1
|
Edelmann S, Balaji J, Pasche S, Wiegand A, Nieratschker V. DNA Methylation of PXDN Is Associated with Early-Life Adversity in Adult Mental Disorders. Biomolecules 2024; 14:976. [PMID: 39199364 PMCID: PMC11353138 DOI: 10.3390/biom14080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Early-life adversity (ELA) is characterized by exposure to traumatic events during early periods of life, particularly involving emotional, sexual and/or physical adversities during childhood. Mental disorders are strongly influenced by environmental and lifestyle-related risk factors including ELA. However, the molecular link between ELA and the risk of an adult mental disorder is still not fully understood. Evidence is emerging that long-lasting changes in the epigenetic processes regulating gene expression, such as DNA methylation, play an important role in the biological mechanisms linking ELA and mental disorders. Based on a recent study, we analyzed the DNA methylation of a specific CpG site within the gene PXDN-cg10888111-in blood in the context of ELA across a set of psychiatric disorders, namely Borderline Personality Disorder (BPD), Major Depressive Disorder (MDD) and Social Anxiety Disorder (SAD), and its potential contribution to their pathogenesis. We found significant hypermethylation in mentally ill patients with high levels of ELA compared to patients with low levels of ELA, whereas cg10888111 methylation in healthy control individuals was not affected by ELA. Further investigations revealed that this effect was driven by the MDD cohort. Providing a direct comparison of cg10888111 DNA methylation in blood in the context of ELA across three mental disorders, our results indicate the role of PXDN regulation in the response to ELA in the pathogenesis of mental disorders, especially MDD. Further studies will be needed to validate these results and decipher the corresponding biological network that is involved in the transmission of ELA to an adult mental disorder in general.
Collapse
Affiliation(s)
- Susanne Edelmann
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Jeysri Balaji
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Sarah Pasche
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Ariane Wiegand
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
2
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
3
|
Bouassida M, Egloff M, Levy J, Chatron N, Bernardini L, Le Guyader G, Tabet AC, Schluth-Bolard C, Brancati F, Giuffrida MG, Dard R, Clorennec J, Coursimault J, Vialard F, Hervé B. 2p25.3 microduplications involving MYT1L: further phenotypic characterization through an assessment of 16 new cases and a literature review. Eur J Hum Genet 2023; 31:895-904. [PMID: 37188826 PMCID: PMC10400587 DOI: 10.1038/s41431-023-01379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Microduplications involving the MYT1L gene have mostly been described in series of patients with isolated schizophrenia. However, few reports have been published, and the phenotype has still not been well characterized. We sought to further characterize the phenotypic spectrum of this condition by describing the clinical features of patients with a pure 2p25.3 microduplication that includes all or part of MYT1L. We assessed 16 new patients with pure 2p25.3 microduplications recruited through a French national collaboration (n = 15) and the DECIPHER database (n = 1). We also reviewed 27 patients reported in the literature. For each case, we recorded clinical data, the microduplication size, and the inheritance pattern. The clinical features were variable and included developmental and speech delays (33%), autism spectrum disorder (ASD, 23%), mild-to-moderate intellectual disability (ID, 21%), schizophrenia (23%), or behavioral disorders (16%). Eleven patients did not have an obvious neuropsychiatric disorder. The microduplications ranged from 62.4 kb to 3.8 Mb in size and led to duplication of all or part of MYT1L; seven of these duplications were intragenic. The inheritance pattern was available for 18 patients: the microduplication was inherited in 13 cases, and all parents but one had normal phenotype. Our comprehensive review and expansion of the phenotypic spectrum associated with 2p25.3 microduplications involving MYT1L should help clinicians to better assess, counsel and manage affected individuals. MYT1L microduplications are characterized by a spectrum of neuropsychiatric phenotypes with incomplete penetrance and variable expressivity, which are probably due to as-yet unknown genetic and nongenetic modifiers.
