1
|
Fabris D, Lisboa JR, Guimarães FS, Gomes FV. Cannabidiol as an antipsychotic drug. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:295-317. [PMID: 39029989 DOI: 10.1016/bs.irn.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) is a major phytocannabinoid in the Cannabis sativa plant. In contrast to Δ9-tetrahydrocannabinol (THC), CBD does not produce the typical psychotomimetic effects of the plant. In addition, CBD has attracted increased interest due to its potential therapeutic effects in various psychiatric disorders, including schizophrenia. Several studies have proposed that CBD has pharmacological properties similar to atypical antipsychotics. Despite accumulating evidence supporting the antipsychotic potential of CBD, the mechanisms of action in which this phytocannabinoid produces antipsychotic effects are still not fully elucidated. Here, we focused on the antipsychotic properties of CBD indicated by a series of preclinical and clinical studies and the evidence currently available about its possible mechanisms. Findings from preclinical studies suggest that CBD effects may depend on the animal model (pharmacological, neurodevelopmental, or genetic models for schizophrenia), dose, treatment schedule (acute vs. repeated) and route of administration (intraperitoneal vs local injection into specific brain regions). Clinical studies suggest a potential role for CBD in the treatment of psychotic disorders. However, future studies with more robust sample sizes are needed to confirm these positive findings. Overall, although more studies are needed, current evidence indicates that CBD may be a promising therapeutic option for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Débora Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Roberto Lisboa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Brunette MF, Roth RM, Trask C, Khokhar JY, Ford JC, Park SH, Hickey SM, Zeffiro T, Xie H. Randomized Laboratory Study of Single-Dose Cannabis, Dronabinol, and Placebo in Patients With Schizophrenia and Cannabis Use Disorder. Schizophr Bull 2024:sbae097. [PMID: 38900958 DOI: 10.1093/schbul/sbae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Up to 43% of people with schizophrenia have a lifetime cannabis use disorder (CUD). Tetrahydrocannabinol (THC) has been shown to exacerbate psychosis in a dose-dependent manner, but little research has assessed its effects on schizophrenia and co-occurring CUD (SCZ-CUD). In this double-dummy, placebo-controlled trial (total n = 130), we hypothesized that a modest dose of THC would worsen cognitive function but not psychosis. STUDY DESIGN Effects of single-dose oral THC (15 mg dronabinol) or smoked 3.5% THC cigarettes vs placebo in SCZ-CUD or CUD-only on positive and negative symptoms of schizophrenia (only for SCZ-CUD), cognition, and drug experiences assessed several hours after drug administration. SCZ-only and healthy control participants were also assessed. STUDY RESULTS Drug liking was higher in THC groups vs placebo. Neither smoked THC nor oral dronabinol predicted positive or negative symptom subscale scores 2 and 5 h, respectively, after drug exposure in SCZ-CUD participants. The oral dronabinol SCZ-CUD group, but not smoked THC SCZ-CUD group, performed worse than placebo on verbal learning (B = -9.89; 95% CI: -16.06, -3.18; P = .004) and attention (B = -0.61; 95% CI: -1.00, -0.23; P = .002). Every 10-point increment in serum THC + THCC ng/ml was associated with increased negative symptoms (0.40 points; 95% CI: 0.15, 0.65; P = .001; subscale ranges 7-49) and trends were observed for worse positive symptoms and performance in verbal learning, delayed recall, and working memory. CONCLUSIONS In people with SCZ-CUD, a modest single dose of oral THC was associated with worse cognitive functioning without symptom exacerbation several hours after administration, and a THC dose-response effect was seen for negative symptoms.
