1
|
Abil Z, Restrepo Sierra AM, Stan AR, Châne A, Del Prado A, de Vega M, Rondelez Y, Danelon C. Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell. Nat Commun 2024; 15:9091. [PMID: 39433731 PMCID: PMC11494085 DOI: 10.1038/s41467-024-53226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging. We hereby emulate in liposome compartments the principles according to which life propagates information and evolves. Using two different experimental configurations supporting intermittent or semi-continuous evolution (i.e., with or without DNA extraction, PCR, and re-encapsulation), we demonstrate sustainable replication of a linear DNA template - encoding the DNA polymerase and terminal protein from the Phi29 bacteriophage - expressed in the 'protein synthesis using recombinant elements' (PURE) system. The self-replicator can survive across multiple rounds of replication-coupled transcription-translation reactions in liposomes and, within only ten evolution rounds, accumulates mutations conferring a selection advantage. Combined data from next-generation sequencing with reverse engineering of some of the enriched mutations reveal nontrivial and context-dependent effects of the introduced mutations. The present results are foundational to build up genetic complexity in an evolving synthetic cell, as well as to study evolutionary processes in a minimal cell-free system.
Collapse
Affiliation(s)
- Zhanar Abil
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
- Department of Biology, University of Florida, 882 Newell Dr, Gainesville, USA
| | - Ana María Restrepo Sierra
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Andreea R Stan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Amélie Châne
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Alicia Del Prado
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera, 1, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera, 1, Madrid, Spain
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, 10 rue Vauquelin, Paris, France
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
2
|
Heinen L, van den Noort M, King MS, Kunji ERS, Poolman B. Synthetic syntrophy for adenine nucleotide cross-feeding between metabolically active nanoreactors. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01811-1. [PMID: 39433918 DOI: 10.1038/s41565-024-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Living systems depend on continuous energy input for growth, replication and information processing. Cells use membrane proteins as nanomachines to convert light or chemical energy of nutrients into other forms of energy, such as ion gradients or adenosine triphosphate (ATP). However, engineering sustained fuel supply and metabolic energy conversion in synthetic systems is challenging. Here, inspired by endosymbionts that rely on the host cell for their nutrients, we introduce the concept of cross-feeding to exchange ATP and ADP between lipid-based compartments hundreds of nanometres in size. One population of vesicles enzymatically produces ATP in the mM concentration range and exports it. A second population of vesicles takes up this ATP to fuel internal reactions. The produced ADP feeds back to the first vesicles, and ATP-dependent reactions can be fuelled sustainably for up to at least 24 h. The vesicles are a platform technology to fuel ATP-dependent processes in a sustained fashion, with potential applications in synthetic cells and nanoreactors. Fundamentally, the vesicles enable studying non-equilibrium processes in an energy-controlled environment and promote the development and understanding of constructing life-like metabolic systems on the nanoscale.
Collapse
Affiliation(s)
- Laura Heinen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
- DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany.
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Brodszkij E, Ryberg C, Lyons JA, Juhl DW, Nielsen NC, Sigalas NI, Lyulin AV, Pedersen JS, Städler B. Poly(Sitosterol)-Based Hydrophobic Blocks in Amphiphilic Block Copolymers for the Assembly of Hybrid Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401934. [PMID: 38860565 DOI: 10.1002/smll.202401934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Amphiphilic block copolymer and lipids can be assembled into hybrid vesicles (HVs), which are an alternative to liposomes and polymersomes. Block copolymers that have either poly(sitostryl methacrylate) or statistical copolymers of sitosteryl methacrylate and butyl methacrylate as the hydrophobic part and a poly(carboxyethyl acrylate) hydrophilic segment are synthesized and characterized. These block copolymers assemble into small HVs with soybean L-α-phosphatidylcholine (soyPC), confirmed by electron microscopy and small-angle X-ray scattering. The membrane's hybrid nature is illustrated by fluorescence resonance energy transfer between labeled building blocks. The membrane packing, derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe, is comparable between small HVs and the corresponding liposomes with molecular sitosterol, although the former show indications of transmembrane asymmetry. Giant HVs with homogenous distribution of the block copolymers and soyPC in their membranes are assembled using the electroformation method. The lateral diffusion of both building blocks is slowed down in giant HVs with higher block copolymer content, but their permeability toward (6)-carboxy-X-rhodamine is higher compared to giant vesicles made of soyPC and molecular sitosterol. This fundamental effort contributes to the rapidly expanding understanding of the integration of natural membrane constituents with designed synthetic compounds to form hybrid membranes.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Cecilie Ryberg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Joseph A Lyons
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Dennis Wilkens Juhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Nikolaos I Sigalas
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Alexey V Lyulin