Collapse
Affiliation(s)
- Malek Bouassida
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France.
| | - Matthieu Egloff
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, F-86021, Poitiers, France
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert Debré, APHP, F-75019, Paris, France
| | - Nicolas Chatron
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, F-69500, Bron, France
| | | | - Gwenaël Le Guyader
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, F-86021, Poitiers, France
| | - Anne-Claude Tabet
- Département de Génétique, Hôpital Robert Debré, APHP, F-75019, Paris, France
| | - Caroline Schluth-Bolard
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, F-69500, Bron, France
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila Piazzale Salvatore Tommasi, It-67100, Coppito - L'Aquila, Italy
- San Raffaele Roma, IRCCS, It-00163, Roma, Italy
| | | | - Rodolphe Dard
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France
| | - Juliette Clorennec
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France
| | - Juliette Coursimault
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - François Vialard
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France.
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France.
| | - Bérénice Hervé
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
| |
Collapse
|
4
|
Kim S, Oh H, Choi SH, Yoo YE, Noh YW, Cho Y, Im GH, Lee C, Oh Y, Yang E, Kim G, Chung WS, Kim H, Kang H, Bae Y, Kim SG, Kim E. Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice. Cell Rep 2022; 40:111398. [PMID: 36130507 DOI: 10.1016/j.celrep.2022.111398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022] Open
Abstract
Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.
Collapse
Affiliation(s)
- Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Young Woo Noh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Yusang Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Gyuri Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea
| | - Yongchul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
5
|
Wöhr M, Fong WM, Janas JA, Mall M, Thome C, Vangipuram M, Meng L, Südhof TC, Wernig M. Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Mol Autism 2022; 13:19. [PMID: 35538503 PMCID: PMC9087967 DOI: 10.1186/s13229-022-00497-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/15/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The zinc finger domain containing transcription factor Myt1l is tightly associated with neuronal identity and is the only transcription factor known that is both neuron-specific and expressed in all neuronal subtypes. We identified Myt1l as a powerful reprogramming factor that, in combination with the proneural bHLH factor Ascl1, could induce neuronal fate in fibroblasts. Molecularly, we found it to repress many non-neuronal gene programs, explaining its supportive role to induce and safeguard neuronal identity in combination with proneural bHLH transcriptional activators. Moreover, human genetics studies found MYT1L mutations to cause intellectual disability and autism spectrum disorder often coupled with obesity. METHODS Here, we generated and characterized Myt1l-deficient mice. A comprehensive, longitudinal behavioral phenotyping approach was applied. RESULTS Myt1l was necessary for survival beyond 24 h but not for overall histological brain organization. Myt1l heterozygous mice became increasingly overweight and exhibited multifaceted behavioral alterations. In mouse pups, Myt1l haploinsufficiency caused mild alterations in early socio-affective communication through ultrasonic vocalizations. In adulthood, Myt1l heterozygous mice displayed hyperactivity due to impaired habituation learning. Motor performance was reduced in Myt1l heterozygous mice despite intact motor learning, possibly due to muscular hypotonia. While anxiety-related behavior was reduced, acoustic startle reactivity was enhanced, in line with higher sensitivity to loud sound. Finally, Myt1l haploinsufficiency had a negative impact on contextual fear memory retrieval, while cued fear memory retrieval appeared to be intact. LIMITATIONS In future studies, additional phenotypes might be identified and a detailed characterization of direct reciprocal social interaction behavior might help to reveal effects of Myt1l haploinsufficiency on social behavior in juvenile and adult mice. CONCLUSIONS Behavioral alterations in Myt1l haploinsufficient mice recapitulate several clinical phenotypes observed in humans carrying heterozygous MYT1L mutations and thus serve as an informative model of the human MYT1L syndrome.