Collapse
Affiliation(s)
- Mary F Brunette
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Robert M Roth
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Christi Trask
- Ohio State University College of Medicine, Department of Psychiatry and Behavioral Health, Columbus, OH, USA
| | - Jibran Y Khokhar
- University of Western Ontario Schulich School of Medicine and Dentistry, Department of Anatomy and Cell Biology, London, Ontario, Canada
| | - James C Ford
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Soo Hwan Park
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| | - Sara M Hickey
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Thomas Zeffiro
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Oncology, Baltimore, Maryland, USA
| | - Haiyi Xie
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| |
Collapse
|
3
|
Sainz-Cort A, Jimenez-Garrido D, Muñoz-Marron E, Viejo-Sobera R, Heeroma J, Bouso JC. The Effects of Cannabidiol and δ-9-Tetrahydrocannabinol in Social Cognition: A Naturalistic Controlled Study. Cannabis Cannabinoid Res 2024; 9:230-240. [PMID: 35881851 DOI: 10.1089/can.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Social cognition abilities such as empathy and the Theory of Mind (ToM) have been shown to be impaired in neuropsychiatric conditions such as psychotic, autistic, and bipolar disorders. The endocannabinoid system (ECS) seems to play a role in social behavior and emotional processing while it also seems to play a role in those neuropsychiatric conditions showing social cognition impairments. Main plant cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) modulate the ECS and, due to their opposite effects, have been proposed as both cause and treatment for neuropsychiatric-related disorders such as schizophrenia, anxiety, or post-traumatic stress disorder (PTSD). The aim of this study was to test the effects of THC and CBD on social cognition abilities in chronic cannabis users. Method: Eighteen members from a cannabis social club were tested for social cognition effects under the effects of different full spectrum cannabis extracts containing either THC, CBD, THC+CBD, or placebo in a naturalistic randomized double-blind crossover placebo-controlled study. Results: Results showed that participants under the effects of THC showed lower cognitive empathy when compared with the effects of CBD but not when those were compared with THC+CBD or placebo. Also, participants showed higher cognitive ToM under the effects of CBD when compared with the effects of placebo, but not when those were compared with THC or THC+CBD. However, we did not find differences on the emotional scales for empathy or ToM. Conclusions: This study provides evidence for the interaction between the effects of THC and CBD and social cognition abilities in a naturalistic environment, which can be of special interest for the clinical practice of medical cannabis on neuropsychiatric disorders. We show for the first time that CBD can improve ToM abilities in chronic cannabis users. Our results might help to understand the role of the ECS in social cognition, and their association with psychiatric and neurodevelopmental disorders such as schizophrenia or autism. Finally, we demonstrate how reliable methodologies can be implemented in naturalistic environments to collect valid ecological evidence outside classic laboratory settings.
Collapse
Affiliation(s)
- Alberto Sainz-Cort
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
- GH Medical, Amsterdam, The Netherlands
| | - Daniel Jimenez-Garrido
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
| | - Elena Muñoz-Marron
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Raquel Viejo-Sobera
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | - Jose Carlos Bouso
- International Center of Ethnobotanic Education, Research and Service (ICEERS), Barcelona, Spain
| |
Collapse
|
4
|
Ghelani A. Perspectives toward cannabidiol (CBD) among youth in Early Psychosis Intervention programs: A qualitative study. Early Interv Psychiatry 2024; 18:10-17. [PMID: 37038248 DOI: 10.1111/eip.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
AIM Cannabis is used by one third of youth in Early Psychosis Intervention (EPI) programs and high dose consumption of the primary constituent Δ-9 tetrahydrocannabinol (THC) is associated with higher risk for relapse in this group. Cannabidiol (CBD) is a secondary cannabis constituent that may have antipsychotic properties, though its health risks are only beginning to be understood. Little is known about the views of youth in EPI programs toward CBD, including their reasons for use and perceptions of risk. METHODS This qualitative study used Interpretive Phenomenological Analysis to investigate the perspectives of a sample (n = 15) of cannabis-consuming youth in EPI programs toward CBD. RESULTS Those who used CBD (n = 13) did so for pain relief, THC substitution, relaxation, social reasons, and sleep enhancement. CBD was perceived to be beneficial for health and wellness, though many consumers were disappointed with its effects. Most believed there were no risks associated with its use or were unaware of any risks, and all believed CBD could be used safely. CONCLUSION Clinicians should assess THC and CBD consumption patterns, motives for use, and perceptions of risk separately to tailor interventions accordingly. Youth in EPI programs would benefit from education related to the known health risks and benefits associated with this drug. Clinicians in regions where cannabis is regulated should be open to discussing CBD as a safer substitute for THC. The potential for CBD to serve as viable treatment for psychosis requires further study.
