1
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
2
|
Materzok T, Eslami H, Gorb SN, Müller-Plathe F. Understanding Humidity-Enhanced Adhesion of Geckos: Deep Neural Network-Assisted Multi-Scale Molecular Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206085. [PMID: 36707414 DOI: 10.1002/smll.202206085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Indexed: 06/02/2023]
Abstract
A higher relative humidity leads to an increased sticking power of gecko feet to surfaces. The molecular mechanism responsible for this increase, however, is not clear. Capillary forces, water mediating keratin-surface contacts and water-induced softening of the keratin are proposed as candidates. In previous work, strong evidence for water mediation is found but indirect effects via increased flexibility are not completely ruled out. This article studies the latter hypothesis by a bottom-up coarse-grained mesoscale model of an entire gecko spatula designed without explicit water particles, so that capillary action and water-mediation are excluded. The elasticity of this model is adjusted with a deep neural network to atomistic elastic constants, including water at different concentrations. Our results show clearly that on nanoscopic flat surfaces, the softening of keratin by water uptake cannot nearly account for the experimentally observed increase in gecko sticking power. Here, the dominant mechanism is the mediation of keratin-surface contacts by intervening water molecules. This mechanism remains important on nanostructured surfaces. Here, however, a water-induced increase of the keratin flexibility may enable the spatula to follow surface features smaller than itself and thereby increase the number of contacts with the surface. This leads to an appreciable but not dominant contribution to the humidity-increased adhesion. Recently, by atomistic grand-canonical molecular dynamics simulation, the room-temperature isotherm is obtained for the sorption of water into gecko keratin, to the authors' knowledge, the first such relation for any beta-keratin. In this work, it relates the equilibrium water content of the keratin to the ambient relative humidity.
Collapse
Affiliation(s)
- Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| | - Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
- Department of Chemistry, Colleges of Sciences, Persian Gulf University, Boushehr, 75168, Iran
| | - Stanislav N Gorb
- Zoological Institute Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| |
Collapse
|
3
|
Gorzelak M, Nowak D, Kuczumow A, Tracey DM, Adamowski W, Nowak J, Kosiński J, Gągała J, Blicharski T, Lasota A, Jabłoński M, Pawlicz J, Jarzębski M. Studies on Chemical Composition, Structure and Potential Applications of Keratoisis Corals. Int J Mol Sci 2023; 24:ijms24098355. [PMID: 37176062 PMCID: PMC10179572 DOI: 10.3390/ijms24098355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The chemical composition and structure of bamboo octocoral Keratoisis spp. skeletons were investigated by using: Scanning Electron Microscopy SEM, Raman Microscopy, X-ray Diffraction XRD, Laser Ablation-Inductively Coupled Plasma LA-ICP, and amino acid analyzers. Elements discovered in the nodes (mainly organic parts of the skeleton) of bamboo corals showed a very interesting arrangement in the growth ring areas, most probably enabling the application of bamboo corals as palaeochronometers and palaeothermometers. LA-ICP results showed that these gorgonian corals had an unusually large content of bromine, larger than any other organism yet studied. The local concentration of bromine in the organic part of the growth rings of one of the studied corals grew up to 29,000 ppm of bromine. That is over 440 times more than is contained in marine water and 35 times more than Murex contains, the species which was used to make Tyrian purple in ancient times. The organic matter of corals is called gorgonin, the specific substance that both from the XRD and Raman studies seem to be very similar to the reptile and bird keratins and less similar to the mammalian keratins. The missing cross-linking by S-S bridges, absence of aromatic rings, and significant participation of β-turn organization of peptides differs gorgonin from keratins. Perhaps, the gorgonin belongs to the affined but still different substances concerning reptile and bird keratin and in relation to the more advanced version-the mammalian one. Chemical components of bamboo corals seem to have great medical potential, with the internodes as material substituting the hard tissues and the nodes as the components of medicines.