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
4
|
Li Y, Li S, Scheerstra JF, Patiño T, van Hest JCM, Abdelmohsen LKEA. Engineering Functional Particles to Modulate T Cell Responses. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1048-1058. [PMID: 39359649 PMCID: PMC11443481 DOI: 10.1021/accountsmr.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/04/2024]
Abstract
T cells play a critical role in adaptive immune responses. They work with other immune cells such as B cells to protect our bodies when the first line of defense, the innate immune system, is overcome by certain infectious diseases or cancers. Studying and regulating the responses of T cells, such as activation, proliferation, and differentiation, helps us understand not only their behavior in vivo but also their translation and application in the field of immunotherapy, such as adoptive T cell therapy and immune checkpoint therapy, the situations in which T cells cannot fight cancer alone and require external engineering regulation to help them. Nano- to micrometer-sized particulate biomaterials have achieved great progress in the assistance of T cell-based immunomodulation. For example, various types of microparticles decorated with T cell recognition and activation signals to mimic native antigen-presenting cells have shown successful ex vivo expansion of primary T cells and have been approved for clinical use in adoptive T cell therapy. Functional particles can also serve as vehicles for transporting cargos including small molecule drugs, cytokines, and antibodies. Especially for cargos with limited bioavailability and high repeat-dose toxicity, systemic administration in their free form is difficult. By using particle-assisted systems, the delivery can be tailored on demand, of which targeting and controlled release are two typical examples, ultimately aiding in the regulation of T cell responses. Furthermore, when T cells become overactive and behave in ways that contradict our expectations, such as attacking our own cells or innocuous foreign molecules, this can lead to a breakdown of immune tolerance. In such cases, particles to help reprogram those overactive T cells or suppress their activity are appreciated in vivo. The urgent need to introduce immune stimulation into the treatment of cancers, infectious diseases, and autoimmune diseases has driven recent advances in the engineering of functional particulate biomaterials that regulate T cell responses. In this Account, we will first cover a brief overview of the process of T cell-based immunomodulation from principle to development. It then outlines critical points in the design of functional particle platforms, including materials, size, morphology, surface engineering, and delivery of cargos, to modulate the features of T cells, and introduces selected work from our and other research groups with a focus on three major therapeutic applications: adoptive T cell therapy, immune checkpoint therapy, and immune tolerance restoration. Current challenges and future opportunities are also discussed.
Collapse
Affiliation(s)
- Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shukun Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tania Patiño
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Ganesh RB, Maerkl SJ. Towards Self-regeneration: Exploring the Limits of Protein Synthesis in the Protein Synthesis Using Recombinant Elements (PURE) Cell-free Transcription-Translation System. ACS Synth Biol 2024; 13:2555-2566. [PMID: 39066734 DOI: 10.1021/acssynbio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Self-regeneration is a key function of living systems that needs to be recapitulated in vitro to create a living synthetic cell. A major limiting factor for protein self-regeneration in the PURE cell-free transcription-translation system is its high protein concentration, which far exceeds the system's protein synthesis rate. Here, we were able to drastically reduce the nonribosomal PURE protein concentration up to 97.3% while increasing protein synthesis efficiency. Although crowding agents were not effective in the original PURE formulation, we found that in highly dilute PURE formulations, addition of 6% dextran considerably increased protein synthesis rate and total protein yield. These new PURE formulations will be useful for many cell-free synthetic biology applications, and we estimate that PURE can now support the complete self-regeneration of all 36 nonribosomal proteins, which is a critical step toward the development of a universal biochemical constructor and living synthetic cell.
Collapse
Affiliation(s)
- Ragunathan B Ganesh
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Helenek C, Krzysztoń R, Petreczky J, Wan Y, Cabral M, Coraci D, Balázsi G. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chem Biol 2024; 31:1447-1459. [PMID: 38925113 PMCID: PMC11330362 DOI: 10.1016/j.chembiol.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Directed evolution focuses on optimizing single genetic components for predefined engineering goals by artificial mutagenesis and selection. In contrast, experimental evolution studies the adaptation of entire genomes in serially propagated cell populations, to provide an experimental basis for evolutionary theory. There is a relatively unexplored gap at the middle ground between these two techniques, to evolve in vivo entire synthetic gene circuits with nontrivial dynamic function instead of single parts or whole genomes. We discuss the requirements for such mid-scale evolution, with hypothetical examples for evolving synthetic gene circuits by appropriate selection and targeted shuffling of a seed set of genetic components in vivo. Implementing similar methods should aid the rapid generation, functionalization, and optimization of synthetic gene circuits in various organisms and environments, accelerating both the development of biomedical and technological applications and the understanding of principles guiding regulatory network evolution.
