypertension, nontransgenic rats showed transient cerebrovascular changes, whereas TgF344-AD animals exhibited sustained alterations in cerebrovascular function. Human umbilical cord perivascular cells in combination with scyllo-inositol, an inhibitor of Aβ oligomerization, resulted in normalization of hippocampal vascular function and remodeling, in contrast to either treatment alone. Prodromal stage hypertension exacerbates latter AD pathology, and the combination of human umbilical cord perivascular cells with amyloid clearance promotes cerebrovascular functional recovery.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Tina L Beckett
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Margaret M Koletar
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Mary E Hill
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Aaron Lai
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Arunachala Trivedi
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Lynsie Thomason
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Adrienne Dorr
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | | | - Clifford L Librach
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.).,Division of Obstetrics and Gynaecology, Laboratory Medicine and Pathobiology (C.L.), University of Toronto, Canada.,CReATe Research Program, Toronto, Canada (D.G., C.L.L.)
| | - Illsung L Joo
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - JoAnne McLaurin
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Bojana Stefanovic
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.).,Department of Medical Biophysics (B.S.), University of Toronto, Canada
| |
Collapse
|
26
|
Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2019; 14:387-398. [PMID: 29802354 DOI: 10.1038/s41582-018-0014-y] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cerebral small vessel disease (SVD) is commonly observed on neuroimaging among elderly individuals and is recognized as a major vascular contributor to dementia, cognitive decline, gait impairment, mood disturbance and stroke. However, clinical symptoms are often highly inconsistent in nature and severity among patients with similar degrees of SVD on brain imaging. Here, we provide a new framework based on new advances in structural and functional neuroimaging that aims to explain the remarkable clinical variation in SVD. First, we discuss the heterogeneous pathology present in SVD lesions despite an identical appearance on imaging and the perilesional and remote effects of these lesions. We review effects of SVD on structural and functional connectivity in the brain, and we discuss how network disruption by SVD can lead to clinical deficits. We address reserve and compensatory mechanisms in SVD and discuss the part played by other age-related pathologies. Finally, we conclude that SVD should be considered a global rather than a focal disease, as the classically recognized focal lesions affect remote brain structures and structural and functional network connections. The large variability in clinical symptoms among patients with SVD can probably be understood by taking into account the heterogeneity of SVD lesions, the effects of SVD beyond the focal lesions, the contribution of neurodegenerative pathologies other than SVD, and the interaction with reserve mechanisms and compensatory mechanisms.
Collapse
Affiliation(s)
- Annemieke Ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther M C van Leijsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
27
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
28
|
Zhao Y, Ke Z, He W, Cai Z. Volume of white matter hyperintensities increases with blood pressure in patients with hypertension. J Int Med Res 2019; 47:3681-3689. [PMID: 31242795 PMCID: PMC6726811 DOI: 10.1177/0300060519858023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Hypertension is a risk factor for development of white matter hyperintensities (WMHs). However, the relationship between hypertension and WMHs remains obscure. We sought to clarify this relationship using clinical data from different regions of China. Methods We analyzed the data of 333 patients with WMHs in this study. All included patients underwent conventional magnetic resonance imaging (MRI) examination. A primary diagnosis of WMHs was made according to MRI findings. The volume burden of WMHs was investigated using the Fazekas scale, which is widely used to rate the degree of WMHs. We conducted retrospective clinical analysis of the data in this study. Results Our findings showed that WMHs in patients with hypertension were associated with diabetes, cardiovascular diseases, history of cerebral infarct, and plasma glucose and triglyceride levels. Fazekas scale scores for WMHs increased with increased blood pressure values in patients with hypertension. Conclusion This analysis indicates that hypertension is an independent contributor to the prevalence and severity of WMHs.