Collapse
Affiliation(s)
- Mieczysław Gorzelak
- Department of Orthopedy and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dorota Nowak
- Lab 196, Radawiec Duży 196, 21-030 Motycz, Poland
| | | | - Dianne M Tracey
- National Institute of Water and Atmospheric Research Ltd., Wellington 6022, New Zealand
| | - Witold Adamowski
- Department of Environmental Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Jakub Nowak
- Lab 196, Radawiec Duży 196, 21-030 Motycz, Poland
| | - Jakub Kosiński
- Department of Orthopedy and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Gągała
- Department of Orthopedics and Traumatology, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Tomasz Blicharski
- Department of Orthopedy and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Agnieszka Lasota
- Chair and Department of Jaw Orthopedics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| | - Mirosław Jabłoński
- Department of Orthopedy and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jarosław Pawlicz
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545 Poznań, Poland
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznań University of Life Science, 60-637 Poznań, Poland
| |
Collapse
|
4
|
Alibardi L. Ultrastructural observations suggest that lipid material of lizard digital pads derives from degenerating cells in the inter‐scale region. ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lorenzo Alibardi
- Department of Biology University of Bologna Bologna Italy
- Comparative Histolab Padova Bologna Italy
| |
Collapse
|
5
|
The Periodic Replacement of Adhesive Setae in Pad Lamellae of Climbing Lizards Is Driven by Patterns of Corneous Layer Growth. J Dev Biol 2022; 11:jdb11010003. [PMID: 36648905 PMCID: PMC9844433 DOI: 10.3390/jdb11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
The adhesive digital pads in some gecko and anoline lizards are continuously utilized for movements on vertical surfaces that may determine wear and a decrease of adhesion efficiency. The pads are formed by lamellae bearing adhesive setae that are worn out following frequent usage and are replaced by new inner setae that maintain an efficient adhesion. Whether the extensive usage of adhesive setae determines a higher shedding frequency in the digital pads with respect to other body regions remains unknown. Setae replacement has been analyzed in embryos and adult lizards using autoradiography and 5BrdU-immunohistochemistry. The observation strongly suggests that during development and epidermal renewal in adult lamellae, there is a shifting of the outer setae toward the apex of the lamella. This movement is likely derived from the continuous addition of proteins in the beta- and alpha-layers sustaining the outer setae while the inner setae are forming. Ultrastructural and in situ hybridization studies indicate that the thin outer beta- and alpha-layers still contain mRNAs and ribosomes that may contribute to the continuous production of corneous beta proteins (CBPs) and keratins for the growth of the free margin at the apex of the lamella. This process determines the apical shifting and release of the old setae, while the new inner setae formed underneath becomes the new outer setae.
Collapse
|
6
|
Tao J, Wang L, Kong K, Hu M, Dai Z. Contact Electrification of Biological and Bio-Inspired Adhesive Materials on SiO 2 Surfaces: Perspectives from DFT Calculations. Biomimetics (Basel) 2022; 7:216. [PMID: 36546916 PMCID: PMC9775756 DOI: 10.3390/biomimetics7040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigate the contact electrification properties of glycine, cysteine, and dimethyl siloxane on silicon dioxide (SiO2) surfaces using density functional theory calculations. Molecule contacting through the sulfhydryl group has stronger adhesion to the SiO2-O and SiO2-OH surfaces. The SiOH/SiO2-Si system has the largest adhesion energy in all molecule/SiO2-Si contact systems and charge transfers from the molecule to the SiO2-O and SiO2-Si surfaces. The molecule/SiO2-OH systems have a reverse charge transfer direction. Molecules with their sulfhydryl and hydroxyl groups facing the SiO2-O and SiO2-OH surfaces have more transferred charges. The NH2/SiO2-Si system has a larger transferred charge than other molecule/SiO2-Si systems. The direction of charge transfer is determined by the Bader charge of the isolated surface atoms. The respective energy difference in the lowest unoccupied occupied molecular orbitals between contacting atoms influences the charge transfer. The respective energy difference in the highest occupied molecular orbitals reflects the electron attraction and affects charge transfer. Finally, the quantitative relationship between the transferred charge and energy gaps is established to evaluate the charge transfer. The findings propose a new perspective and in-depth understanding of contact electrification and shed light on the bio-inspired adhesive materials design and fabrication for engineering applications.
Collapse
Affiliation(s)
- Jing Tao
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linfeng Wang
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kaixuan Kong
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minhao Hu
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhendong Dai
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
7
|
Materzok T, Canestraight A, Gorb SN, Müller-Plathe F. How Does Gecko Keratin Stick to Hydrophilic and Hydrophobic Surfaces in the Presence and Absence of Water? An Atomistic Molecular Dynamics Investigation. ACS NANO 2022; 16:19261-19270. [PMID: 36256850 DOI: 10.1021/acsnano.2c08627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We developed a united-atom model of gecko keratin to investigate the influence of electrostatic and van der Waals contributions to gecko adhesion in scenarios representing gecko's natural habitats. The keratin model assumes that only intrinsically disordered regions directly contact the surface. Contact angles of two generic substrate surfaces that we created match those previously used in AFM experiments on gecko adhesion. Force probe molecular dynamics simulations pulling the keratin from the surface show that the pull-off force increases with increased water content and is inversely related to the water contact angle of the surface. This matches experimental trends. We investigated the number and charge density of keratin and water at the surface, confirming a water-mediating effect and are able to show that keratin folds polar groups to the hydrophilic surface. We decomposed energetic contributions during pull-off, and our computational model shows that in contrast to popular hypotheses, long-range electrostatic interactions determine much of the pull-off process. The contribution of electrostatics to adhesion may be in the order of the van der Waals contributions.