Collapse
Affiliation(s)
- Amar Ghelani
- Faculty of Social Work, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Visini G, Brown S, Weston-Green K, Shannon Weickert C, Chesworth R, Karl T. The effects of preventative cannabidiol in a male neuregulin 1 mouse model of schizophrenia. Front Cell Neurosci 2022; 16:1010478. [PMID: 36406747 PMCID: PMC9669370 DOI: 10.3389/fncel.2022.1010478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid with antipsychotic-like properties, however it’s potential to prevent schizophrenia development has not been thoroughly investigated. Brain maturation during adolescence creates a window where CBD could potentially limit the development of schizophrenia. The neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mutant mouse shows face, predictive, and construct validity for schizophrenia. Here we sought to determine if CBD given in adolescence could prevent the development of the schizophrenia-relevant phenotype, as well as susceptibility to the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) in Nrg1 TM HET mice. Adolescent male Nrg1 mutants and wild type-like (WT) animals were administered 30 mg/kg CBD i.p. daily for seven weeks, and were tested for locomotion, social behavior, sensorimotor gating and cognition, and sensitivity to acute THC-induced behaviors. GAD67, GluA1, and NMDAR1 protein levels were measured in the hippocampus, striatum, and prefrontal cortex. Chronic adolescent CBD increased locomotion in animals regardless of genotype, was anxiolytic, and increased social behavior when animals were tested for their acute THC response. CBD did not alleviate the schizophrenia-relevant hyperlocomotive phenotype of Nrg1 mutants, nor deficits in social behaviors. Nrg1 mutant mice treated with CBD and THC showed no habituation to a startle pulse, suggesting CBD increased vulnerability to the startle habituation-reducing effects of THC in mutant mice. CBD increased levels of GluA1, but reduced levels of GAD67 in the hippocampus of Nrg1 mutants. These results suggest adolescent CBD is not effective as a preventative of schizophrenia-relevant behavioral deficits in mutants and may actually contribute to pathological changes in the brain that increase sensitivity to THC in particular behavioral domains.
Collapse
Affiliation(s)
- Gabriela Visini
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Samara Brown
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- *Correspondence: Rose Chesworth,
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Tim Karl,
| |
Collapse
|
6
|
Salehi A, Namaei P, TaghaviZanjani F, Bagheri S, Moradi K, Khodaei Ardakani MR, Akhondzadeh S. Adjuvant palmitoylethanolamide therapy with risperidone improves negative symptoms in patients with schizophrenia: A randomized, double-blinded, placebo-controlled trial. Psychiatry Res 2022; 316:114737. [PMID: 35917650 DOI: 10.1016/j.psychres.2022.114737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Primary negative symptoms of schizophrenia are usually resistant to monotherapy with antipsychotics. The present study sought to assess the efficacy and tolerability of Palmitoylethanolamide (PEA) adjunctive therapy in treatment of negative symptoms in patients with stable schizophrenia. METHODS This 8-week (trial timepoints: baseline, week 4, week 8), double-blind, placebo-controlled clinical trial randomized patients with schizophrenia in a 1:1 ratio to compare the efficacy and safety of 600 mg twice a day of PEA and matched placebo alongside a stable dose of risperidone. Outcome measures were the positive and the negative syndrome scale (PANSS), the extrapyramidal symptom rating scale (ESRS), and the Hamilton depression rating scale (HDRS). The primary outcome was change in the negative subscale score during the trial period between the groups. Safety of interventions were controlled and addressed during the trial. RESULTS A total of 50 participants completed the trial (25 in each group). Baseline characteristics of the groups were comparable (p>0.05). There was significant effect from time-treatment interaction on negative symptoms (p = 0.012) suggesting greater symptom improvement in the PEA group. In contrast, the longitudinal changes in positive symptoms and depressive symptoms were similar between groups (p values>0.05). Safety assessments showed no significant difference regarding extrapyramidal symptoms, measured by ESRS, and also frequency of other complications between PEA and placebo groups (p values>0.05). CONCLUSIONS Adjunctive therapy with PEA and risperidone alleviates schizophrenia-related primary negative symptoms in a safe manner.
Collapse
Affiliation(s)
- Anahita Salehi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran
| | - Parsa Namaei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran
| | - Fateme TaghaviZanjani
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical, Sciences, Tehran, Iran.