Collapse
Affiliation(s)
- Christopher Helenek
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rafał Krzysztoń
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Petreczky
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yiming Wan
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariana Cabral
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Damiano Coraci
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
8
|
Mori M, Sugai H, Sato K, Okada A, Matsuo T, Kinbara K. A bioinspired bifunctional catalyst: an amphiphilic organometallic catalyst for ring-closing metathesis forming liquid droplets in aqueous media. Chem Commun (Camb) 2024; 60:7979-7982. [PMID: 38976255 DOI: 10.1039/d4cc01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Inspired by phase-separated biopolymers with enzymatic activity, we developed an amphiphilic catalyst consisting of alternating hydrophilic oligo(ethylene glycol) and hydrophobic aromatic units bearing a Hoveyda-Grubbs catalyst center (MAHGII). MAHGII served as both a droplet-forming scaffold and a catalyst for ring-closing metathesis reactions, providing a new biomimetic system that promotes organic reactions in an aqueous environment.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiroka Sugai
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Asuki Okada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Brodszkij E, Städler B. Advances in block copolymer-phospholipid hybrid vesicles: from physical-chemical properties to applications. Chem Sci 2024; 15:10724-10744. [PMID: 39027291 PMCID: PMC11253165 DOI: 10.1039/d4sc01444h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
Hybrid vesicles, made of lipids and amphiphilic block copolymers, have become increasingly popular thanks to their versatile properties that enable the construction of intricate membranes mimicking cellular structures. This tutorial review gives an overview over the different hybrid vesicle designs, and provides a detailed analysis of their properties, including their composition, membrane fluidity, membrane homogeneity, permeability, stability. The review puts emphasis on the application of these hybrid vesicles in bottom-up synthetic biology and aims to offer an overview of design guidelines, particularly focusing on composition, to eventually realize the intended applications of these hybrid vesicles.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustave Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
10
|
Carels N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. BIOLOGY 2024; 13:482. [PMID: 39056677 PMCID: PMC11274087 DOI: 10.3390/biology13070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
RNA-seq faces persistent challenges due to the ongoing, expanding array of data processing workflows, none of which have yet achieved standardization to date. It is imperative to determine which method most effectively preserves biological facts. Here, we used Shannon entropy as a tool for depicting the biological status of a system. Thus, we assessed the measurement of Shannon entropy by several RNA-seq workflow approaches, such as DESeq2 and edgeR, but also by combining nine normalization methods with log2 fold change on paired samples of TCGA RNA-seq representing datasets of 515 patients and spanning 12 different cancer types with 5-year overall survival rates ranging from 20% to 98%. Our analysis revealed that TPM, RLE, and TMM normalization, coupled with a threshold of log2 fold change ≥1, for identifying differentially expressed genes, yielded the best results. We propose that Shannon entropy can serve as an objective metric for refining the optimization of RNA-seq workflows and mRNA sequencing technologies.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
11
|
Spitzer J. Physicochemical origins of prokaryotic and eukaryotic organisms. J Physiol 2024; 602:2383-2394. [PMID: 37226840 DOI: 10.1113/jp284428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Origins research currently rests on a vitalistic foundation and requires reconceptualization. From a cellular perspective, prokaryotic cells grow and divide in stable, colloidal processes, throughout which the cytoplasm remains crowded (concentrated) with closely interacting proteins and nucleic acids. Their functional stability is ensured by repulsive and attractive non-covalent forces, especially van der Waals forces, screened electrostatic forces, and hydrogen bonding (hydration and the hydrophobic effect). On average, biomacromolecules are crowded at above 15% volume fraction, surrounded by up to 3 nm layer of aqueous electrolyte at ionic strength above 0.01 molar; they are energized by biochemical reactions coupled to nutrient environments. During cellular growth, non-covalent molecular forces and biochemical reactions stabilize the cytoplasm as a two-phase, colloidal system comprising vectorially structured cytogel and dilute cytosol. From a geochemical perspective, Earth's rotation kept prebiotic molecules in continuous cyclic disequilibria in Usiglio-type intertidal pools, rich in potassium and magnesium ions, the last cations to precipitate from evaporatig seawater. These ions impart biochemical functionality to extant proteins and RNAs. The prebiotic molecules were repeatedly purified by phase separation in response to tidal drying and rewetting; they were chemically evolving as briny, carbonaceous inclusions in tidal sediments until the crowding transition allowed chemical evolution to proceeed toward Woesian progenotes, the Last Universal Common Ancestors (LUCAs) and the first prokaryotes. These cellular and geochemical processes are summarized as a jigsaw puzzle of the emerging and evolving prokaryotes. Their unavoidable cyclic fusions and rehydrations along Archaean coastlines initiated the emergence of complex Precambrian eukaryotes.
Collapse
|
12
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Mougkogiannis P, Adamatzky A. Proto-neural networks from thermal proteins. Biochem Biophys Res Commun 2024; 709:149725. [PMID: 38579617 DOI: 10.1016/j.bbrc.2024.149725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 04/07/2024]
Abstract
Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.
Collapse
|
14
|
Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Adv Healthc Mater 2024; 13:e2303699. [PMID: 38277695 DOI: 10.1002/adhm.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.
