1
|
Chair SY, Chow KM, Chan CWL, Chan JYW, Law BMH, Waye MMY. Structural Variations Identified in Patients with Autism Spectrum Disorder (ASD) in the Chinese Population: A Systematic Review of Case-Control Studies. Genes (Basel) 2024; 15:1082. [PMID: 39202440 PMCID: PMC11353326 DOI: 10.3390/genes15081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disability characterised by the impairment of social interaction and communication ability. The alarming increase in its prevalence in children urged researchers to obtain a better understanding of the causes of this disease. Genetic factors are considered to be crucial, as ASD has a tendency to run in families. In recent years, with technological advances, the importance of structural variations (SVs) in ASD began to emerge. Most of these studies, however, focus on the Caucasian population. As a populated ethnicity, ASD shall be a significant health issue in China. This systematic review aims to summarise current case-control studies of SVs associated with ASD in the Chinese population. A list of genes identified in the nine included studies is provided. It also reveals that similar research focusing on other genetic backgrounds is demanded to manifest the disease etiology in different ethnic groups, and assist the development of accurate ethnic-oriented genetic diagnosis.
Collapse
Affiliation(s)
- Sek-Ying Chair
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cecilia Wai-Ling Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Judy Yuet-Wa Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Bernard Man-Hin Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Mary Miu-Yee Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Restrepo LJ, Baehrecke EH. Regulation and Functions of Autophagy During Animal Development. J Mol Biol 2024; 436:168473. [PMID: 38311234 PMCID: PMC11260256 DOI: 10.1016/j.jmb.2024.168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Autophagy is used to degrade cytoplasmic materials, and is critical to maintain cell and organismal health in diverse animals. Here we discuss the regulation, utilization and impact of autophagy on development, including roles in oogenesis, spermatogenesis and embryogenesis in animals. We also describe how autophagy influences postembryonic development in the context of neuronal and cardiac development, wound healing, and tissue regeneration. We describe recent studies of selective autophagy during development, including mitochondria-selective autophagy and endoplasmic reticulum (ER)-selective autophagy. Studies of developing model systems have also been used to discover novel regulators of autophagy, and we explain how studies of autophagy in these physiologically relevant systems are advancing our understanding of this important catabolic process.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA.
| |
Collapse
|
3
|
Jiao D, Xu Y, Tian F, Zhou Y, Chen D, Wang Y. Establishment of animal models and behavioral studies for autism spectrum disorders. J Int Med Res 2024; 52:3000605241245293. [PMID: 38619175 PMCID: PMC11022675 DOI: 10.1177/03000605241245293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
In recent years, the incidence of autism spectrum disorder (ASD) has increased, but the etiology and pathogenesis remain unclear. In this narrative review, we review and systematically summarize the methods used to construct animal models to study ASD and the related behavioral studies based on recent literature. Utilization of various ASD animal models can complement research on the etiology, pathogenesis, and core behaviors of ASD, providing information and a foundation for further basic research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Daiyan Jiao
- Department of Rehabilitation, Affiliated Hai'an Hospital of Nantong University, Nantong, China
- Department of Acupuncture, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingkai Xu
- Department of Medicine, Hai’an Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Fei Tian
- Department of Medical Imaging, Hai’an Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Yaqing Zhou
- Department of Critical Care Medicine, Affiliated Hai’an Hospital of Nantong University, Nantong, China
| | - Dong Chen
- Department of Acupuncture, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujue Wang
- Department of Paediatrics, Rugao Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
4
|