| |
Collapse
|
7
|
The association between cannabis use and facial emotion recognition in schizophrenia, siblings, and healthy controls: Results from the EUGEI study. Eur Neuropsychopharmacol 2022; 63:47-59. [PMID: 36055075 DOI: 10.1016/j.euroneuro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Schizophrenia is frequently accompanied with social cognitive disturbances. Cannabis represents one established environmental factor associated with the onset and progression of schizophrenia. The present cross-sectional study aimed to investigate the association of facial emotion recognition (FER) performance with cannabis use in 2039 patients with schizophrenia, 2141 siblings, and 2049 healthy controls (HC). FER performance was measured using the Degraded Facial Affect Recognition Task (DFAR). Better FER performance as indicated by higher DFAR-total scores was associated with lifetime regular cannabis use in schizophrenia (B = 1.36, 95% CI 0.02 to 2.69), siblings (B = 2.17, 95% CI 0.79 to 3.56), and HC (B = 3.10, 95% CI 1.14 to 5.06). No associations were found between DFAR-total and current cannabis use. Patients with schizophrenia who started to use cannabis after the age of 16 showed better FER performance than patients who started earlier (B = 2.50, 95% CI 0.15 to 4.84) and non-users (B = 3.72, 95 CI 1.96 to 5.49). Better FER performance was found also in siblings who started to use cannabis after 16 compared to non-users (B = 2.37, 95% CI 0.58 to 4.16), while HC using cannabis performed better than non-users at DFAR-total regardless of the age at onset. Our findings suggest that lifetime regular cannabis use may be associated with better FER regardless of the psychosis risk, but that FER might be moderated by age at first use in people with higher genetic risk. Longitudinal studies may clarify whether there is a cause-and-effect relationship between cannabis use and FER performance in psychotic and non-psychotic samples.
Collapse
|
8
|
Schneider M, Müller CP, Knies AK. Low income and schizophrenia risk: a narrative review. Behav Brain Res 2022; 435:114047. [PMID: 35933046 DOI: 10.1016/j.bbr.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Despite decades of research, the precise etiology of schizophrenia is not fully understood. Ample evidence indicates that the disorder derives from a complex interplay of genetic and environmental factors during vulnerable stages of brain maturation. Among the plethora of risk factors investigated, stress, pre- and perinatal insults, and cannabis use have been repeatedly highlighted as crucial environmental risk factors for schizophrenia. Compelling findings from population-based longitudinal studies suggest low income as an additional risk factor for future schizophrenia diagnosis, but underlying mechanisms remain unclear. In this narrative review, we 1) summarize the literature in support of a relationship between low (parental) income and schizophrenia risk, and 2) explore the mediating role of chronic stress, pre- and perinatal factors, and cannabis use as established risk factors for schizophrenia. Our review describes how low income facilitates the occurrence and severity of these established risk factors and thus contributes to schizophrenia liability. The broadest influence of low income was identified for stress, as low income was found to be associated with exposure to a multitude of severe psychological and physiological stressors. This narrative review adds to the growing literature reporting a close relationship between income and mental health.
Collapse
Affiliation(s)
- Miriam Schneider
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Andrea K Knies
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria
| |
Collapse
|
9
|
Zieglgänsberger W, Brenneisen R, Berthele A, Wotjak CT, Bandelow B, Tölle TR, Lutz B. Chronic Pain and the Endocannabinoid System: Smart Lipids - A Novel Therapeutic Option? Med Cannabis Cannabinoids 2022; 5:61-75. [PMID: 35702403 PMCID: PMC9149512 DOI: 10.1159/000522432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 08/05/2023] Open
Abstract
The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).
Collapse
Affiliation(s)
| | | | | | | | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
10
|
Gender Differences in Dual Diagnoses Associated with Cannabis Use: A Review. Brain Sci 2022; 12:brainsci12030388. [PMID: 35326345 PMCID: PMC8946108 DOI: 10.3390/brainsci12030388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Gender differences in psychiatric disorders and drug use are well known. Cannabis is the most widely used illegal drug among young people. In recent years, its use has been related to the development of psychiatric pathologies; however, few studies have incorporated the gender perspective as of yet. The present work analyses the literature to determine the existence of gender differences in the development of psychotic, depressive and anxious symptoms associated with cannabis use. First, we describe cannabis misuse and its consequences, paying special attention to adolescent subjects. Second, the main gender differences in psychiatric disorders, such as psychosis, depression, anxiety and cannabis use disorders, are enumerated. Subsequently, we discuss the studies that have evaluated gender differences in the association between cannabis use and the appearance of psychotic, depressive and anxious symptoms; moreover, we consider the possible explanations for the identified gender differences. In conclusion, the studies referred to in this review reveal the existence of gender differences in psychiatric symptoms associated with cannabis use, although the direction of such differences is not always clear. Future research is necessary to discern the causal relationship between cannabis use and the development of psychiatric symptoms, as well as the gender differences found.