Collapse
Affiliation(s)
- Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| | - Annabelle Canestraight
- Department of Chemical Engineering, University of California Santa Barbara, 3357 Engrg II UCSB, Santa Barbara, California 93106, United States
| | - Stanislav N Gorb
- Zoological Institute Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany
| |
Collapse
|
8
|
Materzok T, De Boer D, Gorb S, Müller-Plathe F. Gecko Adhesion on Flat and Rough Surfaces: Simulations with a Multi-Scale Molecular Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201674. [PMID: 35927024 DOI: 10.1002/smll.202201674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A multiscale modeling approach is used to develop a particle-based mesoscale gecko spatula model that is able to link atomistic simulations and mesoscale (0.44 µm) simulations. It is used to study the detachment of spatulae from flat as well as nanostructured surfaces. The spatula model is based on microscopical information about spatulae structure and on atomistic molecular simulation results. Target properties for the coarse-graining result from a united-atom model of gecko keratin in periodic boundary conditions (PBC), previously developed by the authors. Pull-off forces necessary to detach gecko keratin under 2D PBC parallel to the surface are previously overestimated when only a small region of a spatula is examined. It is shown here that this is due to the restricted geometry (i.e., missing peel-off mode) and not model parameters. The spatula model peels off when pulled away from a surface, both in the molecular picture of the pull-off process and in the force-extension curve of non-equilibrium simulations mimicking single-spatula detachment studied with atomic force microscopy equipment. The force field and spatula model can reproduce experimental pull-off forces. Inspired by experimental results, the underlying mechanism that causes pull-off forces to be at a minimum on surfaces of varying roughnesses is also investigated. A clear sigmoidal increase in the pull-off force of spatulae with surface roughness shows that adhesion is determined by the ratio between spatula pad area and the area between surface peaks. Experiments showed a correlation with root-mean-square roughness of the surface, but the results of this work indicate that this is not a causality but depends on the area accessible.
Collapse
Affiliation(s)
- Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| | - Danna De Boer
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| | - Stanislav Gorb
- Zoological Institute Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| |
Collapse
|
9
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
10
|
Rasmussen MH, Holler KR, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biol Lett 2022; 18:20220093. [PMID: 35857888 PMCID: PMC9256082 DOI: 10.1098/rsbl.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.
Collapse
Affiliation(s)
| | | | - Joe E. Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Daniel A. Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Proshchina A, Gulimova V, Kharlamova A, Krivova Y, Barabanov V, Saveliev S. Cytoskeleton Markers in the Spinal Cord and Mechanoreceptors of Thick-Toed Geckos after Prolonged Space Flights. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010100. [PMID: 35054493 PMCID: PMC8781937 DOI: 10.3390/life12010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/18/2022]
Abstract
Spaceflight may cause hypogravitational motor syndrome (HMS). However, the role of the nervous system in the formation of HMS remains poorly understood. The aim of this study was to estimate the effects of space flights on the cytoskeleton of the neuronal and glial cells in the spinal cord and mechanoreceptors in the toes of thick-toed geckos (Chondrodactylus turneri GRAY, 1864). Thick-toed geckos are able to maintain attachment and natural locomotion in weightlessness. Different types of mechanoreceptors have been described in the toes of geckos. After flight, neurofilament 200 immunoreactivity in mechanoreceptors was lower than in control. In some motor neurons of flight geckos, nonspecific pathomorphological changes were observed, but they were also detected in the control. No signs of gliosis were detected after spaceflight. Cytoskeleton markers adequately reflect changes in the cells of the nervous system. We suggest that geckos’ adhesion is controlled by the nervous system. Our study revealed no significant disturbances in the morphology of the spinal cord after the prolonged space flight, supporting the hypothesis that geckos compensate the alterations, characteristic for other mammals in weightlessness, by tactile stimulation.
Collapse
|
12
|
Li M, Li W, Guan Q, Dai X, Lv J, Xia Z, Ong WJ, Saiz E, Hou X. A Tough Reversible Biomimetic Transparent Adhesive Tape with Pressure-Sensitive and Wet-Cleaning Properties. ACS NANO 2021; 15:19194-19201. [PMID: 34797635 DOI: 10.1021/acsnano.1c03882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dry adhesives that combine strong adhesion, high transparency, and reusability are needed to support developments in emerging fields such as medical electrodes and the bonding of electronic optical devices. However, achieving all of these features in a single material remains challenging. Herein, we propose a pressure-responsive polyurethane (PU) adhesive inspired by the octopus sucker. This adhesive not only showcases reversible adhesion to both solid materials and biological tissues but also exhibits robust stability and high transparency (>90%). As the adhesive strength of the PU adhesive corresponds to the application force, adhesion could be adjusted by the preloading force and/or pressure. The adhesive exhibits high static adhesion (∼120 kPa) and 180° peeling force (∼500 N/m), which is far stronger than those of most existing artificial dry adhesives. Moreover, the adhesion strength is effectively maintained even after 100 bonding-peeling cycles. Because the adhesive tape relies on the combination of negative pressure and intermolecular forces, it overcomes the underlying problems caused by glue residue like that left by traditional glue tapes after removal. In addition, the PU adhesive also shows wet-cleaning performance; the contaminated tape can recover 90-95% of the lost adhesion strength after being cleaned with water. The results show that an adhesive with a microstructure designed to increase the contribution of negative pressure can combine high reversible adhesion and long fatigue life.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Weijun Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Xiaoli Dai