Collapse
Affiliation(s)
- Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Lars J M M Paffen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
15
|
Gustavsson L, Peng B, Plamont R, Ikkala O. Propulsion of zwitterionic surfactant-stabilized water-in-oil droplets by low electric fields. Chem Commun (Camb) 2024; 60:4467-4470. [PMID: 38563781 PMCID: PMC11025442 DOI: 10.1039/d3cc05464k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
We show directional and controllable propulsion of zwitterionic surfactant-stabilized water-in-oil droplets driven by low electric fields. Our results suggest that the propulsion mechanism is based on stimulus-responsive on-demand interfacial phenomena.
Collapse
Affiliation(s)
- Lotta Gustavsson
- Department of Applied Physics, Aalto University, Espoo FI-02150, Finland.
- Center of Excellence in Life Inspired Hybrid Materials (LIBER), Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, Espoo FI-02150, Finland.
- Center of Excellence in Life Inspired Hybrid Materials (LIBER), Finland
| | - Rémi Plamont
- Department of Applied Physics, Aalto University, Espoo FI-02150, Finland.
- Center of Excellence in Life Inspired Hybrid Materials (LIBER), Finland
- Institut Charles Sadron - CNRS - UPR22, BP 84047, Strasbourg 67034 Cedex 2, France.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo FI-02150, Finland.
- Center of Excellence in Life Inspired Hybrid Materials (LIBER), Finland
| |
Collapse
|
16
|
Qutbuddin Y, Guinart A, Gavrilović S, Al Nahas K, Feringa BL, Schwille P. Light-Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311176. [PMID: 38215457 DOI: 10.1002/adma.202311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/14/2024]
Abstract
Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Svetozar Gavrilović
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Kareem Al Nahas
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
17
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
18
|
Rozhkov S, Goryunov A, Rozhkova N. Molecular Serum Albumin Unmask Nanobio Properties of Molecular Graphenes in Shungite Carbon Nanoparticles. Int J Mol Sci 2024; 25:2465. [PMID: 38473711 DOI: 10.3390/ijms25052465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids. Being acceptors of electrons and ligands, ShC NPs are capable of exhibiting both their own biological activity and significantly affecting conformational and phase transformations in protein systems.
Collapse
Affiliation(s)
- Sergey Rozhkov
- Institute of Biology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| | - Andrey Goryunov
- Institute of Biology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| | - Natalia Rozhkova
- Institute of Geology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| |
Collapse
|
19
|
Sampson K, Sorenson C, Adamala KP. Preparing for the future of precision medicine: synthetic cell drug regulation. Synth Biol (Oxf) 2024; 9:ysae004. [PMID: 38327596 PMCID: PMC10849770 DOI: 10.1093/synbio/ysae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Synthetic cells are a novel class of cell-like bioreactors, offering the potential for unique advancements in synthetic biology and biomedicine. To realize the potential of those technologies, synthetic cell-based drugs need to go through the drug approval pipeline. Here, we discussed several regulatory challenges, both unique to synthetic cells, as well as challenges typical for any new biomedical technology. Overcoming those difficulties could bring transformative therapies to the market and will create a path to the development and approval of cutting-edge synthetic biology therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Kira Sampson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Carlise Sorenson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
21
|
Heili JM, Stokes K, Gaut NJ, Deich C, Sharon J, Hoog T, Gomez-Garcia J, Cash B, Pawlak MR, Engelhart AE, Adamala KP. Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells. Cell Syst 2024; 15:49-62.e4. [PMID: 38237551 DOI: 10.1016/j.cels.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Joseph M Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kaitlin Stokes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Tanner Hoog
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jose Gomez-Garcia
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew R Pawlak
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Sugii S, Hagino K, Mizuuchi R, Ichihashi N. Cell-free expression of RuBisCO for ATP production in the synthetic cells. Synth Biol (Oxf) 2023; 8:ysad016. [PMID: 38149045 PMCID: PMC10750972 DOI: 10.1093/synbio/ysad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Recent advances in bottom-up synthetic biology have made it possible to reconstitute cellular systems from non-living components, yielding artificial cells with potential applications in industry, medicine and basic research. Although a variety of cellular functions and components have been reconstituted in previous studies, sustained biological energy production remains a challenge. ATP synthesis via ribulose-1,5-diphosphate carboxylase/oxygenase (RuBisCO), a central enzyme in biological CO2 fixation, holds potential as an energy production system, but its feasibility in a cell-free expression system has not yet been tested. In this study, we test RuBisCO expression and its activity-mediated ATP synthesis in a reconstituted Escherichia coli-based cell-free translation system. We then construct a system in which ATP is synthesized by RuBisCO activity in giant vesicles and used as energy for translation reactions. These results represent an advance toward independent energy production in artificial cells. Graphical Abstract.