Collapse
Affiliation(s)
- Yu Zhao
- 1 Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Ke
- 2 Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, China
| | - Wenbo He
- 2 Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, China
| | - Zhiyou Cai
- 3 Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China.,4 Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China
| |
Collapse
|
29
|
Xu X, Phua A, Collinson SL, Hilal S, Ikram MK, Wong TY, Cheng CY, Venketasubramanian N, Chen C. Additive effect of cerebral atrophy on cognition in dementia-free elderly with cerebrovascular disease. Stroke Vasc Neurol 2019; 4:135-140. [PMID: 31709119 PMCID: PMC6812662 DOI: 10.1136/svn-2018-000202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To explore the additive effect of neurodegenerative diseases, measured by atrophy, on neurocognitive function in Asian dementia-free elderly with cerebrovascular disease (CeVD). Methods The present study employed a cross-sectional design and was conducted between 2010 and 2015 among community-dwelling elderly participants recruited into the study. Eligible participants were evaluated with an extensive neuropsychological battery and neuroimaging. The weighted CeVD burden scale comprising markers of both small- and large-vessel diseases was applied, with a score of ≥2, indicating significant CeVD burden. Cortical atrophy (CA) and medial temporal atrophy (MTA) were graded using the global cortical atrophy scale and Schelten’s scale, respectively. Global and domain-specific (attention, executive function, language, visuomotor speed, visuoconstruction, visual memory, and verbal memory) neurocognitive performance was measured using a locally validated neuropsychological battery (Vascular Dementia Battery, VDB). Results A total of 819 dementia-free participants were included in the analysis. Among none-mild CeVD subjects, there was no significant difference in the global cognitive performance across atrophy groups (no atrophy, CA, and CA+MTA). However, in moderate-severe CeVD subjects, CA+MTA showed significantly worse global cognitive performance compared with those with CA alone (mean difference=−0.35, 95% CI −0.60 to −0.11, p=0.002) and those without atrophy (mean difference=−0.46, 95% CI −0.74 to −0.19, p<0.001, p<0.001). In domain-specific cognitive performance, subjects with CA+MTA performed worse than other groups in visual memory (p=0.005), executive function (p=0.001) and visuomotor speed (p<0.001) in moderate-severe CeVD but not in none-mild CeVD. Conclusions and relevance Atrophy and moderate-severe CeVD burden showed an additive effect on global and domain-specific cognitive performance. This study highlights the importance of investigating the mechanisms of clinico-pathological interactions between neurodegenerative processes and vascular damage, particularly in the pre-dementia stage.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - April Phua
- Department of Psychological Medicine, National University Hospital, Singapore, Singapore
| | - Simon L Collinson
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Mohammad Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tien Yin Wong
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | - Ching Yu Cheng
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Christopher Chen
- Clinical Research Centre, Department of Pharmacology, National University Health System, Singapore, Singapore
| |
Collapse
|
30
|
van Leijsen EMC, Tay J, van Uden IWM, Kooijmans ECM, Bergkamp MI, van der Holst HM, Ghafoorian M, Platel B, Norris DG, Kessels RPC, Markus HS, Tuladhar AM, de Leeuw FE. Memory decline in elderly with cerebral small vessel disease explained by temporal interactions between white matter hyperintensities and hippocampal atrophy. Hippocampus 2018; 29:500-510. [PMID: 30307080 DOI: 10.1002/hipo.23039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/07/2018] [Accepted: 09/29/2018] [Indexed: 11/11/2022]
Abstract
White matter hyperintensities (WMH) constitute the visible spectrum of cerebral small vessel disease (SVD) markers and are associated with cognitive decline, although they do not fully account for memory decline observed in individuals with SVD. We hypothesize that WMH might exert their effect on memory decline indirectly by affecting remote brain structures such as the hippocampus. We investigated the temporal interactions between WMH, hippocampal atrophy and memory decline in older adults with SVD. Five hundred and three participants of the RUNDMC study underwent neuroimaging and cognitive assessments up to 3 times over 8.7 years. We assessed WMH volumes semi-automatically and calculated hippocampal volumes (HV) using FreeSurfer. We used linear mixed effects models and causal mediation analyses to assess both interaction and mediation effects of hippocampal atrophy in the associations between WMH and memory decline, separately for working memory (WM) and episodic memory (EM). Linear mixed effect models revealed that the interaction between WMH and hippocampal volumes explained memory decline (WM: β = .067; 95%CI[.024-0.111]; p < .01; EM: β = .061; 95%CI[.025-.098]; p < .01), with better model fit when the WMH*HV interaction term was added to the model, for both WM (likelihood ratio test, χ2 [1] = 9.3, p < .01) and for EM (likelihood ratio test, χ2 [1] = 10.7, p < .01). Mediation models showed that both baseline WMH volume (β = -.170; p = .001) and hippocampal atrophy (β = 0.126; p = .009) were independently related to EM decline, but the effect of baseline WMH on EM decline was not mediated by hippocampal atrophy (p value indirect effect: 0.572). Memory decline in elderly with SVD was best explained by the interaction of WMH and hippocampal volumes. The relationship between WMH and memory was not causally mediated by hippocampal atrophy, suggesting that memory decline during aging is a heterogeneous condition in which different pathologies contribute to the memory decline observed in elderly with SVD.
Collapse
Affiliation(s)
- Esther M C van Leijsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jonathan Tay
- Department of Clinical Neurosciences, Neurology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ingeborg W M van Uden
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eline C M Kooijmans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mayra I Bergkamp
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Mohsen Ghafoorian
- Radboud University Medical Centre, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands.,Radboud University, Institute for Computing and Information Sciences, Nijmegen, The Netherlands
| | - Bram Platel
- Radboud University Medical Centre, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - David G Norris
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Centre, Radboud Alzheimer Centre, Nijmegen, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Nijmegen, The Netherlands
| | - Hugh S Markus
- Department of Clinical Neurosciences, Neurology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
31
|
The relationship of cerebral microbleeds to cognition and incident dementia in non-demented older individuals. Brain Imaging Behav 2018; 13:750-761. [DOI: 10.1007/s11682-018-9883-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|