- Environmental Protection Research Institute of Light Industry, Beijing 100089, China
| | - Jing Lv
- China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenhai Xia
- Department of Materials Science and Engineering and Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Higham TE, Zhuang M, Russell AP. Ankle structure of the Tokay gecko (Gekko gecko) and its role in the deployment of the subdigital adhesive system. J Anat 2021; 239:1503-1515. [PMID: 34268765 PMCID: PMC8602014 DOI: 10.1111/joa.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
The remarkable ability of geckos to adhere to smooth surfaces is often thought of in terms of external structures, including the branching setae that make contact with the surface producing van der Waals forces. Some geckos also exhibit unique movements of the distal segments of the limbs during locomotion and static clinging, including active digital hyperextension and considerable pedal rotation. During static clinging, geckos can exhibit considerable adduction/abduction of the pes while the crus and thigh remain firmly adpressed to the substratum. This decoupling of pedal adduction/abduction from ankle flexion/extension and pedal long-axis rotation is a significant departure from pedal displacements of a typical lizard lacking adhesive ability. The structure of the ankle is likely key to this decoupling, although no detailed comparison of this complex joint between pad-bearing geckos and other lizards is available. Here we compare the configuration of the mesotarsal joint of nongekkotan lizards (Iguana and Pristidactylus) with that of the Tokay gecko (Gekko gecko) using prepared skeletons, scanning electron microscopy, and micro-computed tomographic (µCT) scans. We focus on the structure of the astragalocalcaneum and the fourth distal tarsal. The mesotarsal joint exhibits a suite of modifications that are likely associated with the secondarily symmetrical pes of pad-bearing geckos. For example, the lateral process of the astragalocalcaneum is much more extensive in G. gecko compared with other lizards. The mesotarsal joint exhibits several other differences permitting dissociation of long-axis rotation of the pes from flexion-extension movement, including a reduced ventral peg on the fourth distal tarsal, an articulatory pattern dominated by a well-defined, expansive distomesial notch of the astragalocalcaneum, and an associated broad proximodorsal articulatory facet of the fourth distal tarsal. Pad-bearing geckos are capable of effectively deploying their intricate adhesive system across a broad array of body angles because of this highly modified ankle. Future research should determine whether the differences encountered in G. gecko (and their extent) apply to the Gekkota as a whole and should examine how the elements of the ankle move dynamically during locomotion across a range of taxa.
Collapse
Affiliation(s)
- Timothy E. Higham
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Minga Zhuang
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
- UTEP Biodiversity CollectionsThe University of Texas at El PasoEl PasoTXUSA
| | | |
Collapse
|
14
|
Gong L, Wang X. Thermal-Regulated Adhesion Enhancement and Fast Switching within the Viscoelastic Glass Transition Zone of a Shape Memory Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13420-13429. [PMID: 34726416 DOI: 10.1021/acs.langmuir.1c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effects of temperature and preload on adhesion of an epoxy-based shape memory polymer (ESMP) were investigated experimentally. The ESMP sheet and polydimethylsiloxane (PDMS) control sample were prepared by mold casting. The adhesion measurements were carried out on a home-built adhesion tester using a hemispherical glass indenter as the counter-surface. The reduced modulus was determined by the Oliver-Pharr method and Hertz theory. The viscoelastic energy dissipation was extracted, and the effective work of adhesion was calculated by the fitting method and JKR theory. In the vicinity of glass transition temperature (Tg), the viscoelastic enhancement factor (1 + f(v, T)) is as high as 955 because of the strong viscoelastic effect of the ESMP sheet. The adhesion strength of the ESMP sheet is about 589 kPa under a relatively smaller contact displacement condition (∼44.6 μm). The strong viscoelastic effect induces more viscoelastic energy dissipation that contributes to the effective work of adhesion and leads to strong preload dependence of the adhesion. The pull-off force Fpull-off is demonstrated to linearly depend on Fm1/3Er2/3. In the sharp half glass transition zone (T > Tg), the viscoelasticity and rigidity rapidly decrease with the temperature increasing about 10 °C, leading to a 6-fold reduction in adhesion. The results indicate that the adhesion of the ESMP sheet can be significantly enhanced and meanwhile rapidly switched within the viscoelastic glass transition zone.