Collapse
Affiliation(s)
- Markus Wöhr
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, 35032, Marburg, Germany.
| | - Wendy M Fong
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Justyna A Janas
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Moritz Mall
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Thome
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Madhuri Vangipuram
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Lingjun Meng
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- School of Medicine, Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Marius Wernig
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Somatic Mosaicism and Autism Spectrum Disorder. Genes (Basel) 2021; 12:genes12111699. [PMID: 34828306 PMCID: PMC8619103 DOI: 10.3390/genes12111699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogenous neurodevelopmental disorder. In the early years of next-generation sequencing, de novo germline variants were shown to contribute to ASD risk. These germline mutations are present in all of the cells of an affected individual and can be detected in any tissue, including clinically accessible DNA sources such as blood or saliva. In recent years, studies have also implicated de novo somatic variants in ASD risk. These somatic mutations arise postzygotically and are present in only a subset of the cells of an affected individual. Depending on the developmental time and progenitor cell in which a somatic mutation occurs, it may be detectable in some tissues and not in others. Somatic mutations detectable at relatively low sequencing coverage in clinically accessible tissues are suggested to contribute to 3-5% of simplex ASD diagnoses, and "brain limited" somatic mutations have been identified in postmortem ASD brain tissue. Somatic mutations likely represent the genetic diagnosis in a proportion of otherwise unexplained individuals with ASD, and brain limited somatic mutations can be used as markers to discover risk genes, cell types, brain regions, and cellular pathways important for ASD pathogenesis and to potentially target for therapeutics.
Collapse
|
7
|
Tian Q, Xu LL, Li DZ. Parental germline mosaic transmission of 5p13.2 microduplication in two siblings of a Chinese family. J OBSTET GYNAECOL 2021; 42:701-703. [PMID: 34689684 DOI: 10.1080/01443615.2021.1959532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qi Tian
- Prenatal Diagnosis Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Li Xu
- Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
8
|
Arranz MJ, Gallego-Fabrega C, Martín-Blanco A, Soler J, Elices M, Dominguez-Clavé E, Salazar J, Vega D, Briones-Buixassa L, Pascual JC. A genome-wide methylation study reveals X chromosome and childhood trauma methylation alterations associated with borderline personality disorder. Transl Psychiatry 2021; 11:5. [PMID: 33414392 PMCID: PMC7791113 DOI: 10.1038/s41398-020-01139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Borderline personality disorder (BPD) is a severe and highly prevalent psychiatric disorder, more common in females than in males and with notable differences in presentation between genders. Recent studies have shown that epigenetic modifications such as DNA methylation may modulate gene × environment interactions and impact on neurodevelopment. We conducted an epigenome wide study (Illumina Infinium HumanMethylation450k beadchip) in a group of BPD patients with (N = 49) and without (N = 47) childhood traumas and in a control group (N = 44). Results were confirmed in a replication cohort (N = 293 BPD patients and N = 114 controls) using EpiTYPER assays. Differentially methylated CpG sites were observed in several genes and intragenic regions in the X chromosome (PQBP1, ZNF41, RPL10, cg07810091 and cg24395855) and in chromosome 6 (TAP2). BPD patients showed significantly lower methylation levels in these CpG sites than healthy controls. These differences seemed to be increased by the existence of childhood trauma. Comparisons between BPD patients with childhood trauma and patients and controls without revealed significant differences in four genes (POU5F1, GGT6, TNFRSF13C and FAM113B), none of them in the X chromosome. Gene set enrichment analyses revealed that epigenetic alterations were more frequently found in genes controlling oestrogen regulation, neurogenesis and cell differentiation. These results suggest that epigenetic alterations in the X chromosome and oestrogen-regulation genes may contribute to the development of BPD and explain the differences in presentation between genders. Furthermore, childhood trauma events may modulate the magnitude of the epigenetic alterations contributing to BPD.
