1
|
de Souza RF, Amaro TR, Palacio-Cortés AM, da Silva MAN, Dionisio JF, Pezenti LF, Lopes TBF, Mantovani MS, Zequi JAC, da Rosa R. Comparative transcriptional analysis between susceptible and resistant populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) after malathion exposure. Mol Genet Genomics 2024; 299:92. [PMID: 39367967 DOI: 10.1007/s00438-024-02185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Aedes aegypti is an important vector of arboviruses, including dengue, chikungunya and Zika. The application of synthetic insecticides is a frequently used strategy to control this insect. Malathion is an organophosphate insecticide that was widely used in Brazil in the 1980s and 1990s to control the adult form of A. aegypti. In situations where resistance to currently used insecticides is detected, the use of malathion may be resumed as a control measure. Many studies have confirmed resistance to malathion, however, comparative studies of differential gene expression of the entire transcriptome of resistant and susceptible insects are scarce. Therefore, understanding the molecular basis of resistance to this insecticide in this species is extremely important. In this paper, we present the first transcriptomic description of susceptible and resistant strains of A. aegypti challenged with malathion. Guided transcriptome assembly resulted in 39,904 transcripts, where 2133 differentially expressed transcripts were detected, and three were validated by RT-qPCR. Enrichment analysis for these identified transcripts resulted in 13 significant pathways (padj < 0.05), 8 associated with down-regulated and 5 with up-regulated transcripts in treated resistant insects. It was possible to divide the transcripts according to the mechanism of action into three main groups: (i) genes involved in detoxification metabolic pathways; (ii) genes of proteins located in the membrane/extracellular region; and (iii) genes related to DNA integration/function. These results are important in advancing knowledge of genes related to resistance mechanisms in this insect, enabling the development of effective technologies and strategies for managing insecticide resistance.
Collapse
Affiliation(s)
- Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Tafarel Ribeiro Amaro
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Angela Maria Palacio-Cortés
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mário Antônio Navarro da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jaqueline Fernanda Dionisio
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Larissa Forim Pezenti
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Thayná Bisson Ferraz Lopes
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - João Antônio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil.
| |
Collapse
|
2
|
Engdahl CS, Caragata EP, Tavadia M, Dimopoulos G. Chromobacterium Biopesticide Exposure Does Not Select for Resistance in Aedes Mosquitoes. mBio 2023; 14:e0048023. [PMID: 37017525 PMCID: PMC10127667 DOI: 10.1128/mbio.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Developing effective tools to control mosquito populations is essential for reducing the incidence of diseases like malaria and dengue. Biopesticides of microbial origin are a rich, underexplored source of mosquitocidal compounds. We previously developed a biopesticide from the bacterium Chromobacterium sp. Panama that rapidly kills vector mosquito larvae, including Aedes aegypti and Anopheles gambiae. Here, we demonstrate that two independent Ae. aegypti colonies exposed to a sublethal dose of that biopesticide over consecutive generations persistently exhibited high mortality and developmental delays, indicating that resistance did not develop during the study period. Critically, the descendants of biopesticide-exposed mosquitoes experienced decreased longevity and did not display increased susceptibility to dengue virus or decreased susceptibility to common chemical insecticides. Through RNA sequencing, we observed no link between biopesticide exposure and the increased activity of xenobiotic metabolism and detoxification genes typically associated with insecticide resistance. These findings indicate that the Chromobacterium biopesticide is an exciting, emerging mosquito control tool. IMPORTANCE Vector control is an essential part of mitigating diseases caused by pathogens that mosquitoes spread. Modern vector control is highly reliant on using synthetic insecticides to eliminate mosquito populations before they can cause disease. However, many of these populations have become resistant to commonly used insecticides. There is a strong need to explore alternative vector control strategies that aim to mitigate disease burden. Biopesticides, insecticides of biological origin, can have unique mosquitocidal activities, meaning they can effectively kill mosquitoes that are already resistant to other insecticides. We previously developed a highly effective mosquito biopesticide from the bacterium Chromobacterium sp. Csp_P. Here, we investigate whether exposure to a sublethal dose of this Csp_P biopesticide over 9 to 10 generations causes resistance to arise in Aedes aegypti mosquitoes. We find no evidence of resistance at the physiological or molecular levels, confirming that the Csp_P biopesticide is a highly promising new tool for controlling mosquito populations.