Collapse
Affiliation(s)
- Ling Gong
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, People's Republic of China
| | - Xiaojie Wang
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, People's Republic of China
| |
Collapse
|
15
|
Wolff JO, Liprandi D, Bosia F, Joel AC, Pugno NM. Robust substrate anchorages of silk lines with extensible nano-fibres. SOFT MATTER 2021; 17:7903-7913. [PMID: 34369547 DOI: 10.1039/d1sm00552a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Living systems are built of multiscale-composites: materials formed of components with different properties that are assembled in complex micro- and nano-structures. Such biological multiscale-composites often show outstanding physical properties that are unachieved by artificial materials. A major scientific goal is thus to understand the assembly processes and the relationship between structure and function in order to reproduce them in a new generation of biomimetic high-performance materials. Here, we tested how the assembly of spider silk nano-fibres (i.e. glue coated 0.5 μm thick fibres produced by so-called piriform glands) into different micro-structures correlates with mechanical performance by empirically and numerically exploring the mechanical behaviour of line anchors in an orb weaver, a hunting spider and two ancient web builders. We demonstrate that the anchors of orb weavers exhibit outstanding mechanical robustness with minimal material use by the indirect attachment of the silk line to the substrate through a soft domain ('bridge'). This principle can be used to design new artificial high-performance attachment systems.
Collapse
Affiliation(s)
- Jonas O Wolff
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
16
|
Büscher TH, Gorb SN. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:725-743. [PMID: 34354900 PMCID: PMC8290099 DOI: 10.3762/bjnano.12.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
17
|
Miller AH, Stroud JT. Novel Tests of the Key Innovation Hypothesis: Adhesive Toepads in Arboreal Lizards. Syst Biol 2021; 71:139-152. [PMID: 34109417 DOI: 10.1093/sysbio/syab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/14/2022] Open
Abstract
The evolution of key innovations-unique features that enable a lineage to interact with the environment in a novel way-may drive broad patterns of adaptive diversity. However, traditional tests of the key innovation hypothesis, those which attempt to identify the evolutionary effect of a purported key innovation by comparing patterns of diversity between lineages with and without the key trait, have been challenged on both conceptual and statistical grounds. Here, we explore alternative, untested hypotheses of the key innovation framework. In lizards, adhesive toepad structures increase grip strength on vertical and smooth surfaces such as tree trunks and leaves and have independently evolved multiple times. As such, toepads have been posited as a key innovation for the evolution of arboreality. Leveraging a habitat use dataset applied to a global phylogeny of 2692 lizard species, we estimated multiple origins of toepads in three major clades and more than 100 origins of arboreality widely across the phylogeny. Our results suggest that toepads arise adaptively in arboreal lineages and are subsequently rarely lost while maintaining arboreal ecologies. Padless lineages transition away from arboreality at a higher rate than those with toepads, and high rates of invasion of arboreal niches by non-arboreal padbearing lineages provides further evidence that toepads may be a key to unlocking evolutionary access to the arboreal zone. Our results and analytical framework provide novel insights to understand and evaluate the ecological and evolutionary consequences of key innovations.
Collapse
Affiliation(s)
- Aryeh H Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - James T Stroud
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Singla S, Jain D, Zoltowski CM, Voleti S, Stark AY, Niewiarowski PH, Dhinojwala A. Direct evidence of acid-base interactions in gecko adhesion. SCIENCE ADVANCES 2021; 7:7/21/eabd9410. [PMID: 34138740 PMCID: PMC8133704 DOI: 10.1126/sciadv.abd9410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Dharamdeep Jain
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Chelsea M Zoltowski
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Sriharsha Voleti
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Alyssa Y Stark
- Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA.
| |
Collapse
|
19
|
Comparative epidermal microstructure anatomy and limb and tail osteology of eyelid geckos (Squamata: Eublepharidae): Implications of ecomorphological adaptations. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Alibardi L. Immunolocalization of corneous proteins including a serine-tyrosine-rich beta-protein in the adhesive pads in the tokay gecko. Microsc Res Tech 2020; 83:889-900. [PMID: 32274891 DOI: 10.1002/jemt.23483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine-glycine-rich corneous beta proteins (CBPs, formerly indicated as beta-keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine-tyrosine-rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine-rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein-lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine-glycine medium rich CBPs and softer IFKs in alpha-layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
22
|
Pourjavaheri F, Ostovar Pour S, Jones OA, Smooker PM, Brkljača R, Sherkat F, Blanch EW, Gupta A, Shanks RA. Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Skieresz-Szewczyk K, Buchwald T, Szybowicz M, Jackowiak H. Alpha-keratin and corneous beta protein in the parakeratinized epithelium of the tongue in the domestic goose (Anser anser f. domestica). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:158-166. [PMID: 31243896 DOI: 10.1002/jez.b.22892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