Collapse
|
11
|
Karimi-Haghighi S, Razavi Y, Iezzi D, Scheyer AF, Manzoni O, Haghparast A. Cannabidiol and substance use disorder: Dream or reality. Neuropharmacology 2022; 207:108948. [PMID: 35032495 PMCID: PMC9157244 DOI: 10.1016/j.neuropharm.2022.108948] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the major constituents of Cannabis sativa L. that lacks psychotomimetic and rewarding properties and inhibits the rewarding and reinforcing effects of addictive drugs such as cocaine, methamphetamine (METH), and morphine. Additionally, CBD's safety profile and therapeutic potential are currently evaluated in several medical conditions, including pain, depression, movement disorders, epilepsy, multiple sclerosis, Alzheimer's disease, ischemia, and substance use disorder. There is no effective treatment for substance use disorders such as addiction, and this review aims to describe preclinical and clinical investigations into the effects of CBD in various models of opioid, psychostimulant, cannabis, alcohol, and nicotine abuse. Furthermore, the possible mechanisms underlying the therapeutic potential of CBD on drug abuse disorders are reviewed. METHODS The current review considers and summarizes the preclinical and clinical investigations into CBD's effects in various models of drug abuse include opioids, psychostimulants, cannabis, alcohol, and nicotine. RESULTS Several preclinical and clinical studies have proposed that CBD may be a reliable agent to inhibit the reinforcing and rewarding impact of drugs. CONCLUSIONS While the currently available evidence converges to suggest that CBD could effectively reduce the rewarding and reinforcing effects of addictive drugs, more preclinical and clinical studies are needed before CBD can be added to the therapeutic arsenal for treating addiction.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Iezzi
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Dyck GJB, Maayah ZH, Eurich DT, Dyck JRB. Understanding the Potential Benefits of Cannabidiol for Patients With Schizophrenia: A Narrative Review. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab053. [PMID: 39144756 PMCID: PMC11205871 DOI: 10.1093/schizbullopen/sgab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Research suggests that cannabis-derived delta-9-tetrahydrocannabinol can be linked to the worsening of psychosis and/or other symptoms of schizophrenia. However, studies have shown that another major cannabinoid found in cannabis, cannabidiol (CBD), may be a potential alternative or adjunctive treatment for psychosis and schizophrenia. As such, herein we review the relevant literature relating to the safety and efficacy of CBD treatment in patients with schizophrenia, including the effects of CBD in treating the positive, negative, and cognitive symptoms of the disorder, as well as the molecular mechanisms by which CBD can reduce schizophrenic symptoms. The potential utility of CBD for mitigating cannabis cravings and cannabis withdrawal in this patient population will also be reviewed. Lastly, the dosing, method of drug delivery, length of treatment, and adverse effects of CBD in patients with schizophrenia are discussed. Thus, the goal of this narrative review is to help clinicians and researchers better understand the risks and benefits of this potential therapy for this patient population.
Collapse
Affiliation(s)
- Garrison J B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Veselinović T, Neuner I. Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS Drugs 2022; 36:819-858. [PMID: 35831706 PMCID: PMC9345797 DOI: 10.1007/s40263-022-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|
14
|
Gelmi TJ, Weinmann W, Pfäffli M. Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability. Forensic Sci Res 2021; 6:195-207. [PMID: 34868711 PMCID: PMC8635612 DOI: 10.1080/20961790.2021.1946924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants. Participants smoked a joint containing 500 mg of tobacco and either 500 mg of CBD-rich marijuana (16.6% total CBD; 0.9% total THC) or 500 mg of a placebo substance, then performed three different dimensions of the Vienna Test System TRAFFIC examining reaction time, behaviour under stress, and concentration performance. For further assessment of participants' fitness to drive, three tests of balance and coordination were evaluated and vital signs (blood pressure and pulse) were measured. Dried blood spot samples of capillary blood were taken after smoking and after completion of the tests to determine the cannabinoid concentrations (CBD, THC and THC-metabolites). The results revealed no significant differences between the effects of smoking CBD-rich marijuana and placebo on reaction time, motor time, behaviour under stress, or concentration performance. Maximum free CBD and THC concentrations in capillary blood were detected shortly after smoking, ranging between 2.6-440.0 ng/mL and 6.7-102.0 ng/mL, respectively. After 45 min, capillary blood concentrations had already declined and were in the range of 1.9-135.0 ng/mL (free CBD) and 0.9-38.0 ng/mL (free THC). Although the observed levels of free THC concentrations have been reported to cause symptoms of impairment in previous studies in which THC-rich marijuana was smoked, no signs of impairment were found in the current study. This finding suggests that higher CBD concentrations cause a negative allosteric effect in the endocannabinoid system, preventing the formation of such symptoms. Nevertheless, it is recommended that consumers refrain from driving for several hours after smoking CBD-rich marijuana, as legal THC concentration limits may be exceeded. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1946924 .