Collapse
Affiliation(s)
- María J. Arranz
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Ana Martín-Blanco
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joaquim Soler
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Matilde Elices
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elisabet Dominguez-Clavé
- grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juliana Salazar
- grid.7722.00000 0001 1811 6966Translational Medical Oncology Laboratory, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Bellaterra, Spain
| | - Daniel Vega
- grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain ,Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Laia Briones-Buixassa
- Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Juan Carlos Pascual
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
9
|
Mansfield P, Constantino JN, Baldridge D. MYT1L: A systematic review of genetic variation encompassing schizophrenia and autism. Am J Med Genet B Neuropsychiatr Genet 2020; 183:227-233. [PMID: 32267091 PMCID: PMC7605444 DOI: 10.1002/ajmg.b.32781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 02/03/2023]
Abstract
Variations in MYT1L, a gene encoding a transcription factor expressed in the brain, have been associated with autism, intellectual disability, and schizophrenia. Here we provide an updated review of published reports of neuropsychiatric correlates of loss of function and duplication of MYT1L. Of 27 duplications all were partial; 33% were associated exclusively with schizophrenia, and the chromosomal locations of schizophrenia-associated duplications exhibited a distinct difference in pattern-of-location from those associated with autism and/or intellectual disability. Of 51 published heterozygous loss of function variants, all but one were associated with intellectual disability, autism, or both, and one resulted in no neuropsychiatric diagnosis. There were no reports of schizophrenia associated with loss of function variants of MYT1L (Fisher's exact p < .00001, for contrast with all reported duplications). Although the precise function of the various mutations remains unspecified, these data collectively establish the candidacy of MYT1L as a reciprocal mutation, in which schizophrenia may be engendered by partial duplications, typically involving the 3' end of the gene, while developmental disability-notably autism-is associated with both loss of function and partial duplication. Future research on the specific effects of contrasting mutations in MYT1L may provide insight into the causal origins of autism and schizophrenia.
Collapse
Affiliation(s)
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri,Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
10
|
Kukharsky MS, Ninkina NN, An H, Telezhkin V, Wei W, Meritens CRD, Cooper-Knock J, Nakagawa S, Hirose T, Buchman VL, Shelkovnikova TA. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry 2020; 10:171. [PMID: 32467583 PMCID: PMC7256041 DOI: 10.1038/s41398-020-0854-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
NEAT1 is a highly and ubiquitously expressed long non-coding RNA (lncRNA) which serves as an important regulator of cellular stress response. However, the physiological role of NEAT1 in the central nervous system (CNS) is still poorly understood. In the current study, we addressed this by characterising the CNS function of the Neat1 knockout mouse model (Neat1-/- mice), using a combination of behavioural phenotyping, electrophysiology and expression analysis. RNAscope® in situ hybridisation revealed that in wild-type mice, Neat1 is expressed across the CNS regions, with high expression in glial cells and low expression in neurons. Loss of Neat1 in mice results in an inadequate reaction to physiological stress manifested as hyperlocomotion and panic escape response. In addition, Neat1-/- mice display deficits in social interaction and rhythmic patterns of activity but retain normal motor function and memory. Neat1-/- mice do not present with neuronal loss, overt neuroinflammation or gross synaptic dysfunction in the brain. However, cultured Neat1-/- neurons are characterised by hyperexcitability and dysregulated calcium homoeostasis, and stress-induced neuronal activity is also augmented in Neat1-/- mice in vivo. Gene expression analysis showed that Neat1 may act as a weak positive regulator of multiple genes in the brain. Furthermore, loss of Neat1 affects alternative splicing of genes important for the CNS function and implicated in neurological diseases. Overall, our data suggest that Neat1 is involved in stress signalling in the brain and fine-tunes the CNS functions to enable adaptive behaviour in response to physiological stress.