Collapse
Affiliation(s)
- Cecilia Springer Engdahl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric P. Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Florida Medical Entomology Laboratory, Department of Entomology & Nematology, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Fei X, Xiao S, Huang X, Li Z, Li X, He C, Li Y, Zhang X, Deng X. Control of Aedes mosquito populations using recombinant microalgae expressing short hairpin RNAs and their effect on plankton. PLoS Negl Trop Dis 2023; 17:e0011109. [PMID: 36701378 PMCID: PMC9904476 DOI: 10.1371/journal.pntd.0011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
New biocontrol strategies are urgently needed to combat vector-borne infectious diseases. This study presents a low-cost method to produce a potential mosquito insecticide that utilizes the microalgae released into suburban water sources to control mosquito populations. Chlorella microalgae are ubiquitous in local waters, which were chosen as the host for genetic transfection. This species facilitated the recombinant algae to adapt to the prevailing environmental conditions with rapid growth and high relative abundance. The procedure involved microalgae RNAi-based insecticides developed using short hairpin RNAs targeting the Aedes aegypti chitin synthase A (chsa) gene in Chlorella. These insecticides effectively silenced the chsa gene, inhibiting Aedes metamorphosis in the laboratory and simulated-field trials. This study explored the impact of recombinant microalgae on the phytoplankton and zooplankton in suburban waters. High-throughput sequencing revealed that rapid reproduction of recombinant Chlorella indirectly caused the disappearance of some phytoplankton and reduced the protozoan species. This study demonstrated that a recombinant microalgae-based insecticide could effectively reduce the population of Aedes mosquitoes in the laboratory and simulated field trials. However, the impact of this technology on the environment and ecology requires further investigation.
Collapse
Affiliation(s)
- Xiaowen Fei
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Sha Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xiaodan Huang
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Zhijie Li
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xinghan Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Changhao He
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| | - Xiuxia Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| | - Xiaodong Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, China
- * E-mail:
| |
Collapse
|
4
|
Fei X, Huang X, Li Z, Li X, He C, Xiao S, Li Y, Zhang X, Deng X. Effect of marker-free transgenic Chlamydomonas on the control of Aedes mosquito population and on plankton. Parasit Vectors 2023; 16:18. [PMID: 36653886 PMCID: PMC9847121 DOI: 10.1186/s13071-022-05647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND More than half of the world's population suffers from epidemic diseases that are spread by mosquitoes. The primary strategy used to stop the spread of mosquito-borne diseases is vector control. Interference RNA (RNAi) is a powerful tool for controlling insect populations and may be less susceptible to insect resistance than other strategies. However, public concerns have been raised because of the transfer of antibiotic resistance marker genes to environmental microorganisms after integration into the recipient genome, thus allowing the pathogen to acquire resistance. Therefore, in the present study, we modified the 3-hydroxykynurenine transaminase (3hkt) and hormone receptor 3 (hr3) RNAi vectors to remove antibiotic resistance marker genes and retain the expression cassette of the inverse repeat sequence of the 3hkt/hr3 target gene. This recombinant microalgal marker-free RNAi insecticide was subsequently added to the suburban water in a simulated-field trial to test its ability to control mosquito population. METHODS The expression cassette of the 3hkt/hr3 inverted repeat sequence and a DNA fragment of the argininosuccinate lyase gene without the ampicillin resistance gene were obtained using restriction enzyme digestion and recovery. After the cotransformation of Chlamydomonas, the recombinant algae was then employed to feed Aedes albopictus larvae. Ten and 300 larvae were used in small- and large-scale laboratory Ae.albopictus feeding trials, respectively. Simulated field trials were conducted using Meishe River water that was complemented with recombinant Chlamydomonas. Moreover, the impact of recombinant microalgae on phytoplankton and zooplankton in the released water was explored via high-throughput sequencing. RESULTS The marker-free RNAi-recombinant Chlamydomonas effectively silenced the 3hkt/hr3 target gene, resulting in the inhibition of Ae. albopictus development and also in the high rate of Ae. albopictus larvae mortality in the laboratory and simulated field trials. In addition, the results confirmed that the effect of recombinant Chlamydomonas on plankton in the released water was similar to that of the nontransgenic Chlamydomonas, which could reduce the abundance and species of plankton. CONCLUSIONS The marker-free RNAi-recombinant Chlamydomonas are highly lethal to the Ae. albopictus mosquito, and their effect on plankton in released water is similar to that of the nontransgenic algal strains, which reduces the abundance and species of plankton. Thus, marker-free recombinant Chlamydomonas can be used for mosquito biorational control and mosquito-borne disease prevention.