Collapse
Affiliation(s)
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
- JST FOREST, Kawaguchi, Saitama 332-0012, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- College of Arts and Science, the University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| |
Collapse
|
23
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
24
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Sümbelli Y, Mason AF, van Hest JCM. Toward Artificial Cell-Mediated Tissue Engineering: A New Perspective. Adv Biol (Weinh) 2023; 7:e2300149. [PMID: 37565690 DOI: 10.1002/adbi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023]
Abstract
The fast-growing pace of regenerative medicine research has allowed the development of a range of novel approaches to tissue engineering applications. Until recently, the main points of interest in the majority of studies have been to combine different materials to control cellular behavior and use different techniques to optimize tissue formation, from 3-D bioprinting to in situ regeneration. However, with the increase of the understanding of the fundamentals of cellular organization, tissue development, and regeneration, has also come the realization that for the next step in tissue engineering, a higher level of spatiotemporal control on cell-matrix interactions is required. It is proposed that the combination of artificial cell research with tissue engineering could provide a route toward control over complex tissue development. By equipping artificial cells with the underlying mechanisms of cellular functions, such as communication mechanisms, migration behavior, or the coherent behavior of cells depending on the surrounding matrix properties, they can be applied in instructing native cells into desired differentiation behavior at a resolution not to be attained with traditional matrix materials.
Collapse
Affiliation(s)
- Yiğitcan Sümbelli
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Alexander F Mason
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan C M van Hest
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| |
Collapse
|
26
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
27
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
28
|
Westensee IN, Städler B. Artificial cells eavesdropping on HepG2 cells. Interface Focus 2023; 13:20230007. [PMID: 37577001 PMCID: PMC10415741 DOI: 10.1098/rsfs.2023.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalian cells requires feedback-based interactions. Here, we illustrate that ACs can eavesdrop on HepG2 cells focusing on the activity of cytochrome P450 1A2 (CYP1A2), an enzyme from the cytochrome P450 enzyme family. Specifically, d-cysteine is sent as a signal from the ACs via the triggered reduction of disulfide bonds. Simultaneously, HepG2 cells enzymatically convert 2-cyano-6-methoxybenzothiazole into 2-cyano-6-hydroxybenzothiazole that is released in the extracellular space. d-Cysteine and 2-cyano-6-hydroxybenzothiazole react to form d-luciferin. The ACs respond to this signal by converting d-luciferin into luminescence due to the presence of encapsulated luciferase in the ACs. As a result, the ACs can eavesdrop on the mammalian cells to evaluate the level of hepatic CYP1A2 function.
Collapse
Affiliation(s)
- Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
29
|
Maerkl SJ. On biochemical constructors and synthetic cells. Interface Focus 2023; 13:20230014. [PMID: 37577005 PMCID: PMC10415740 DOI: 10.1098/rsfs.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 08/15/2023] Open
Abstract
Is it possible to build life? More specifically, is it possible to create a living synthetic cell from inanimate building blocks? This question precipitated into one of the most significant grand challenges in biochemistry and synthetic biology, with several large research consortia forming around this endeavour in Europe (European Synthetic Cell Initiative), the USA (Build-a-Cell Initiative) and Japan (Japanese Society for Cell Synthesis Research). The mature field of biochemistry, the advent of synthetic biology in the early 2000s, and the burgeoning field of cell-free synthetic biology made it feasible to tackle this grand challenge.
Collapse
Affiliation(s)
- Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
| |
Collapse
|
30
|
Yin Z, Gao N, Xu C, Li M, Mann S. Autonomic Integration in Nested Protocell Communities. J Am Chem Soc 2023. [PMID: 37369121 DOI: 10.1021/jacs.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The self-driven organization of model protocells into higher-order nested cytomimetic systems with coordinated structural and functional relationships offers a step toward the autonomic implementation of artificial multicellularity. Here, we describe an endosymbiotic-like pathway in which proteinosomes are captured within membranized alginate/silk fibroin coacervate vesicles by guest-mediated reconfiguration of the host protocells. We demonstrate that interchange of coacervate vesicle and droplet morphologies through proteinosome-mediated urease/glucose oxidase activity produces discrete nested communities capable of integrated catalytic activity and selective disintegration. The self-driving capacity is modulated by an internalized fuel-driven process using starch hydrolases sequestered within the host coacervate phase, and structural stabilization of the integrated protocell populations can be achieved by on-site enzyme-mediated matrix reinforcement involving dipeptide supramolecular assembly or tyramine-alginate covalent cross-linking. Our work highlights a semi-autonomous mechanism for constructing symbiotic cell-like nested communities and provides opportunities for the development of reconfigurable cytomimetic materials with structural, functional, and organizational complexity.