The parakeratinized epithelium is a common epithelium in the oral cavity in birds and is characterized by the presence of cell nuclei in the cells of the cornified layer. This epithelium covers almost the entire dorsal surface of the tongue in the domestic goose apart of the lingual nail and conical papillae. So far no study has identified the molecular proteins alpha-keratin (IF-keratin) and/or corneous beta protein (CBP), which are responsible for keratinization or cornification processes in the parakeratinized epithelium of domestic geese. The study was performed using immunohistochemical (IHC) methods to identify alpha-keratin. The innovative method of Raman microspectroscopy was used to determine the presence of CBP and specify their percentage in epithelial layers of the parakeratinized epithelium. The results revealed that alpha-keratin is present in the whole parakeratinized epithelium. A strong staining reaction was detected in the basal and intermediate layers and a less strong staining reaction in the cornified layer. Raman microspectroscopy analysis confirmed the presence of alpha-keratin and demonstrated that its percentage decreases from the basal layer to the cornified layer. The Raman microspectroscopy technique revealed the occurrence of CBP in the parakeratinized epithelium and demonstrated that the percentage of this protein increases from the basal layer to the cornified layer. Performed analysis determines that parakeratinized epithelium undergoes cornification. However, the lower percentage of CBP in the cornified layer of parakeratinized epithelium than in orthokeratinized epithelium points to the fact that parakeratinized epithelium has a weaker protective function.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego, Poznan, Poland
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Piotrowo, Poznan, Poland
| | - Mirosław Szybowicz
- Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Piotrowo, Poznan, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego, Poznan, Poland
| |
Collapse
|
24
|
Alibardi L, Bonfitto A. Morphology of setae in regenerating caudal adhesive pads of the gecko Lygodactylus capensis (Smith, 1849). ZOOLOGY 2019; 133:1-9. [DOI: 10.1016/j.zool.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
|
25
|
Schaber CF, Flenner S, Glisovic A, Krasnov I, Rosenthal M, Stieglitz H, Krywka C, Burghammer M, Müller M, Gorb SN. Hierarchical architecture of spider attachment setae reconstructed from scanning nanofocus X-ray diffraction data. J R Soc Interface 2019; 16:20180692. [PMID: 30958170 PMCID: PMC6364634 DOI: 10.1098/rsif.2018.0692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/08/2019] [Indexed: 11/12/2022] Open
Abstract
When sitting and walking, the feet of wandering spiders reversibly attach to many surfaces without the use of gluey secretions. Responsible for the spiders' dry adhesion are the hairy attachment pads that are built of specially shaped cuticular hairs (setae) equipped with approximately 1 µm wide and 20 nm thick plate-like contact elements (spatulae) facing the substrate. Using synchrotron-based scanning nanofocus X-ray diffraction methods, combining wide-angle X-ray diffraction/scattering and small-angle X-ray scattering, allowed substantial quantitative information to be gained about the structure and materials of these fibrous adhesive structures with 200 nm resolution. The fibre diffraction patterns showed the crystalline chitin chains oriented along the long axis of the attachment setae and increased intensity of the chitin signal dorsally within the seta shaft. The small-angle scattering signals clearly indicated an angular shift by approximately 80° of the microtrich structures that branch off the bulk hair shaft and end as the adhesive contact elements in the tip region of the seta. The results reveal the specific structural arrangement and distribution of the chitin fibres within the attachment hair's cuticle preventing material failure by tensile reinforcement and proper distribution of stresses that arise upon attachment and detachment.
Collapse
Affiliation(s)
- Clemens F. Schaber
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24098 Kiel, Germany
| | - Silja Flenner
- Helmholtz-Zentrum Geesthacht, Postfach 1160, 21494 Geesthacht, Germany
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Anja Glisovic
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Igor Krasnov
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Martin Rosenthal
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043 Grenoble Cedex 9, France
| | - Hergen Stieglitz
- Helmholtz-Zentrum Geesthacht, Postfach 1160, 21494 Geesthacht, Germany
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Christina Krywka
- Helmholtz-Zentrum Geesthacht, Postfach 1160, 21494 Geesthacht, Germany
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043 Grenoble Cedex 9, France
| | - Martin Müller
- Helmholtz-Zentrum Geesthacht, Postfach 1160, 21494 Geesthacht, Germany
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24098 Kiel, Germany
| |
Collapse
|
26
|
Alibardi L. Review: mapping proteins localized in adhesive setae of the tokay gecko and their possible influence on the mechanism of adhesion. PROTOPLASMA 2018; 255:1785-1797. [PMID: 29881974 DOI: 10.1007/s00709-018-1270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 05/13/2023]
Abstract
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10-100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12-20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padua, Bologna, Italy.
- Dipartimento di Biologia, Universita' di Bologna, via Selmi 3, 40126, Universita' di Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Brely L, Bosia F, Pugno NM. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model. SOFT MATTER 2018; 14:5509-5518. [PMID: 29923589 DOI: 10.1039/c8sm00507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.
