1
|
van Dijk SN, Sadler DE, Watts PC, Uusi-Heikkilä S. Fisheries-induced life-history changes recover in experimentally harvested fish populations. Biol Lett 2024; 20:20240319. [PMID: 39503198 PMCID: PMC11539050 DOI: 10.1098/rsbl.2024.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 11/09/2024] Open
Abstract
Overfishing is one of the greatest threats to fish populations. Size-selective harvesting favours faster juvenile growth, younger maturation, small adult body size and low reproductive output. Such changes might be slow to recover and ultimately threaten population fitness and survival. To study the recovery potential of exploited experimental populations, we compared life-history traits in three differently size-selected experimental lines (large-selected, small-selected and random-selected) after five generations of harvesting and 10 subsequent generations of recovery (i.e. cessation of harvesting). We show that after a recovery period twice as long as the harvesting period, the differences in adult body size among the selection lines have eroded. While there was still a significant body size difference among the selection lines, this did not translate to differences in reproductive success. Although size-selective harvesting causes phenotypic changes in exploited fish populations, we show that such changes are reversible if the recovery period is long enough.
Collapse
Affiliation(s)
- Stephan N. van Dijk
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel E. Sadler
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Uusi‐Heikkilä S, Salonen JK, Karjalainen JS, Väisänen A, Hippeläinen J, Hämärvuo T, Kuparinen A. Fish with slow life-history cope better with chronic manganese exposure than fish with fast life-history. Ecol Evol 2024; 14:e70134. [PMID: 39119176 PMCID: PMC11307103 DOI: 10.1002/ece3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.
Collapse
Affiliation(s)
- Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Jouni K. Salonen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Juha S. Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Ari Väisänen
- Department of ChemistryUniversity of JyväskyläJyvaskylaFinland
| | - Johanna Hippeläinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Teemu Hämärvuo
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| |
Collapse
|
3
|
Ohlberger J, Cline TJ, Schindler DE, Lewis B. Declines in body size of sockeye salmon associated with increased competition in the ocean. Proc Biol Sci 2023; 290:20222248. [PMID: 36750195 PMCID: PMC9904942 DOI: 10.1098/rspb.2022.2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Declining body sizes have been documented for several species of Pacific salmon; however, whether size declines are caused mainly by ocean warming or other ecological factors, and whether they result primarily from trends in age at maturation or changing growth rates remain poorly understood. We quantified changes in mean body size and contributions from shifting size-at-age and age structure of mature sockeye salmon returning to Bristol Bay, Alaska, over the past 60 years. Mean length declined by 3%, corresponding to a 10% decline in mean body mass, since the early 1960s, though much of this decline occurred since the early 2000s. Changes in size-at-age were the dominant cause of body size declines and were more consistent than trends in age structure among the major rivers that flow into Bristol Bay. Annual variation in size-at-age was largely explained by competition among Bristol Bay sockeye salmon and interspecific competition with other salmon in the North Pacific Ocean. Warm winters were associated with better growth of sockeye salmon, whereas warm summers were associated with reduced growth. Our findings point to competition at sea as the main driver of sockeye salmon size declines, and emphasize the trade-off between fish abundance and body size.
Collapse
Affiliation(s)
- Jan Ohlberger
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Timothy J. Cline
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Daniel E. Schindler
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bert Lewis
- Alaska Department of Fish and Game, Commercial Fisheries Division, Anchorage, AK 99518, USA
| |
Collapse
|
4
|
Sbragaglia V, Roy T, Thörnqvist PO, López-Olmeda JF, Winberg S, Arlinghaus R. Evolutionary implications of size-selective mortality on the ontogenetic development of shoal cohesion: a neurochemical approach using a zebrafish, Danio rerio, harvest selection experiment. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Size-selective mortality may evolutionarily alter life-history as well as individual behavioral and physiological traits. Moreover, size-selective mortality can affect group behavioral traits, such as shoaling and collective properties (e.g., shoal cohesion), which are relevant for finding food and reducing risk of predation. Here, we present experimental evidence using selection lines of zebrafish (Danio rerio) that were exposed to positive (large-harvested), negative (small-harvested), and random (control) size-selective mortality for five generations, followed by eight generations during which harvesting was halted to remove maternal effects and to study evolutionarily fixed outcomes. We investigated changes in shoal cohesion and turnover in monoamines in zebrafish through ontogeny. To that end, we repeatedly measured inter-individual distance in groups of eight fish and the turnovers of dopamine and serotonin in brains of fish from juvenile to the adult stage at 40-day intervals. We, firstly, found that shoal cohesion was overall consistent through ontogeny at group levels suggesting the presence of collective personality. Secondly, we found a decrease in shoal cohesion through ontogeny in the small-harvested and control lines, while the large-harvested line did not show any ontogenetic change. Thirdly, the selection lines did not differ among each other in shoal cohesion at any ontogenetic stage. Fourthly, dopamine turnover increased through ontogeny in a similar way for all lines while the serotonin turnover decreased in the large-harvested and control lines, but not in the small-harvested line. The large-harvested line also had higher serotonin turnover than controls at specific time periods. In conclusion, intensive size-selective mortality left an evolutionary legacy of asymmetric selection responses in the ontogeny of shoal cohesion and the underlying physiological mechanisms in experimentally harvested zebrafish in the laboratory.