Collapse
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ning Gao
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Can Xu
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
31
|
Ahn SH, Borden LK, Bentley WE, Raghavan SR. Cell-Like Capsules with "Smart" Compartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206693. [PMID: 36895073 DOI: 10.1002/smll.202206693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Indexed: 06/08/2023]
Abstract
Eukaryotic cells have inner compartments (organelles), each with distinct properties and functions. One mimic of this architecture, based on biopolymers, is the multicompartment capsule (MCC). Here, MCCs in which the inner compartments are chemically unique and "smart," i.e., responsive to distinct stimuli in an orthogonal manner are created. Specifically, one compartment alone is induced to degrade when the MCC is contacted with an enzyme while other compartments remain unaffected. Similarly, just one compartment gets degraded upon contact with reactive oxygen species generated from hydrogen peroxide (H2 O2 ). And thirdly, one compartment alone is degraded by an external, physical stimulus, namely, by irradiating the MCC with ultraviolet (UV) light. All these specific responses are achieved without resorting to complicated chemistry to create the compartments: the multivalent cation used to crosslink the biopolymer alginate (Alg) is simply altered. Compartments of Alg crosslinked by Ca2+ are shown to be sensitive to enzymes (alginate lyases) but not to H2 O2 or UV, whereas the reverse is the case with Alg/Fe3+ compartments. These results imply the ability to selectively burst open a compartment in an MCC "on-demand" (i.e., as and when needed) and using biologically relevant stimuli. The results are then extended to a sequential degradation, where compartments in an MCC are degraded one after another, leaving behind an empty MCC lumen. Collectively, this work advances the MCC as a platform that not only emulates key features of cellular architecture, but can also begin to capture rudimentary cell-like behaviors.
Collapse
Affiliation(s)
- So Hyun Ahn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Leah K Borden
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
32
|
Powers J, Jang Y. Temperature-responsive membrane permeability of recombinant fusion protein vesicles. SOFT MATTER 2023; 19:3273-3280. [PMID: 37089115 DOI: 10.1039/d3sm00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we investigate the changes in the permeability of the recombinant fusion protein vesicles with different membrane structures as a function of solution temperature. The protein vesicles are self-assembled from recombinant fusion protein complexes composed of an mCherry fused with a glutamic acid-rich leucine zipper and a counter arginine-rich leucine zipper fused with an elastin-like polypeptide (ELP). We have found that the molecular weight cut-off (MWCO) of the protein vesicle membranes varies inversely with solution temperature by monitoring the transport of fluorescent-tagged dextran dyes with different molecular weights. The temperature-responsiveness of the protein vesicle membranes is obtained from the lower critical solution temperature behavior of ELP in the protein building blocks. Consequently, the unique vesicle membrane structures with different single-layered and double-layered ELP organizations impact the sensitivity of the permeability responses of the protein vesicles. Single-layered protein vesicles with the ELP domains facing the interior show more drastic permeability changes as a function of temperature than double-layered protein vesicles in which ELP blocks are buried inside the membranes. This work about the temperature-responsive membrane permeability of unique protein vesicles will provide design guidelines for new biomaterials and their applications, such as drug delivery and synthetic protocell development.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| |
Collapse
|
33
|
Hagino K, Ichihashi N. In Vitro Transcription/Translation-Coupled DNA Replication through Partial Regeneration of 20 Aminoacyl-tRNA Synthetases. ACS Synth Biol 2023; 12:1252-1263. [PMID: 37053032 DOI: 10.1021/acssynbio.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The in vitro reconstruction of life-like self-reproducing systems is a major challenge in in vitro synthetic biology. Self-reproduction requires regeneration of all molecules involved in DNA replication, transcription, and translation. This study demonstrated the continuous DNA replication and partial regeneration of major translation factors, 20 aminoacyl-tRNA synthetases (aaRS), in a reconstituted transcription/translation system (PURE system) for the first time. First, we replicated each DNA that encodes one of the 20 aaRSs through aaRS expression from the DNA by serial transfer experiments. Thereafter, we successively increased the number of aaRS genes and achieved simultaneous, continuous replication of DNA that encodes all 20 aaRSs, which comprised approximately half the number of protein factors in the PURE system, except for ribosomes, by employing dialyzed reaction and sequence optimization. This study provides a step-by-step methodology for continuous DNA replication with an increasing number of self-regenerative genes toward self-reproducing artificial systems.
Collapse
Affiliation(s)
- Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
34
|
Berli CLA, Bellino MG. Toward droplets displaying life-like interaction behaviors. BIOMICROFLUIDICS 2023; 17:021302. [PMID: 37056636 PMCID: PMC10089683 DOI: 10.1063/5.0142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Developments in synthetic biology usually bring the conception of individual artificial cells. A key feature of living systems is, however, the interaction between individuals, in which living units can interact autonomously and display a role differentiation such as the case of entities chasing each other. On the other hand, droplets have become a very useful and exciting medium for modern microengineering and biomedical technologies. In this Perspective, we show a brief discussion-outlook of different approaches to recreate predator-prey interactions in both swimmer and crawling droplet systems toward a new generation of synthetic life with impact in both fundamental insights and relevant applications.