Collapse
Affiliation(s)
- Xiaowen Fei
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xiaodan Huang
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Zhijie Li
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xinghan Li
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Changhao He
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Sha Xiao
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yajun Li
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China
| | - Xiuxia Zhang
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China
| | - Xiaodong Deng
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China ,grid.453499.60000 0000 9835 1415Zhanjiang Experimental Station, CATAS, Zhanjiang, China
| |
Collapse
|
5
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
6
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
7
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
8
|
Chen TY, Smartt CT, Shin D. Permethrin Resistance in Aedes aegypti Affects Aspects of Vectorial Capacity. INSECTS 2021; 12:71. [PMID: 33466960 PMCID: PMC7830706 DOI: 10.3390/insects12010071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.
Collapse
Affiliation(s)
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL 32962, USA;
| | - Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL 32962, USA;
| |
Collapse
|
9
|
Huang HJ, Cui JR, Hong XY. Comparative analysis of diet-associated responses in two rice planthopper species. BMC Genomics 2020; 21:565. [PMID: 32807078 PMCID: PMC7437935 DOI: 10.1186/s12864-020-06976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background Host adaptation is the primary determinant of insect diversification. However, knowledge of different host ranges in closely related species remains scarce. The brown planthopper (Nilaparvata lugens, BPH) and the small brown planthopper (Laodelphax striatellus, SBPH) are the most destructive insect pests within the family Delphacidae. These two species differ in their host range (SBPH can well colonize rice and wheat plants, whereas BPH survives on only rice plants), but the underlying mechanism of this difference remains unknown. High-throughput sequencing provides a powerful approach for analyzing the association between changes in gene expression and the physiological responses of insects. Therefore, gut transcriptomes were performed to elucidate the genes associated with host adaptation in planthoppers. The comparative analysis of planthopper responses to different diets will improve our knowledge of host adaptation regarding herbivorous insects. Results In the present study, we analyzed the change in gene expression of SBPHs that were transferred from rice plants to wheat plants over the short term (rSBPH vs tSBPH) or were colonized on wheat plants over the long term (rSBPH vs wSBPH). The results showed that the majority of differentially expressed genes in SBPH showed similar changes in expression for short-term transfer and long-term colonization. Based on a comparative analysis of BPH and SBPH after transfer, the genes associated with sugar transporters and heat-shock proteins showed similar variation. However, most of the genes were differentially regulated between the two species. The detoxification-related genes were upregulated in SBPH after transfer from the rice plants to the wheat plants, but these genes were downregulated in BPH under the same conditions. In contrast, ribosomal-related genes were downregulated in SBPH after transfer, but these genes were upregulated in BPH under the same conditions. Conclusions The results of this study provide evidence that host plants played a dominant role in shaping gene expression and that the low fitness of BPH on wheat plants might be determined within 24 h after transfer. This study deepens our understanding of different host ranges for the two planthopper species, which may provide a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.,Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Delnat V, Janssens L, Stoks R. Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. PEST MANAGEMENT SCIENCE 2020; 76:1448-1455. [PMID: 31639259 DOI: 10.1002/ps.5658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Populations of target species are typically exposed to pesticide mixtures and natural stressors such as predator cues, and are increasingly developing resistance to single pesticides. Nevertheless, we have poor knowledge whether natural stressors and the presence of pesticide resistance shape mixture toxicity. We tested the single and combined effects of the pesticide chlorpyrifos and the biopesticide Bacillus thuringiensis israelensis (Bti) on the survival of the Southern house mosquito (Culex quinquefasciatus, Say) and whether these effects were magnified by synthetic predator cues of Notonecta water bugs and differed between a chlorpyrifos-resistant (Ace-1R) and non-resistant (S-Lab) strain. RESULTS Single exposure to Bti caused mortality in both strains (S-Lab ∼27%, Ace-1R ∼41%) and single exposure to chlorpyrifos caused only mortality in the S-Lab strain (∼33%), while predator cues did not induce mortality. The chlorpyrifos-resistant strain was 1.5-fold more sensitive to Bti, indicating a cost of resistance. The interaction types between chlorpyrifos and Bti (additive), between chlorpyrifos and predator cues (additive), and between Bti and predator cues (synergistic) were consistent in both strains. Despite predator cues making Bti approximately 8% more lethal, they did not change the additive interaction between Bti and chlorpyrifos in their mixture in either strain. CONCLUSION These results indicate that the resistance against chlorpyrifos was not partly lifted when chlorpyrifos exposure was combined with Bti and predator cues. Identifying the interaction type within pesticide mixtures and how this depends on natural stressors is important to select control strategies that give a disadvantage to resistant individuals compared to non-resistant individuals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Tchouakui M, Chiang MC, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ, Tchoupo M, Kusimo MO, Riveron JM, Wondji CS. A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher Plasmodium infection in the African malaria vector Anopheles funestus. Sci Rep 2019; 9:5772. [PMID: 30962458 PMCID: PMC6453935 DOI: 10.1038/s41598-019-42015-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Metabolic resistance to insecticides is threatening malaria control in Africa. However, the extent to which it impacts malaria transmission remains unclear. Here, we investigated the association between a marker of glutathione S-transferase mediated metabolic resistance and Plasmodium infection in field population of Anopheles funestus s.s. in comparison to the A296S-RDL target site mutation. The 119F-GSTe2 resistant allele was present in southern (Obout) (56%) and central (Mibellon) (25%) regions of Cameroon whereas the 296S-RDL resistant allele was detected at 98.5% and 15% respectively. The whole mosquito Plasmodium and sporozoite infection rates were 57% and 14.8% respectively in Obout (n = 508) and 19.7% and 5% in Mibellon (n = 360). No association was found between L119F-GSTe2 genotypes and whole mosquito infection status. However, when analyzing oocyst and sporozoite infection rates separately, the resistant homozygote 119F/F genotype was significantly more associated with Plasmodium infection in Obout than both heterozygote (OR = 2.5; P = 0.012) and homozygote susceptible (L/L119) genotypes (OR = 2.10; P = 0.013). In contrast, homozygote RDL susceptible mosquitoes (A/A296) were associated more frequently with Plasmodium infection than other genotypes (OR = 4; P = 0.03). No additive interaction was found between L119F and A296S. Sequencing of the GSTe2 gene showed no association between the polymorphism of this gene and Plasmodium infection. Glutathione S-transferase metabolic resistance is potentially increasing the vectorial capacity of resistant An. funestus mosquitoes. This could result in a possible exacerbation of malaria transmission in areas of high GSTe2-based metabolic resistance to insecticides.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Mu-Chun Chiang
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Cyrille Ndo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Carine K Kuicheu
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Nathalie Amvongo-Adjia
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Murielle J Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Micareme Tchoupo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Jacob M Riveron
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Charles S Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK.