Collapse
Affiliation(s)
- Michail S Kukharsky
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Natalia N Ninkina
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Haiyan An
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tetsuro Hirose
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Tatyana A Shelkovnikova
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
11
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
12
|
Yang C, Li J, Wu Q, Yang X, Huang AY, Zhang J, Ye AY, Dou Y, Yan L, Zhou WZ, Kong L, Wang M, Ai C, Yang D, Wei L. AutismKB 2.0: a knowledgebase for the genetic evidence of autism spectrum disorder. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5134097. [PMID: 30339214 PMCID: PMC6193446 DOI: 10.1093/database/bay106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong genetic contributions. To provide a comprehensive resource for the genetic evidence of ASD, we have updated the Autism KnowledgeBase (AutismKB) to version 2.0. AutismKB 2.0 integrates multiscale genetic data on 1379 genes, 5420 copy number variations and structural variations, 11 669 single-nucleotide variations or small insertions/deletions (SNVs/indels) and 172 linkage regions. In particular, AutismKB 2.0 highlights 5669 de novo SNVs/indels due to their significant contribution to ASD genetics and includes 789 mosaic variants due to their recently discovered contributions to ASD pathogenesis. The genes and variants are annotated extensively with genetic evidence and clinical evidence. To help users fully understand the functional consequences of SNVs and small indels, we provided comprehensive predictions of pathogenicity with iFish, SIFT, Polyphen etc. To improve user experiences, the new version incorporates multiple query methods, including simple query, advanced query and batch query. It also functionally integrates two analytical tools to help users perform downstream analyses, including a gene ranking tool and an enrichment analysis tool, KOBAS. AutismKB 2.0 is freely available and can be a valuable resource for researchers.
Collapse
Affiliation(s)
- Changhong Yang
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Jiarui Li
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Qixi Wu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoxu Yang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - August Yue Huang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Zhang
- National Institute of Biological Sciences, Beijing, China.,Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Adam Yongxin Ye
- Peking-Tsinghua Center for Life Sciences, Beijing, China.,Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yanmei Dou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Linlin Yan
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Meng Wang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chen Ai
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Dechang Yang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Kepa A, Martinez Medina L, Erk S, Srivastava DP, Fernandes A, Toro R, Lévi S, Ruggeri B, Fernandes C, Degenhardt F, Witt SH, Meyer-Lindenberg A, Poncer JC, Martinot JL, Paillère Martinot ML, Müller CP, Heinz A, Walter H, Schumann G, Desrivières S. Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval. Neuropsychopharmacology 2017; 42:2516-2526. [PMID: 28470180 PMCID: PMC5549840 DOI: 10.1038/npp.2017.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023]
Abstract
The fundamental role of the brain-specific myelin transcription factor 1-like (MYT1L) gene in cases of intellectual disability and in the etiology of neurodevelopmental disorders is increasingly recognized. Yet, its function remains under-investigated. Here, we identify a network of helix-loop-helix (HLH) transcriptional regulators controlled by MYT1L, as indicated by our analyses in human neural stem cells and in the human brain. Using cell-based knockdown approaches and microarray analyses we found that (1) MYT1L is required for neuronal differentiation and identified ID1, a HLH inhibitor of premature neurogenesis, as a target. (2) Although MYT1L prevented expression of ID1, it induced expression of a large number of terminal differentiation genes. (3) Consistently, expression of MYT1L in the human brain coincided with neuronal maturation and inversely correlated with that of ID1 and ID3 throughout the lifespan. (4) Genetic polymorphisms that reduced expression of MYT1L in the hippocampus resulted in increased expression of ID1 and ID3, decreased levels of the proneural basic HLH (bHLH) transcriptional regulators TCF4 and NEUROD6 and decreased expression of genes involved in long-term potentiation and synaptic transmission, cancer and neurodegeneration. Furthermore, our neuroimaging analyses indicated that MYT1L expression associated with hippocampal volume and activation during episodic memory recall, as measured by blood-oxygen-level-dependent (BOLD) signals. Overall, our findings suggest that MYT1L influences memory-related processes by controlling a neuronal proliferation/differentiation switch of ID-bHLH factors.