Collapse
Affiliation(s)
- Lucas Brely
- Department of Physics and "Nanostructured Interfaces and Surfaces" Inter-Departmental Centre, Università di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | | | | |
Collapse
|
28
|
Endoh KS, Kawakatsu T, Müller-Plathe F. Coarse-Grained Molecular Simulation Model for Gecko Feet Keratin. J Phys Chem B 2018; 122:2203-2212. [DOI: 10.1021/acs.jpcb.7b10481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenkoh S. Endoh
- Eduard-Zintl-Institut
für Anorganische und Phzsikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, D-64287 Darmstadt, Germany
- Department
of Physics, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, 980-8578 Sendai, Japan
| | - Toshihiro Kawakatsu
- Department
of Physics, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, 980-8578 Sendai, Japan
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut
für Anorganische und Phzsikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, D-64287 Darmstadt, Germany
| |
Collapse
|
29
|
Raut HK, Baji A, Hariri HH, Parveen H, Soh GS, Low HY, Wood KL. Gecko-Inspired Dry Adhesive Based on Micro-Nanoscale Hierarchical Arrays for Application in Climbing Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1288-1296. [PMID: 29214798 DOI: 10.1021/acsami.7b09526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The unusual ability of geckos to climb vertical walls underlies a unique combination of a hierarchical structural design and a stiffer material composition. While a dense array of microscopic hierarchical structures enables the gecko toe pads to adhere to various surfaces, a stiffer material (β-keratin) composition enables them to maintain reliable adhesion over innumerable cycles. This unique strategy has been seldom implemented in engineered dry adhesives because fabrication of high-aspect-ratio hierarchical structures using a stiffer polymer is challenging. Herein, we report the fabrication of high-aspect-ratio hierarchical arrays on flexible polycarbonate sheets (stiffness comparable to that of β-keratin) by a sacrificial-layer-mediated nanoimprinting technique. Dry-adhesive films comprising the hierarchical arrays showed a formidable shear adhesion of 11.91 ± 0.43 N/cm2. Cyclic adhesion tests also showed that the shear adhesion of the adhesive films reduced by only about 20% after 50 cycles and remained nearly constant until about 200 cycles. Most importantly, the high-aspect-ratio hierarchical arrays were integrated onto the feet of a miniature robot and the locomotion on a 30° inclined surface was demonstrated.
Collapse
Affiliation(s)
- Hemant Kumar Raut
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Avinash Baji
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Hassan Hussein Hariri
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Hashina Parveen
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Gim Song Soh
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Hong Yee Low
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| | - Kristin L Wood
- Division of Engineering Product Development, Singapore University of Technology and Design , 8 Somapah Rd, Singapore 487372, Republic of Singapore
| |
Collapse
|
30
|
Gecko Adhesion. Biomimetics (Basel) 2018. [DOI: 10.1007/978-3-319-71676-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
31
|
Yi H, Lee SH, Seong M, Kwak MK, Jeong HE. Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. J Mater Chem B 2018; 6:8064-8070. [DOI: 10.1039/c8tb02598c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A hydrogel-based wet adhesive with bioinspired microstructures can exhibit strong and reversible adhesion to wet and underwater surfaces.
Collapse
Affiliation(s)
- Hoon Yi
- Department of Mechanical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 689-798
- Republic of Korea
| | - Sung Ho Lee
- Department of Mechanical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 689-798
- Republic of Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 689-798
- Republic of Korea
| |
Collapse
|
32
|
Wolff JO, Wells D, Reid CR, Blamires SJ. Clarity of objectives and working principles enhances the success of biomimetic programs. BIOINSPIRATION & BIOMIMETICS 2017; 12:051001. [PMID: 28820140 DOI: 10.1088/1748-3190/aa86ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examining three flagship examples of biomimetic design approaches from different disciplines: (1) the creation of gecko-inspired adhesives; (2) the synthesis of spider silk, and (3) the derivation of computer algorithms from natural self-organizing systems. We find that identification of the elemental working principles is the most crucial step in the biomimetic design process. It bears the highest risk of failure (e.g. losing the target function) due to false assumptions about the working principle. Common problems that hamper successful implementation are: (i) a discrepancy between biological functions and the desired properties of the product, (ii) uncertainty about objectives and applications, (iii) inherent limits in methodologies, and (iv) false assumptions about the biology of the models. Projects that aim for multi-functional products are particularly challenging to accomplish. We suggest a simplification, modularisation and specification of objectives, and a critical assessment of the suitability of the model. Comparative analyses, experimental manipulation, and numerical simulations followed by tests of artificial models have led to the successful extraction of working principles. A searchable database of biological systems would optimize the choice of a model system in top-down approaches that start at an engineering problem. Only when biomimetic projects become more predictable will there be wider acceptance of biomimetics as an innovative problem-solving tool among engineers and industry.