Collapse
Affiliation(s)
- Tim J Gelmi
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Wolfgang Weinmann
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Matthias Pfäffli
- Department of Traffic Sciences, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Köck P, Lang E, Trulley VN, Dechent F, Mercer-Chalmers-Bender K, Frei P, Huber C, Borgwardt S. Cannabidiol Cigarettes as Adjunctive Treatment for Psychotic Disorders - A Randomized, Open-Label Pilot-Study. Front Psychiatry 2021; 12:736822. [PMID: 34803760 PMCID: PMC8599279 DOI: 10.3389/fpsyt.2021.736822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Psychotic disorders are associated with high rates of comorbid substance use disorders. Use of cannabis rich in tetrahydrocannabinol (THC) is linked to an increased risk of psychosis, worsening of psychotic symptoms, and an adverse course of psychotic disorders. Previous studies suggest oral cannabidiol (CBD) as possible novel antipsychotic agent; however, no studies evaluated the effects of smoked CBD. Objective: The main aim of the study was to clarify the antipsychotic potential of CBD used as adjunctive therapy simulating a naturalistic setting. Our trial is the first study evaluating the effects of smoked CBD-cigarettes as adjunctive therapy for psychotic symptoms. Methods: A randomized, placebo-controlled open-label trial of cigarettes containing CBD-rich cannabis (THC < 1%) as adjunctive therapy to standard psychiatric treatment was conducted (ClinicalTrials.gov identifier NCT04700930). Primary outcomes were mean scores of Positive and Negative Syndrome Scale (PANSS), Brøset Violence Checklist, the Beck's Depression Inventory (BDI), the Subjective Well-Being Under Neuroleptics Scale short form (SWN-K), and antipsychotic medication equivalent doses. Outcomes were assessed after 4 weeks of acute treatment and long-term follow-up after discontinuation of CBD-cigarettes after 25 weeks. Participants were 31 acutely psychotic patients with tobacco use disorder and a mean age of 35.1 ± 10.58 years (71% male). Comorbid cannabis use was diagnosed in 51.6%. Results: A discontinuous multilevel model revealed no significant group differences for primary outcomes. After 4 weeks of acute treatment, mean PANSS and BDI decreased in both groups, while an increase of antipsychotic medication equivalent was observed in the placebo group. Conclusions: The presented findings might suggest an antipsychotic medication sparing effect of CBD-cigarettes as adjunctive treatment of acute psychosis. However, the low number of participants did not allow for further statistical analysis. Hence, a larger study sample and a more rigorous study design (blinding of the interventional product, fixed dosing regimen) may reveal different results. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT04700930.