Collapse
Affiliation(s)
- Claudio L. A. Berli
- INTEC (Universidad Nacional del Litoral-CONICET) Predio CCT CONICET Santa Fe, RN 168, 3000 Santa Fe, Argentina
| | - Martín G. Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
| |
Collapse
|
35
|
Park H, Wang W, Min SH, Ren Y, Shin K, Han X. Artificial organelles for sustainable chemical energy conversion and production in artificial cells: Artificial mitochondrion and chloroplasts. BIOPHYSICS REVIEWS 2023; 4:011311. [PMID: 38510162 PMCID: PMC10903398 DOI: 10.1063/5.0131071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Sustainable energy conversion modules are the main challenges for building complex reaction cascades in artificial cells. Recent advances in biotechnology have enabled this sustainable energy supply, especially the adenosine triphosphate (ATP), by mimicking the organelles, which are the core structures for energy conversion in living cells. Three components are mainly shared by the artificial organelles: the membrane compartment separating the inner and outer parts, membrane proteins for proton translocation, and the molecular rotary machine for ATP synthesis. Depending on the initiation factors, they are further categorized into artificial mitochondrion and artificial chloroplasts, which use chemical nutrients for oxidative phosphorylation and light for photosynthesis, respectively. In this review, we summarize the essential components needed for artificial organelles and then review the recent progress on two different artificial organelles. Recent strategies, purified and identified proteins, and working principles are discussed. With more study on the artificial mitochondrion and artificial chloroplasts, they are expected to be very powerful tools, allowing us to achieve complex cascading reactions in artificial cells, like the ones that happen in real cells.
Collapse
Affiliation(s)
- Hyun Park
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Seo Hyeon Min
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
36
|
Ragazzon G, Malferrari M, Arduini A, Secchi A, Rapino S, Silvi S, Credi A. Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy. Angew Chem Int Ed Engl 2023; 62:e202214265. [PMID: 36422473 PMCID: PMC10107654 DOI: 10.1002/anie.202214265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.
Collapse
Affiliation(s)
- Giulio Ragazzon
- Institut de Science et d'Ingégnierie Supramoléculaires (ISIS) UMR 7006, University of Strasbourg, CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Marco Malferrari
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
37
|
Ahn SH, Karlsson AJ, Bentley WE, Raghavan SR. Capsules with bacteria and fungi in distinct compartments: A platform for studying microbes from different kingdoms and their cross-communication. PLoS One 2022; 17:e0277132. [DOI: 10.1371/journal.pone.0277132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, we have created ‘artificial cells’ with an architecture mimicking that of typical eukaryotic cells. Our design uses common biopolymers like alginate and chitosan to create multi-compartment capsules (MCCs) via oil-free microfluidics. MCCs (~ 500 μm in diameter) can be engineered with multiple inner compartments, each with a distinct payload. This mimics the distinct organelles in eukaryotic cells, each of which has unique properties. In this study, we encapsulate microbial cells from two distinct kingdoms — Pseudomonas aeruginosa (bacteria) and Candida albicans (fungi) — in the inner compartments of MCCs. The two microbes are commonly found in biofilms at sites of infection in humans. We first demonstrate that the MCC can serve as a simple platform to observe the comparative growth of the cells in real time. Unlike typical co-culture in solution or on agar plates, the cells can grow in their own compartments without direct physical contact. Moreover, the hydrogel matrix in the compartments mimics the three-dimensional (3-D) environment that cells naturally encounter during their growth. Small molecules added to the solution are shown to permeate through the capsule walls and affect cell growth: for example, cationic surfactants inhibit the fungi but not the bacteria. Conversely, low pH and kanamycin inhibit the bacteria but not the fungi. Also, when the bacteria are present in adjacent compartments, the fungal cells mostly stay in a yeast morphology, meaning as spheroidal cells. In contrast, in the absence of the bacteria, the fungi transition into hyphae, i.e., long multicellular filaments. The inhibition of this morphological switch in fungal cells is shown to be induced by signaling molecules (specifically, the quorum sensing autoinducer-1 or AI-1) secreted by the bacteria. Thus, the MCC platform can also be used to detect cross-kingdom signaling between the compartmentalized microbes.