| |
Collapse
|
12
|
Abstract
Zika virus infection and dengue and chikungunya fevers are emerging viral diseases that have become public health threats. Their aetiologic agents are transmitted by the bite of genus Aedes mosquitoes. Without effective therapies or vaccines, vector control is the main strategy for preventing the spread of these diseases. Increased insecticide resistance calls for biorational actions focused on control of the target vector population. The chitin required for larval survival structures is a good target for biorational control. Chitin synthases A and B (CHS) are enzymes in the chitin synthesis pathway. Double-stranded RNA (dsRNA)-mediated gene silencing (RNAi) achieves specific knockdown of target proteins. Our goal in this work, a new proposed RNAi-based bioinsecticide, was developed as a potential strategy for mosquito population control. DsRNA molecules that target five different regions in the CHSA and B transcript sequences were produced in vitro and in vivo through expression in E. coli HT115 and tested by direct addition to larval breeding water. Mature and immature larvae treated with dsRNA targeting CHS catalytic sites showed significantly decreased viability associated with a reduction in CHS transcript levels. The few larval and adult survivors displayed an altered morphology and chitin content. In association with diflubenzuron, this bioinsecticide exhibited insecticidal adjuvant properties.
Collapse
|
13
|
Tetreau G, Wang P. Chitinous Structures as Potential Targets for Insect Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:273-292. [PMID: 31102251 DOI: 10.1007/978-981-13-7318-3_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
14
|
Carvalho KDS, Crespo MM, Araújo AP, da Silva RS, de Melo-Santos MAV, de Oliveira CMF, Silva-Filha MHNL. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit Vectors 2018; 11:673. [PMID: 30594214 PMCID: PMC6311009 DOI: 10.1186/s13071-018-3246-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 01/13/2023] Open
Abstract
Background Bacillus thuringiensis svar. israelensis (Bti) is an effective and safe biolarvicide to control Aedes aegypti. Its mode of action based on four protoxins disfavors resistance; however, control in endemic areas that display high mosquito infestation throughout the year requires continuous larvicide applications, which imposes a strong selection pressure. Therefore, this study aimed to investigate the effects of an intensive Bti exposure on an Ae. aegypti strain (RecBti), regarding its susceptibility to Bti and two of its protoxins tested individually, to other control agents temephos and diflubenzuron, and its profile of detoxifying enzymes. Methods The RecBti strain was established using a large egg sample (10,000) from Recife city (Brazil) and more than 290,000 larvae were subjected to Bti throughout 30 generations. Larvae susceptibility to larvicides and the activity of detoxifying enzymes were determined by bioassays and catalytic assays, respectively. The Rockefeller strain was the reference used for these evaluations. Results Bti exposure yielded an average of 74% mortality at each generation. Larvae assessed in seven time points throughout the 30 generations were susceptible to Bti crystal (resistance ratio RR ≤ 2.8) and to its individual toxins Cry11Aa and Cry4Ba (RR ≤ 4.1). Early signs of altered susceptibility to Cry11Aa were detected in the last evaluations, suggesting that this toxin was a marker of the selection pressure imposed. RecBti larvae were also susceptible (RR ≤ 1.6) to the other control agents, temephos and diflubenzuron. The activity of the detoxifying enzymes α- and β-esterases, glutathione-S-transferases and mixed-function oxidases was classified as unaltered in larvae from two generations (F19 and F25), except for a β-esterases increase in F25. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not evolve into resistance to the crystal, and no cross-resistance with temephos and diflubenzuron were recorded, which supports their sustainable use with Bti for integrated control practices. The unaltered activity of most detoxifying enzymes suggests that they might not play a major role in the metabolism of Bti toxins, therefore resistance by this mechanism is unlikely to occur. This study also highlights the need to establish suitable criteria to classify the status of larval susceptibility/resistance. Electronic supplementary material The online version of this article (10.1186/s13071-018-3246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | - Ana Paula Araújo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | | | | | | | | |
Collapse
|
15
|
Larval Exposure to the Bacterial Insecticide Bti Enhances Dengue Virus Susceptibility of Adult Aedes aegypti Mosquitoes. INSECTS 2018; 9:insects9040193. [PMID: 30558130 PMCID: PMC6316598 DOI: 10.3390/insects9040193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Understanding the interactions between pathogens sharing the same host can be complicated for holometabolous animals when larval and adult stages are exposed to distinct pathogens. In medically important insect vectors, the effect of pathogen exposure at the larval stage may influence susceptibility to human pathogens at the adult stage. We addressed this hypothesis in the mosquito Aedes aegypti, a major vector of arthropod-borne viruses (arboviruses), such as the dengue virus (DENV) and the chikungunya virus (CHIKV). We experimentally assessed the consequences of sub-lethal exposure to the bacterial pathogen Bacillus thuringiensis subsp. israelensis (Bti), during larval development, on arbovirus susceptibility at the adult stage in three Ae. aegypti strains that differ in their genetic resistance to Bti. We found that larval exposure to Bti significantly increased DENV susceptibility, but not CHIKV susceptibility, in the Bti-resistant strains. However, there was no major difference in the baseline arbovirus susceptibility between the Bti-resistant strains and their Bti-susceptible parental strain. Although the generality of our results remains to be tested with additional arbovirus strains, this study supports the idea that the outcome of an infection by a pathogen depends on other pathogens sharing the same host even when they do not affect the same life stage of the host. Our findings may also have implications for Bti as a mosquito biocontrol agent, indicating that the sub-optimal Bti efficacy may have counter-productive effects by increasing vector competence, at least for some combinations of arbovirus and mosquito strains.
Collapse
|
16
|
Transcriptomic Analysis of Aedes aegypti in Response to Mosquitocidal Bacillus thuringiensis LLP29 Toxin. Sci Rep 2018; 8:12650. [PMID: 30140020 PMCID: PMC6107635 DOI: 10.1038/s41598-018-30741-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
Globally, Aedes aegypti is one of the most dangerous mosquitoes that plays a crucial role as a vector for human diseases, such as yellow fever, dengue, and chikungunya. To identify (1) transcriptomic basis of midgut (2) key genes that are involved in the toxicity process by a comparative transcriptomic analysis between the control and Bacillus thuringiensis (Bt) toxin (LLP29 proteins)-treated groups. Next-generation sequencing technology was used to sequence the midgut transcriptome of A. aegypti. A total of 17130 unigenes, including 574 new unigenes, were identified containing 16358 (95.49%) unigenes that were functionally annotated. According to differentially expressed gene (DEG) analysis, 557 DEGs were annotated, including 226 upregulated and 231 downregulated unigenes in the Bt toxin-treated group. A total of 442 DEGs were functionally annotated; among these, 33 were specific to multidrug resistance, 6 were immune-system-related (Lectin, Defensin, Lysozyme), 28 were related to putative proteases, 7 were lipase-related, 8 were related to phosphatases, and 30 were related to other transporters. In addition, the relative expression of 28 DEGs was further confirmed through quantitative real time polymerase chain reaction. The results provide a transcriptomic basis for the identification and functional authentication of DEGs in A. aegypti.