Collapse
Affiliation(s)
- Agnieszka Kepa
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lourdes Martinez Medina
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Deepak P Srivastava
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Alinda Fernandes
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France,CNRS URA 2182, Genes, synapses and cognition, Institut Pasteur, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 839, Paris, France,Université Pierre et Marie Curie, Paris, France,Institut du Fer a Moulin, Paris, France
| | - Barbara Ruggeri
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Cathy Fernandes
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Franziska Degenhardt
- Department of Genomics, Life and Brain Center, and Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | - Jean-Christophe Poncer
- INSERM UMR-S 839, Paris, France,Université Pierre et Marie Curie, Paris, France,Institut du Fer a Moulin, Paris, France
| | - Jean-Luc Martinot
- Institut National de la Sante et de la Recherche Medicale, INSERM CEAUnit1000, ‘‘Imaging & Psychiatry’’, IFR49, CEA, DSV, IBM-Service Hospitalier Frédéric Joliot, Orsay, France,University Paris Sud, Orsay, France,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Sante et de la Recherche Medicale, INSERM CEAUnit1000, ‘‘Imaging & Psychiatry’’, IFR49, CEA, DSV, IBM-Service Hospitalier Frédéric Joliot, Orsay, France,University Paris Sud, Orsay, France,Université Paris Descartes, Sorbonne Paris Cité, Paris, France,AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Gunter Schumann
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, Denmark Hill, London SE5 8AF, UK, Tel: +44(0)20 7848 0528, Fax: +44(0)20 7848 0866, E-mail:
| |
Collapse
|
14
|
Dou Y, Yang X, Li Z, Wang S, Zhang Z, Ye AY, Yan L, Yang C, Wu Q, Li J, Zhao B, Huang AY, Wei L. Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations. Hum Mutat 2017; 38:1002-1013. [PMID: 28503910 PMCID: PMC5518181 DOI: 10.1002/humu.23255] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
The roles and characteristics of postzygotic single‐nucleotide mosaicisms (pSNMs) in autism spectrum disorders (ASDs) remain unclear. In this study of the whole exomes of 2,361 families in the Simons Simplex Collection, we identified 1,248 putative pSNMs in children and 285 de novo SNPs in children with detectable parental mosaicism. Ultra‐deep amplicon resequencing suggested a validation rate of 51%. Analyses of validated pSNMs revealed that missense/loss‐of‐function (LoF) pSNMs with a high mutant allele fraction (MAF≥ 0.2) contributed to ASD diagnoses (P = 0.022, odds ratio [OR] = 5.25), whereas missense/LoF pSNMs with a low MAF (MAF<0.2) contributed to autistic traits in male non‐ASD siblings (P = 0.033). LoF pSNMs in parents were less likely to be transmitted to offspring than neutral pSNMs (P = 0.037), and missense/LoF pSNMs in parents with a low MAF were transmitted more to probands than to siblings (P = 0.016, OR = 1.45). We estimated that pSNMs in probands or de novo mutations inherited from parental pSNMs increased the risk of ASD by approximately 6%. Adding pSNMs into the transmission and de novo association test model revealed 13 new ASD risk genes. These results expand the existing repertoire of genes involved in ASD and shed new light on the contribution of genomic mosaicisms to ASD diagnoses and autistic traits.
Collapse
Affiliation(s)
- Yanmei Dou
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Xiaoxu Yang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ziyi Li
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- National Institute of Biological Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zheng Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Adam Yongxin Ye
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Linlin Yan
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Changhong Yang
- National Institute of Biological Sciences, Beijing, China.,College of Life Sciences Beijing Normal University, Beijing, China
| | - Qixi Wu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.,Human Genetic Resources Core Facility, School of Life Sciences, Peking University, Beijing, China
| | - Jiarui Li
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Boxun Zhao
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - August Yue Huang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Mullins C, Fishell G, Tsien RW. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 2016; 89:1131-1156. [PMID: 26985722 DOI: 10.1016/j.neuron.2016.02.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying autism spectrum disorders (ASDs) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry, and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops and provide detailed commentary for exemplar genes within each module.