Modafferi S, Lupo G, Tomasello M, Rampulla F, Ontario M, Scuto M, Salinaro AT, Arcidiacono A, Anfuso CD, Legmouz M, Azzaoui FZ, Palmeri A, Spano' S, Biamonte F, Cammilleri G, Fritsch T, Sidenkova A, Calabrese E, Wenzel U, Calabrese V. Antioxidants, Hormetic Nutrition, and Autism. Curr Neuropharmacol 2024; 22:1156-1168. [PMID: 37592816 PMCID: PMC10964097 DOI: 10.2174/1570159x21666230817085811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 08/19/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
Collapse
Affiliation(s)
- Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Legmouz
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima-Zahra Azzaoui
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Sestina Spano'
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesca Biamonte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi, 3 90129, Palermo, Italy
| | | | - Alena Sidenkova
- Department of Psychiatry, Ural State Medical University, Ekaterinburg, Russia
| | - Edward Calabrese
- Department of Environmental Health Sciences; Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| |
Collapse
|
5
|
Hongyao HE, Chun JI, Xiaoyan G, Fangfang L, Jing Z, Lin Z, Pengxiang Z, Zengchun L. Associative gene networks reveal novel candidates important for ADHD and dyslexia comorbidity. BMC Med Genomics 2023; 16:208. [PMID: 37667328 PMCID: PMC10478365 DOI: 10.1186/s12920-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is commonly associated with developmental dyslexia (DD), which are both prevalent and complicated pediatric neurodevelopmental disorders that have a significant influence on children's learning and development. Clinically, the comorbidity incidence of DD and ADHD is between 25 and 48%. Children with DD and ADHD may have more severe cognitive deficiencies, a poorer level of schooling, and a higher risk of social and emotional management disorders. Furthermore, patients with this comorbidity are frequently treated for a single condition in clinical settings, and the therapeutic outcome is poor. The development of effective treatment approaches against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and treatment. In this study, we developed bioinformatical methodology for the analysis of the comorbidity of these two diseases. As such, the search for candidate genes related to the comorbid conditions of ADHD and DD can help in elucidating the molecular mechanisms underlying the comorbid condition, and can also be useful for genotyping and identifying new drug targets. RESULTS Using the ANDSystem tool, the reconstruction and analysis of gene networks associated with ADHD and dyslexia was carried out. The gene network of ADHD included 599 genes/proteins and 148,978 interactions, while that of dyslexia included 167 genes/proteins and 27,083 interactions. When the ANDSystem and GeneCards data were combined, a total of 213 genes/proteins for ADHD and dyslexia were found. An approach for ranking genes implicated in the comorbid condition of the two diseases was proposed. The approach is based on ten criteria for ranking genes by their importance, including relevance scores of association between disease and genes, standard methods of gene prioritization, as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analyzed genes. Among the top 20 genes with the highest priority DRD2, DRD4, CNTNAP2 and GRIN2B are mentioned in the literature as directly linked with the comorbidity of ADHD and dyslexia. According to the proposed approach, the genes OPRM1, CHRNA4 and SNCA had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the most relevant genes are involved in biological processes related to signal transduction, positive regulation of transcription from RNA polymerase II promoters, chemical synaptic transmission, response to drugs, ion transmembrane transport, nervous system development, cell adhesion, and neuron migration. CONCLUSIONS The application of methods of reconstruction and analysis of gene networks is a powerful tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance for the comorbid condition of ADHD and dyslexia was employed to predict genes that play key roles in the development of the comorbid condition. The results can be utilized to plan experiments for the identification of novel candidate genes and search for novel pharmacological targets.
Collapse
Affiliation(s)
- H E Hongyao
- Medical College of Shihezi University, Shihezi, China
| | - J I Chun
- Medical College of Shihezi University, Shihezi, China
| | - Gao Xiaoyan
- Medical College of Shihezi University, Shihezi, China
| | - Liu Fangfang
- Medical College of Shihezi University, Shihezi, China
| | - Zhang Jing
- Medical College of Shihezi University, Shihezi, China
| | - Zhong Lin
- Medical College of Shihezi University, Shihezi, China
| | - Zuo Pengxiang
- Medical College of Shihezi University, Shihezi, China.