Significant statement
The evolution of animal behavior can be affected by human activities both at behavioral and physiological levels, but causal evidence is scarce and mostly focusing on single life-stages. We studied whether and to what extent size-selective harvesting, a common selection pattern in fisheries, can be an evolutionary driver of the development of shoal cohesion during ontogeny. We used a multi-generation experiment with zebrafish to study cause-and-effects of opposing size-selection patterns. We quantified shoal cohesion, and serotonin and dopamine turnover in the brain. We found that shoal cohesion emerged as a collective personality trait and that behavioral and physiological responses were asymmetrical with respect to the opposing selection patterns.
Collapse
|
5
|
Sbragaglia V, Klamser PP, Romanczuk P, Arlinghaus R. Evolutionary impact of size-selective harvesting on shoaling behavior: Individual-level mechanisms and possible consequences for natural and fishing mortality. Am Nat 2021; 199:480-495. [DOI: 10.1086/718591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Size Selective Harvesting Does Not Result in Reproductive Isolation among Experimental Lines of Zebrafish, Danio rerio: Implications for Managing Harvest-Induced Evolution. BIOLOGY 2021; 10:biology10020113. [PMID: 33557025 PMCID: PMC7913724 DOI: 10.3390/biology10020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Mortality in fish populations is commonly size-selective. In fisheries, larger fish are preferentially caught while natural predators preferentially consume smaller fish. Removal of certain sized fish from populations and elevated fishing mortality constitute a selection pressure which may change life-history, behaviour and reduce adult body-size. Because behaviour and body-size are related and influence mating preferences and reproductive output, size-selective mortality may favour subpopulations that less readily mate with each other. Our aim is to test this possibility using three experimental lines of zebrafish (Danio rerio) generated in laboratory by removing large-sized, small-sized and random-sized fish for five generations. We tested mating preferences among males and females and tested if they spawned together. We found males and females of all subpopulations to reproduce among themselves. Females generally preferred large-sized males. Females of all lines spawned with males, and males of all lines fertilised eggs of females independent of the subpopulation origin. Our study shows that size-selective mortality typical of fisheries or in populations facing heavy predation does not result in evolution of reproductive barriers. Thus, when populations adapted to fishing pressure come in contact with populations unexposed to such pressures, interbreeding may happen thereby helping exploited populations recover from harvest-induced evolution. Abstract Size-selective mortality is common in fish stocks. Positive size-selection happens in fisheries where larger size classes are preferentially targeted while gape-limited natural predation may cause negative size-selection for smaller size classes. As body size and correlated behavioural traits are sexually selected, harvest-induced trait changes may promote prezygotic reproductive barriers among selection lines experiencing differential size-selective mortality. To investigate this, we used three experimental lines of zebrafish (Danio rerio) exposed to positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We tested prezygotic preferences through choice tests and spawning trials. In the preference tests without controlling for body size, we found that females of all lines preferred males of the generally larger small-harvested line. When the body size of stimulus fish was statistically controlled, this preference disappeared and a weak evidence of line-assortative preference emerged, but only among large-harvested line fish. In subsequent spawning trials, we did not find evidence for line-assortative reproductive allocation in any of the lines. Our study suggests that size-selection due to fisheries or natural predation does not result in reproductive isolation. Gene flow between wild-populations and populations adapted to size-selected mortality may happen during secondary contact which can speed up trait recovery.
Collapse
|
7
|
Uusi-Heikkilä S. Implications of size-selective fisheries on sexual selection. Evol Appl 2020; 13:1487-1500. [PMID: 32684971 PMCID: PMC7359828 DOI: 10.1111/eva.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/26/2023] Open
Abstract
Fisheries often combine high mortality with intensive size selectivity and can, thus, be expected to reduce body size and size variability in exploited populations. In many fish species, body size is a sexually selected trait and plays an important role in mate choice and mate competition. Large individuals are often preferred as mates due to the high fecundity and resources they can provide to developing offspring. Large fish are also successful in competition for mates. Fisheries‐induced reductions in size and size variability can potentially disrupt mating systems and lower average reproductive success by decreasing opportunities for sexual selection. By reducing population sizes, fisheries can also lead to an increased level of inbreeding. Some fish species avoid reproducing with kin, and a high level of relatedness in a population can further disrupt mating systems. Reduced body size and size variability can force fish to change their mate preferences or reduce their choosiness. If mate preference is genetically determined, the adaptive response to fisheries‐induced changes in size and size variability might not occur rapidly. However, much evidence exists for plastic adjustments of mate choice, suggesting that fish might respond flexibly to changes in their social environment. Here, I first discuss how reduced average body size and size variability in exploited populations might affect mate choice and mate competition. I then consider the effects of sex‐biased fisheries on mating systems. Finally, I contemplate the possible effects of inbreeding on mate choice and reproductive success and discuss how mate choice might evolve in exploited populations. Currently, little is known about the mating systems of nonmodel species and about the interplay between size‐selective fisheries and sexual selection. Future studies should focus on how reduced size and size variability and increased inbreeding affect fish mating systems, how persistent these effects are, and how this might in turn affect population demography.