Collapse
Affiliation(s)
- Caitlin Mullins
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
16
|
Sperry ED, Schuette JL, van Ravenswaaij-Arts CMA, Green GE, Martin DM. Duplication 2p25 in a child with clinical features of CHARGE syndrome. Am J Med Genet A 2016; 170A:1148-54. [PMID: 26850571 DOI: 10.1002/ajmg.a.37592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
CHARGE syndrome is a dominant disorder characterized by ocular colobomata, heart defects, choanal atresia, retardation of growth and development, genital hypoplasia, and ear abnormalities including deafness and vestibular disorders. The majority of individuals with CHARGE have pathogenic variants in the gene encoding CHD7, a chromatin remodeling protein. Here, we present a 15-year-old girl with clinical features of CHARGE syndrome and a de novo 6.5 Mb gain of genomic material at 2p25.3-p25.2. The duplicated region contained 24 genes, including the early and broadly expressed transcription factor gene SOX11. Analysis of 28 other patients with CHARGE showed no SOX11 copy number changes or pathogenic sequence variants. To our knowledge, this child's chromosomal abnormality is unique and represents the first co-occurrence of duplication 2p25 and clinical features of CHARGE syndrome. We compare our patient's phenotype to ten previously published patients with isolated terminal duplication 2p, and elaborate on the clinical diagnosis of CHARGE in the context of atypical genetic findings.
Collapse
Affiliation(s)
- Ethan D Sperry
- Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan.,Department of the Medical Scientist Training Program, The University of Michigan, Ann Arbor, Michigan
| | - Jane L Schuette
- Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan.,Department of Pediatrics and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan
| | | | - Glenn E Green
- Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, Michigan
| | - Donna M Martin
- Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan.,Department of the Medical Scientist Training Program, The University of Michigan, Ann Arbor, Michigan.,Department of Pediatrics and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Andrews JL, Fernandez-Enright F. A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:97-114. [PMID: 26143511 DOI: 10.1016/j.neubiorev.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of neuron and oligodendrocyte survival, neurite extension, axon regeneration, oligodendrocyte differentiation, axonal myelination and functional recovery; all processes highly implicated in numerous brain-related functions. Although playing a major role in developmental brain functions, the potential application of Lingo-1 as a therapeutic target for the treatment of neurological disorders has so far been under-estimated. A number of preclinical studies have shown that various methods of antagonizing Lingo-1 results in neuronal and oligodendroglial survival, axonal growth and remyelination; however to date literature has only detailed applications of Lingo-1 targeted therapeutics with a focus primarily on myelination disorders such as multiple sclerosis and spinal cord injury; omitting important information regarding Lingo-1 signaling co-factors. Here, we provide for the first time a complete and thorough review of the implications of Lingo-1 signaling in a wide range of neurological and psychiatric disorders, and critically examine its potential as a novel therapeutic target for these disorders.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| |
Collapse
|
18
|
Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 113:251-67. [PMID: 24290388 DOI: 10.1016/b978-0-12-418700-9.00008-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodevelopmental and neuropsychiatric disorders result from complex interactions between critical genetic factors and as-yet-unknown environmental components. To gain clinical insight, it is critical to develop a comprehensive understanding of these genetic components. RBFOX1, an RNA splicing factor, regulates expression of large genetic networks during early neuronal development, and haploinsufficiency causes severe neurodevelopmental phenotypes including autism spectrum disorder (ASD), intellectual disability, and epilepsy. Genomic testing in individuals and large patient cohorts has identified phenotypically similar cases possessing copy number variations in RBFOX1, implicating the gene as an important cause of neurodevelopmental disease. However, a significant proportion of the observed structural variation is inherited from phenotypically normal individuals, raising questions regarding overall pathogenicity of variation at the RBFOX1 locus. In this chapter, we discuss the molecular, cellular, and clinical evidence supporting the role of RBFOX1 in neurodevelopment and present a comprehensive model for the contribution of structural variation in RBFOX1 to ASD.
Collapse
|
19
|
Choi A, Lao R, Ling-Fung Tang P, Wan E, Mayer W, Bardakjian T, Shaw GM, Kwok PY, Schneider A, Slavotinek A. Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis. Eur J Hum Genet 2014; 23:337-41. [PMID: 24939590 DOI: 10.1038/ejhg.2014.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/25/2022] Open
Abstract
We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs--a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis--a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.