Collapse
|
17
|
Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae. PLoS Negl Trop Dis 2017; 11:e0005273. [PMID: 28060822 PMCID: PMC5245907 DOI: 10.1371/journal.pntd.0005273] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/19/2017] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| | - Luca Valzania
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Kerri L. Coon
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| |
Collapse
|
18
|
Stalinski R, Laporte F, Després L, Tetreau G. Alkaline phosphatases are involved in the response ofAedes aegyptilarvae to intoxication withBacillus thuringiensissubsp.israelensis Cry toxins. Environ Microbiol 2016; 18:1022-36. [DOI: 10.1111/1462-2920.13186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Renaud Stalinski
- Laboratoire d'Ecologie Alpine LECA UMR5553; Université Grenoble Alpes; F-38000 Grenoble France
- Laboratoire d'Ecologie Alpine LECA UMR5553; Centre National de la Recherche Scientifique; F-38000 Grenoble France
| | - Frédéric Laporte
- Laboratoire d'Ecologie Alpine LECA UMR5553; Université Grenoble Alpes; F-38000 Grenoble France
- Laboratoire d'Ecologie Alpine LECA UMR5553; Centre National de la Recherche Scientifique; F-38000 Grenoble France
| | - Laurence Després
- Laboratoire d'Ecologie Alpine LECA UMR5553; Université Grenoble Alpes; F-38000 Grenoble France
- Laboratoire d'Ecologie Alpine LECA UMR5553; Centre National de la Recherche Scientifique; F-38000 Grenoble France
| | - Guillaume Tetreau
- Laboratoire d'Ecologie Alpine LECA UMR5553; Université Grenoble Alpes; F-38000 Grenoble France
- Laboratoire d'Ecologie Alpine LECA UMR5553; Centre National de la Recherche Scientifique; F-38000 Grenoble France
| |
Collapse
|
19
|
Canton PE, Cancino-Rodezno A, Gill SS, Soberón M, Bravo A. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis. BMC Genomics 2015; 16:1042. [PMID: 26645277 PMCID: PMC4673840 DOI: 10.1186/s12864-015-2240-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background Although much is known about the mechanism of action of Bacillus thuringiensis Cry toxins, the target tissue cellular responses to toxin activity is less understood. Previous transcriptomic studies indicated that significant changes in gene expression occurred during intoxication. However, most of these studies were done in organisms without a sequenced and annotated reference genome. A reference genome and transcriptome is available for the mosquito Aedes aegypti, and its importance as a disease vector has positioned its biological control as a primary health concern. Through RNA sequencing we sought to determine the transcriptional changes observed during intoxication by Cry11Aa in A. aegypti and to analyze possible defense and recovery mechanisms engaged after toxin ingestion. Results In this work the changes in the transcriptome of 4th instar A. aegypti larvae exposed to Cry11Aa toxin for 0, 3, 6, 9, and 12 h were analyzed. A total of 1060 differentially expressed genes after toxin ingestion were identified with two bioconductoR packages: DESeq2 and EdgeR. The most important transcriptional changes were observed after 9 or 12 h of toxin exposure. GO enrichment analysis of molecular function and biological process were performed as well as Interpro protein functional domains and pBLAST analyses. Up regulated processes include vesicular trafficking, small GTPase signaling, MAPK pathways, and lipid metabolism. In contrast, down regulated functions are related to transmembrane transport, detoxification mechanisms, cell proliferation and metabolism enzymes. Validation with RT-qPCR showed large agreement with Cry11Aa intoxication since these changes were not observed with untreated larvae or larvae treated with non-toxic Cry11Aa mutants, indicating that a fully functional pore forming Cry toxin is required for the observed transcriptional responses. Conclusions This study presents the first transcriptome of Cry intoxication response in a fully sequenced insect, and reveals possible conserved cellular processes that enable larvae to contend with Cry intoxication in the disease vector A. aegypti. We found some similarities of the mosquito responses to Cry11Aa toxin with previously observed responses to other Cry toxins in different insect orders and in nematodes suggesting a conserved response to pore forming toxins. Surprisingly some of these responses also correlate with transcriptional changes observed in Bti-resistant and Cry11Aa-resistant mosquito larvae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2240-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Emiliano Canton
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Angeles Cancino-Rodezno
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Distrito Federal, 04510, Mexico
| | - Sarjeet S Gill
- Cell Biology and Neuroscience Department, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mario Soberón
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| |
Collapse
|