| | - Li Zengchun
- Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
6
|
Shen Y, Kim IM, Tang Y. Decoding the Gene Regulatory Network of Muscle Stem Cells in Mouse Duchenne Muscular Dystrophy: Revelations from Single-Nuclei RNA Sequencing Analysis. Int J Mol Sci 2023; 24:12463. [PMID: 37569835 PMCID: PMC10419276 DOI: 10.3390/ijms241512463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Il-Man Kim
- Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
7
|
Cieślik M, Zawadzka A, Czapski GA, Wilkaniec A, Adamczyk A. Developmental Stage-Dependent Changes in Mitochondrial Function in the Brain of Offspring Following Prenatal Maternal Immune Activation. Int J Mol Sci 2023; 24:ijms24087243. [PMID: 37108406 PMCID: PMC10138707 DOI: 10.3390/ijms24087243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal immune activation (MIA) is an important risk factor for neurodevelopmental disorders such as autism. The aim of the current study was to investigate the development-dependent changes in the mitochondrial function of MIA-exposed offspring, which may contribute to autism-like deficits. MIA was evoked by the single intraperitoneal administration of lipopolysaccharide to pregnant rats at gestation day 9.5, and several aspects of mitochondrial function in fetuses and in the brains of seven-day-old pups and adolescent offspring were analyzed along with oxidative stress parameters measurement. It was found that MIA significantly increased the activity of NADPH oxidase (NOX), an enzyme generating reactive oxygen species (ROS) in the fetuses and in the brain of seven-day-old pups, but not in the adolescent offspring. Although a lower mitochondrial membrane potential accompanied by a decreased ATP level was already observed in the fetuses and in the brain of seven-day-old pups, persistent alterations of ROS, mitochondrial membrane depolarization, and lower ATP generation with concomitant electron transport chain complexes downregulation were observed only in the adolescent offspring. We suggest that ROS observed in infancy are most likely of a NOX activity origin, whereas in adolescence, ROS are produced by damaged mitochondria. The accumulation of dysfunctional mitochondria leads to the intense release of free radicals that trigger oxidative stress and neuroinflammation, resulting in an interlinked vicious cascade.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
9
|
Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N, Fadeuilhe C, Corrales M, Richarte V, Ramos-Quiroga JA, Ribasés M. Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2022; 12:409. [PMID: 36153331 PMCID: PMC9509350 DOI: 10.1038/s41398-022-02182-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Maurer MH, Kohler A, Hudemann M, Jüngling J, Biskup S, Menzel M. Case Report of a Juvenile Patient with Autism Spectrum Disorder with a Novel Combination of Copy Number Variants in ADGRL3 (LPHN3) and Two Pseudogenes. Appl Clin Genet 2022; 15:125-131. [PMID: 36082049 PMCID: PMC9447451 DOI: 10.2147/tacg.s361239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
We report the finding of two copy number variants (CNVs) in a 12-year-old boy presenting both with autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Clinical features included aggressive behavior, mood instability, suicidal statements, repetitive and restrictive behavior, sensitivity to noise, learning problems and dyslexia, though no intellectual disability was present. Using array-based comparative genomic hybridization (array-CGH), we identified two CNVs, both triplex duplications of 324 kb on 3p26.3, and 284 kb on 4q13.1, respectively. One of the CNVs is located on chromosome 4q13.1 in the region of the gene encoding for adhesion G protein-coupled receptor L3 (ADGRL3, former name: latrophilin-3, LPHN3), the other on chromosome 3p26.3 in the region of the two pseudogenes AC090043.1 and RPL23AP39. The patient described in the present study showed increased symptoms under methylphenidate treatment but responded positively to 3 mg per day of the atypical neuroleptic drug aripiprazole. To our knowledge, this is the first report of a CNV in the ADGRL3 gene and its first association with ASD in humans.
Collapse
Affiliation(s)
- Martin H Maurer
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
- Correspondence: Martin H Maurer, Mariaberg Hospital for Child and Adolescent Psychiatry, Burghaldenstraße 12, Gammertingen, 72501, Germany, Tel +49 7124 9237200, Fax +49 7124 923555, Email
| | - Anja Kohler
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | - Melanie Hudemann
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics, CeGaT GmbH, Tübingen, Germany
| | - Martin Menzel
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| |
Collapse
|
11
|
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm (Vienna) 2022; 129:627-642. [PMID: 35624406 DOI: 10.1007/s00702-022-02513-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Eleonóra Spekker
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary. .,Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.
| |
Collapse
|
12
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
13
|
Smyth LJ, Cruise SM, Tang J, Young I, McGuinness B, Kee F, McKnight AJ. An investigation into DNA methylation patterns associated with risk preference in older individuals. Epigenetics 2021; 17:1159-1172. [PMID: 34696705 PMCID: PMC9542846 DOI: 10.1080/15592294.2021.1992910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Risk preference is a complex trait governed by psycho-social, environmental and genetic determinants. We aimed to examine how an individual’s risk preference associates with their epigenetic profile. Risk preferences were ascertained by asking participants of the Northern Ireland COhort for the Longitudinal study of Ageing to make a series of choices between hypothetical income scenarios. From these, four risk preference categories were derived, ranging from risk-averse to risk-seeking. Illumina’s Infinium High-Density Methylation Assay was used to evaluate the status of 862,927 CpGs. Risk preference and DNA methylation data were obtained for 1,656 individuals. The distribution of single-site DNA methylation levels between risk-averse and risk-seeking individuals was assessed whilst adjusting for age, sex and peripheral white cell counts. In this discovery cohort, 55 CpGs were identified with significantly different levels of methylation (p≤x10−5) between risk-averse and risk-seeking individuals when adjusting for the maximum number of covariates. No CpGs were significantly differentially methylated in any of the risk preference groups at an epigenome-wide association level (p<9x10−8) following covariate adjustment. Protein-coding genes NWD1 and LRP1 were among the genes in which the top-ranked dmCpGs were located for all analyses conducted. Mutations in these genes have previously been linked to neurological conditions. Epigenetic modifications have not previously been linked to risk-aversion using a population cohort, but may represent important biomarkers of accumulated, complex determinants of this trait. Several striking results from this study support further analysis of DNA methylation as an important link between measurable biomarkers and health behaviours.