Collapse
Affiliation(s)
- Silva Uusi-Heikkilä
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
8
|
Sørdalen TK, Halvorsen KT, Harrison HB, Ellis CD, Vøllestad LA, Knutsen H, Moland E, Olsen EM. Harvesting changes mating behaviour in European lobster. Evol Appl 2018; 11:963-977. [PMID: 29928303 PMCID: PMC5999211 DOI: 10.1111/eva.12611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Removing individuals from a wild population can affect the availability of prospective mates and the outcome of competitive interactions, with subsequent effects on mating patterns and sexual selection. Consequently, the rate of harvest-induced evolution is predicted to be strongly dependent on the strength and dynamics of sexual selection, yet there is limited empirical knowledge on the interplay between selective harvesting and the mating systems of exploited species. In this study, we used genetic parentage assignment to compare mating patterns of the highly valued and overexploited European lobster (Homarus gammarus) in a designated lobster reserve and nearby fished area in southern Norway. In the area open to fishing, the fishery is regulated by a closed season, a minimum legal size and a ban on the harvest of egg-bearing females. Due to the differences in size and sex-specific fishing mortality between the two areas, males and females are of approximately equal average size in the fished area, whereas males tend to be larger in the reserve. Our results show that females would mate with males larger than their own body size, but the relative size difference was significantly larger in the reserve. Sexual selection acted positively on both body size and claw size in males in the reserve, while it was nonsignificant in fished areas. This strongly suggests that size truncation of males by fishing reduces the variability of traits that sexual selection acts upon. If fisheries continue to target large individuals (particularly males) with higher relative reproductive success, the weakening of sexual selection will likely accelerate fisheries-induced evolution towards smaller body size.
Collapse
Affiliation(s)
- Tonje K. Sørdalen
- Department of BiologyCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
- Department of Natural SciencesCentre for Coastal Research (CCR)University of AgderKristiansandNorway
- Institute of Marine ResearchHisNorway
| | | | - Hugo B. Harrison
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | | | - Leif Asbjørn Vøllestad
- Department of BiologyCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
| | - Halvor Knutsen
- Department of Natural SciencesCentre for Coastal Research (CCR)University of AgderKristiansandNorway
- Institute of Marine ResearchHisNorway
| | - Even Moland
- Department of Natural SciencesCentre for Coastal Research (CCR)University of AgderKristiansandNorway
- Institute of Marine ResearchHisNorway
| | - Esben M. Olsen
- Department of Natural SciencesCentre for Coastal Research (CCR)University of AgderKristiansandNorway
- Institute of Marine ResearchHisNorway
| |
Collapse
|
9
|
Wilson KL, Honsey AE, Moe B, Venturelli P. Growing the biphasic framework: Techniques and recommendations for fitting emerging growth models. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyle L. Wilson
- Department of Biological SciencesUniversity of Calgary Calgary AB Canada
| | - Andrew E. Honsey
- Ecology, Evolution, and Behavior Graduate ProgramUniversity of Minnesota St. Paul MN USA
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of Minnesota Saint Paul MN USA
| | - Brian Moe
- Coastal and Marine LaboratoryFlorida State University St. Teresa FL USA
| | | |
Collapse
|
10
|
Kindsvater HK, Palkovacs EP. Predicting Eco-evolutionary Impacts of Fishing on Body Size and Trophic Role of Atlantic Cod. COPEIA 2017. [DOI: 10.1643/ot-16-533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat Ecol Evol 2017; 1:188. [PMID: 28812591 DOI: 10.1038/s41559-017-0188] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/10/2017] [Indexed: 11/09/2022]
Abstract
Predicting population declines is a key challenge in the face of global environmental change. Abundance-based early warning signals have been shown to precede population collapses; however, such signals are sensitive to the low reliability of abundance estimates. Here, using historical data on whales harvested during the 20th century, we demonstrate that early warning signals can be present not only in the abundance data, but also in the more reliable body size data of wild populations. We show that during the period of commercial whaling, the mean body size of caught whales declined dramatically (by up to 4 m over a 70-year period), leading to early warning signals being detectable up to 40 years before the global collapse of whale stocks. Combining abundance and body size data can reduce the length of the time series required to predict collapse, and decrease the chances of false positive early warning signals.
Collapse
|