Collapse
|
38
|
Spanjers JM, Brodszkij E, Gal N, Skov Pedersen J, Städler B. On the assembly of zwitterionic block copolymers with phospholipids. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
40
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Wang X, Wu S, Tang TYD, Tian L. Engineering strategies for sustainable synthetic cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Living material assembly of bacteriogenic protocells. Nature 2022; 609:1029-1037. [DOI: 10.1038/s41586-022-05223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
|
43
|
Life brought to artificial cells. Nature 2022; 609:900-901. [DOI: 10.1038/d41586-022-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Cao S, da Silva LC, Landfester K. Light‐Activated Membrane Transport in Polymeric Cell‐Mimics. Angew Chem Int Ed Engl 2022; 61:e202205266. [PMID: 35759257 PMCID: PMC9542181 DOI: 10.1002/anie.202205266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shoupeng Cao
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | | |
Collapse
|
45
|
Abbas M, Law JO, Grellscheid SN, Huck WTS, Spruijt E. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202913. [PMID: 35796384 DOI: 10.1002/adma.202202913] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquid-liquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquid-liquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kB T, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Jack O Law
- Computational Biology Unit, University of Bergen, Bergen, 5020, Norway
| | - Sushma N Grellscheid
- Computational Biology Unit, University of Bergen, Bergen, 5020, Norway
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
46
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
47
|
Miyachi R, Shimizu Y, Ichihashi N. Transfer RNA Synthesis-Coupled Translation and DNA Replication in a Reconstituted Transcription/Translation System. ACS Synth Biol 2022; 11:2791-2799. [PMID: 35848947 DOI: 10.1021/acssynbio.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfer RNAs (tRNAs) are key molecules involved in translation. In vitro synthesis of tRNAs and their coupled translation are important challenges in the construction of a self-regenerative molecular system. Here, we first purified EF-Tu and ribosome components in a reconstituted translation system of Escherichia coli to remove residual tRNAs. Next, we expressed 15 types of tRNAs in the repurified translation system and performed translation of the reporter luciferase gene depending on the expression. Furthermore, we demonstrated DNA replication through expression of a tRNA encoded by DNA, mimicking information processing within the cell. Our findings highlight the feasibility of an in vitro self-reproductive system, in which tRNAs can be synthesized from replicating DNA.
Collapse
Affiliation(s)
- Ryota Miyachi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita 565-0874, Osaka, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Cao S, da Silva LC, Landfester K. Light‐Activated Membrane Transport in Polymeric Cell‐Mimics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shoupeng Cao
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | | |
Collapse
|
49
|
Yang S, Joesaar A, Bögels BWA, Mann S, de Greef TFA. Protocellular CRISPR/Cas‐Based Diffusive Communication Using Transcriptional RNA Signaling. Angew Chem Int Ed Engl 2022; 61:e202202436. [PMID: 35385207 PMCID: PMC9320857 DOI: 10.1002/anie.202202436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Protocells containing enzyme‐driven biomolecular circuits that can process and exchange information offer a promising approach for mimicking cellular features and developing molecular information platforms. Here, we employ synthetic transcriptional circuits together with CRISPR/Cas‐based DNA processing inside semipermeable protein‐polymer microcompartments. We first establish a transcriptional protocell that can be activated by external DNA strands and produce functional RNA aptamers. Subsequently, we engineer a transcriptional module to generate RNA strands functioning as diffusive signals that can be sensed by neighboring protocells and trigger the activation of internalized DNA probes or localization of Cas nucleases. Our results highlight the opportunities to combine CRISPR/Cas machinery and DNA nanotechnology for protocellular communication and provide a step towards the development of protocells capable of distributed molecular information processing.
Collapse
Affiliation(s)
- Shuo Yang
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alex Joesaar
- Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology 2629 HZ Delft The Netherlands
| | - Bas W. A. Bögels
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry and Max Planck-Bristol Centre for Minimal Biology School of Chemistry, University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Tom F. A. de Greef
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Computational Biology group Department of Biomedical Engineering Eindhoven University of Technology The Netherlands
- Institute for Molecules and Materials Faculty of Science Radboud University Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Center for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht Princetonlaan 6 3584 CB Utrecht The Netherlands
| |
Collapse
|
50
|
Savchak OK, Wang N, Ramos-Docampo MA, de Dios Andres P, Sebastião AM, Ribeiro FF, Armada-Moreira A, Städler B, Vaz SH. Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. J Mater Chem B 2022; 10:4672-4683. [PMID: 35674248 DOI: 10.1039/d2tb00393g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supporting mammalian cells against reactive oxygen species such as hydrogen peroxide (H2O2) is essential. Bottom-up synthetic biology aims to integrate designed artificial units with mammalian cells. Here, we used manganese dioxide nanosheets (MnO2-NSs) as catalytically active entities that have superoxide dismutase-like and catalase-like activities. The integration of these MnO2-NSs into 7 μm reactors was able to assist SH-SY5Y neuroblastoma cells when stressed with H2O2. Complementary, Janus-shaped 800 nm reactors with one hemisphere coated with MnO2-NSs showed directed locomotion in cell media with top speeds up to 50 μm s-1 when exposed to 300 mM H2O2 as a fuel, while reactors homogeneously coated with MnO2-NSs were not able to outperform Brownian motion. These Janus-shaped reactors were able to remove H2O2 from the media, protecting cells cultured in the proximity. This effort advanced the use of bottom-up synthetic biology concepts in neuroscience.
Collapse
Affiliation(s)
- Oksana K Savchak
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nanying Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Paula de Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Adam Armada-Moreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|