Collapse
Affiliation(s)
- Laura J Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Sharon M Cruise
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Jianjun Tang
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, China
| | - Ian Young
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Bernadette McGuinness
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Frank Kee
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
14
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Wang YM, Qiu MY, Liu Q, Tang H, Gu HF. Critical role of dysfunctional mitochondria and defective mitophagy in autism spectrum disorders. Brain Res Bull 2021; 168:138-145. [PMID: 33400955 DOI: 10.1016/j.brainresbull.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental disorders, including autistic disorder, Asperger's syndrome, pervasive developmental disorder and childhood disintegrative disorder. Mitochondria not only provide neurons with energy in the form of ATP to sustain neuron growth, proliferation and neurodevelopment, but also regulate neuron apoptosis, intracellular calcium ion (Ca2+) homeostasis, and reactive oxygen species (ROS) clearance. Due to their postmitotic state and high energy-demanded feature, neurons are particularly prone to mitophagy and mitochondrial disfunction. Mitophagy, a selective autophagy, is critical for sustaining mitochondrial turnover and quality control via eliminating unwanted and dysfunctional mitochondria in neurons. Dysfunctional mitochondria and dysregulated mitophagy have been closely associated with the onset of ASDs. In this review, we summarize the mechanism of mitophagy and its role in neurons, and the consequence of mitophagy dysfunction in ASDs. Deeper appreciation of the role of mitophagy in ASDs pathology is required for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Ming-Yue Qiu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Qing Liu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Huang Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Hong-Feng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China.
| |
Collapse
|
17
|
Loss of
Cntnap2
in the Rat Causes Autism‐Related Alterations in Social Interactions, Stereotypic Behavior, and Sensory Processing. Autism Res 2020; 13:1698-1717. [DOI: 10.1002/aur.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
18
|
Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Sci Rep 2020; 10:14929. [PMID: 32913220 PMCID: PMC7483739 DOI: 10.1038/s41598-020-71879-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent cause of chronic headache, fatigue, insomnia, hyperactivity, memory deficits, irritability and posttraumatic stress disorder. Recent evidence suggests beneficial effects of pro-cannabinoid treatments. We assessed in mice levels of endocannabinoids in association with the occurrence and persistence of comparable sequelae after controlled cortical impact in mice using a set of long-term behavioral observations in IntelliCages, motor and nociception tests in two sequential cohorts of TBI/sham mice. TBI mice maintained lower body weights, and they had persistent low levels of brain ethanolamide endocannabinoids (eCBs: AEA, OEA, PEA) in perilesional and subcortical ipsilateral brain tissue (6 months), but rapidly recovered motor functions (within days), and average nociceptive responses were within normal limits, albeit with high variability, ranging from loss of thermal sensation to hypersensitivity. TBI mice showed persistent non-goal directed nighttime hyperactivity, i.e. they visited rewarding and non-rewarding operant corners with high frequency and random success. On successful visits, they made more licks than sham mice resulting in net over-licking. The lower the eCBs the stronger was the hyperactivity. In reward-based learning and reversal learning tasks, TBI mice were not inferior to sham mice, but avoidance memory was less stable. Hence, the major late behavioral TBI phenotype was non-goal directed nighttime hyperactivity and "over-licking" in association with low ipsilateral brain eCBs. The behavioral phenotype would agree with a "post-TBI hyperactivity disorder". The association with persistently low eCBs in perilesional and subcortical regions suggests that eCB deficiency contribute to the post-TBI psychopathology.
Collapse
|
19
|
Kepler LD, McDiarmid TA, Rankin CH. Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiol Learn Mem 2020; 171:107208. [DOI: 10.1016/j.nlm.2020.107208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
20
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|