Collapse
Affiliation(s)
- Alex Choi
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, CA, USA
| | - Richard Lao
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eunice Wan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Wasima Mayer
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, CA, USA
| | - Tanya Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Gary M Shaw
- Division of Neonatology and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Adele Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Docampo E, Escaramís G, Gratacòs M, Villatoro S, Puig A, Kogevinas M, Collado A, Carbonell J, Rivera J, Vidal J, Alegre J, Estivill X, Rabionet R. Genome-wide analysis of single nucleotide polymorphisms and copy number variants in fibromyalgia suggest a role for the central nervous system. Pain 2014; 155:1102-1109. [DOI: 10.1016/j.pain.2014.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 11/25/2022]
|
21
|
Van Den Bossche MJ, Strazisar M, Cammaerts S, Liekens AM, Vandeweyer G, Depreeuw V, Mattheijssens M, Lenaerts AS, De Zutter S, De Rijk P, Sabbe B, Del-Favero J. Identification of rare copy number variants in high burden schizophrenia families. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:273-82. [PMID: 23505263 DOI: 10.1002/ajmg.b.32146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/13/2013] [Indexed: 11/05/2022]
Abstract
Over the last years, genome-wide studies consistently showed an increased burden of rare copy number variants (CNVs) in schizophrenia patients, supporting the "common disease, rare variant" hypothesis in at least a subset of patients. We hypothesize that in families with a high burden of disease, and thus probably a high genetic load influencing disease susceptibility, rare CNVs might be involved in the etiology of schizophrenia. We performed a genome-wide CNV analysis in the index patients of eight families with multiple schizophrenia affected members, and consecutively performed a detailed family analysis for the most relevant CNVs. One index patient showed a DRD5 containing duplication. A second index patient presented with an NRXN1 containing deletion and two adjacent duplications containing MYT1L and SNTG2. Detailed analysis in the subsequent families showed segregation of the identified CNVs. With this study we show the importance of screening high burden families for rare CNVs, which will not only broaden our knowledge concerning the molecular genetic mechanisms involved in schizophrenia but also allow the use of the obtained genetic data to provide better clinical care to these families in general and to non-symptomatic causal CNV carriers in particular.
Collapse
Affiliation(s)
- Maarten J Van Den Bossche
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, VIB, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rio M, Royer G, Gobin S, de Blois MC, Ozilou C, Bernheim A, Nizon M, Munnich A, Bonnefont JP, Romana S, Vekemans M, Turleau C, Malan V. Monozygotic twins discordant for submicroscopic chromosomal anomalies in 2p25.3 region detected by array CGH. Clin Genet 2012; 84:31-6. [PMID: 23061379 DOI: 10.1111/cge.12036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
Although discordant phenotypes in monozygotic twins with developmental disorder are not an exception, underlying genetic discordance is rarely reported. Here, we report on the clinical and cytogenetic details of 4-year-old female monozygotic twins with discordant phenotypes. Twin 1 exhibited global developmental delay, overweight and hyperactivity. Twin 2 had an autistic spectrum disorder. Molecular karyotyping in twin 1 identified a 2p25.3 deletion, further confirmed by Fluorescence in situ hybridization (FISH) analysis on leukocytes. Interestingly, array comparative genomic hybridization was normal in twin 2 but FISH analysis using the same probe as twin 1 showed mosaicism with one-third of cells with a 2p25.3 deletion, one-third of cells with a 2p25.3 duplication, and one-third of normal cells. Genotyping with microsatellite markers confirmed the monozygosity of the twins. We propose that the chromosome imbalance may be due to a mitotic non-allelic recombination occurring during blastomeric divisions of a normal zygote. Such event will result in three distinct cell populations, whose proportion in each embryo formed after separation from the zygote may differ, leading to discordant chromosomal anomalies between twins. We also discuss that the MYTL1L and the SNTG2 genes within the reported region could probably relate to the phenotypic discordance of the monozygotic twins.
Collapse
Affiliation(s)
- M Rio
- Département de Génétique, Université Paris Descartes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|