Collapse
Affiliation(s)
- Patrick Köck
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Elisabeth Lang
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Valerie-Noelle Trulley
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Frieder Dechent
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | | | - Priska Frei
- Department of Biomedical Engineering, Institute of Forensic Medicine, University of Basel, Basel, Switzerland
| | - Christian Huber
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
17
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
18
|
Ahmed S, Roth RM, Stanciu CN, Brunette MF. The Impact of THC and CBD in Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:694394. [PMID: 34366924 PMCID: PMC8343183 DOI: 10.3389/fpsyt.2021.694394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: People with schizophrenia are more likely to develop cannabis use disorder (CUD) and experience worse outcomes with use. Yet as cannabis is legalized for medical and recreational use, there is interest in its therapeutic potential. Objectives: To conduct a systematic review summarizing the design and results of controlled trials using defined doses of THC and CBD in schizophrenia. Method: A keyword search of eight online literature databases identified 11 eligible reports. Results: One placebo controlled trial (13 stable patients without CUD) found that intravenous THC increased psychosis and worsened learning/recall. Two reports of a functional magnetic resonance (fMRI) study of smoked or oral THC in 12 abstinent patients with schizophrenia and CUD found no change in symptoms and cognition, and an amelioration of impaired resting state brain function in areas implicated in reward function and the default mode network. One 4 week trial in acutely psychotic inpatients without CUD (mean age 30 y) found 800 mg CBD to be similarly efficacious to amisupride in improving psychosis and cognition. Two 6 week studies of CBD augmentation of antipsychotics in stable outpatients reported mixed results: CBD 600 mg was not more effective than placebo; CBD 1,000 mg reduced symptoms in a sample that did not exclude cannabis use and CUD. A brain fMRI and proton magnetic resonance spectroscopy study of single dose CBD in a sample that did not exclude CUD and cannabis use found that CBD improved symptoms and brain function during a learning/recall task and was associated with increased hippocampal glutamate. Discussion: There is substantial heterogeneity across studies in dose, method of drug delivery, length of treatment, patient age, whether patients with cannabis use/CUD were included or excluded, and whether patients were using antipsychotic medication. Conclusion: There is insufficient evidence for an effect of THC or CBD on symptoms, cognition, and neuroimaging measures of brain function in schizophrenia. At this time, research does not support recommending medical cannabis (THC or CBD) for treating patients with schizophrenia. Further research should examine THC and CBD in schizophrenia with and without comorbid CUD and consider the role of CBD in mitigating symptom exacerbation from THC.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Psychiatry, Rutland Regional Medical Center, Rutland, VT, United States
- Vermont Hub-and-Spoke System of Care, West Ridge Center at Rutland Regional Medical Center, Rutland, VT, United States
| | - Robert M. Roth
- New Hampshire Hospital, Concord, NH, United States
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Corneliu N. Stanciu
- New Hampshire Hospital, Concord, NH, United States
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mary F. Brunette
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Bureau of Mental Health Services, Concord, NH, United States
| |
Collapse
|
19
|
Mason A, Sami M, Notley C, Bhattacharyya S. Are researchers getting the terms used to denote different types of recreational cannabis right?-a user perspective. J Cannabis Res 2021; 3:12. [PMID: 33926566 PMCID: PMC8086348 DOI: 10.1186/s42238-021-00065-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While current cannabis research has advanced our understanding into the effects of its individual components, there is a pressing need to identify simple terminology that is understood in the same way by researchers and users of cannabis. Current categorisation in research focuses on the two main cannabinoids: delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD); and two different species of cannabis: indica and sativa. Recreational cannabis has also been categorised by researchers as 'skunk' or 'hash'. Focusing on individuals who use cannabis frequently, this study aimed to identify views on current terms used to denote different types of cannabis and to identify terms validated by participants. These views were extracted from responses of the Cannabis Experiences Questionnaire (CEQ), a widely used instrument in the literature. METHODS We qualitatively analysed 236 free-text responses from Question 23 of the CEQ survey (using Iterative Categorisation) relating to categorization and consumption methods. Data was used from a previous study (Sami et al., Psychol Med 49:103-12, 2019), which recruited a convenience sample of 1231 participants aged 18 years and above who had previously used cannabis. RESULTS Regarding type of cannabis used, specific strain names (n = 130), concentrates (n = 37), indica/sativa (n = 22) and THC/CBD terms (n = 22) were mentioned. Other terms used were hybrids (n = 10), origins of specific strains (n = 17), edibles (n = 8), and herbal cannabis (n = 7). Regarding problems with specific terms, participants were skeptical about terms such as skunk and super skunk (n = 78) preferring terms like THC/CBD, indica/sativa, specific marketed strains and references to preparation methods. CONCLUSIONS The results suggest a disparity between the common terms used by researchers in academia and those used by cannabis consumers. While there are advantages and limitations of using these terms to bridge views of researchers and individuals who use cannabis, this study underscores the importance of formally assessing chemical constituents rather than relying on self-report data and of incorporating cannabis user views on current terms used in research, potentially also incorporating descriptors of preparation and consumption methods.
Collapse
Affiliation(s)
- Ava Mason
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Musa Sami
- Institute of Mental Health, University of Nottingham, Triumph Road, Jubilee Campus, Nottingham, UK
| | - Caitlin Notley
- School of Medicine Health Policy & Practice, University of East Anglia, Norwich, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
20
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Front Psychiatry 2020; 11:859. [PMID: 33005157 PMCID: PMC7479242 DOI: 10.3389/fpsyt.2020.00859] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|