Collapse
Affiliation(s)
- Jonas O Wolff
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
33
|
Skieresz-Szewczyk K, Jackowiak H, Buchwald T, Szybowicz M. Localization of Alpha-Keratin and Beta-Keratin (Corneous Beta Protein) in the Epithelium on the Ventral Surface of the Lingual Apex and Its Lingual Nail in the Domestic Goose (Anser Anser f. domestica) by Using Immunohistochemistry and Raman Microspectros. Anat Rec (Hoboken) 2017; 300:1361-1368. [DOI: 10.1002/ar.23591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
| | - Hanna Jackowiak
- Department of Histology and Embryology; Poznan University of Life Sciences; Poznan Poland
| | - Tomasz Buchwald
- Faculty of Technical Physics; Institute of Materials Research and Quantum Engineering, Poznan University of Technology; Poznan Poland
| | - Mirosław Szybowicz
- Faculty of Technical Physics; Institute of Materials Research and Quantum Engineering, Poznan University of Technology; Poznan Poland
| |
Collapse
|
34
|
Yang X, Deng W. Morphological and structural characterization of the attachment system in aerial roots of Syngonium podophyllum. PLANTA 2017; 245:507-521. [PMID: 27888361 DOI: 10.1007/s00425-016-2621-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
The attachment of aerial roots of Syngonium podophyllum involves a multi-step process adjusted by multi-scale structures. Helical-crack root hairs are first found in the attachment system, representing specialized structures for surface anchorage. The morphological variability of attachment organs reflects diverse climbing strategies. One such anchoring mode in clinging-climbers involves the time-dependent interaction between roots and the support: By naturally occurring adhesive roots with root hairs, the plant can ascend on supports of any shape and size. As a typical root-climber, Syngonium podophyllum develops elongate aerial roots at nodes. Here, we studied its attachment behavior from the external morphology to the internal structure in detail. Through SEM and LM observation on several root-substrate interfaces, we suggested that the attachment of aerial roots was mediated by a multi-step process, in which root hairs played significant roles in releasing mucilaginous substance and securing the durable anchorage. We summarized all the types of shape changes of root hairs with particular focus on the abnormal transition from a tube to a helical-crack ribbon. We demonstrated our understanding with respect to the formation of the helical-crack root hairs, based on the structural evidence of cellulose microfibrils orientation on the cell wall lamellae. The helical-crack root hairs serving as energy-dissipating units retard the failure of adhesion under high winds and loads.
Collapse
Affiliation(s)
- Xiaojun Yang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
35
|
Stark AY, Subarajan S, Jain D, Niewiarowski PH, Dhinojwala A. Superhydrophobicity of the gecko toe pad: biological optimization versus laboratory maximization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0184. [PMID: 27354726 DOI: 10.1098/rsta.2016.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
While many gecko-inspired hierarchically structured surfaces perform as well as or better than the natural adhesive system, these designs often fail to function across a variety of contexts. For example, the gecko can adhere to rough, wet and dirty surfaces; however, most synthetic mimics cannot maintain function when faced with a similar situation. The solution to this problem lies in a more thorough investigation of the natural system. Here, we review the adhesive system of the gecko toe pad, as well as the far less-well-studied anti-adhesive system that results from the chemistry and structure of the toe pad (superhydrophobicity). This paradoxical relationship serves as motivation to study functional optimization at the system level. As an example, we experimentally investigate the role of surface lipids in adhesion and anti-adhesion, and find a clear performance trade-off related to shear adhesion in air on a hydrophilic surface. This represents the first direct investigation of the role of surface lipids in gecko adhesion and anti-adhesion, and supports the argument that a system-level approach is necessary to elucidate optimization in biological systems. Without such an approach, bioinspired designs will be limited in functionality and context, especially compared to the natural systems they mimic.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Shairani Subarajan
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA
| | - Dharamdeep Jain
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | | | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
36
|
Gecko Adhesion. Biomimetics (Basel) 2016. [DOI: 10.1007/978-3-319-28284-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Stark AY, Palecek AM, Argenbright CW, Bernard C, Brennan AB, Niewiarowski PH, Dhinojwala A. Gecko Adhesion on Wet and Dry Patterned Substrates. PLoS One 2015; 10:e0145756. [PMID: 26696412 PMCID: PMC4687937 DOI: 10.1371/journal.pone.0145756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
Abstract
Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.). This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
- * E-mail:
| | - Amanda M. Palecek
- Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - Clayton W. Argenbright
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Craig Bernard
- Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - Anthony B. Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Peter H. Niewiarowski
- Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| |
Collapse
|
38
|
Alibardi L. Immunolocalization of large corneous beta-proteins in the green anole lizard (Anolis carolinensis) suggests that they form filaments that associate to the smaller beta-proteins in the beta-layer of the epidermis. J Morphol 2015. [DOI: 10.1002/jmor.20415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; Bologna Italy
| |
Collapse
|
39
|
Khannoon ER. Developmental stages of the climbing geckoTarentola annulariswith special reference to the claws, pad lamellae, and subdigital setae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:450-64. [DOI: 10.1002/jez.b.22630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Eraqi R. Khannoon
- Department of Zoology; Faculty of Science; Fayoum University; Fayoum 63514 Egypt
| |
Collapse
|
40
|
NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae. Sci Rep 2015; 5:9594. [PMID: 25902194 PMCID: PMC5386106 DOI: 10.1038/srep09594] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as ‘setae’ on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in ‘pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were ‘delipidized’ to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems.
Collapse
|
41
|
Merz RA. Textures and traction: how tube-dwelling polychaetes get a leg up. INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2015; 134:61-77. [PMID: 25834379 PMCID: PMC4375521 DOI: 10.1111/ivb.12079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
By controlling the traction between its body and the tube wall, a tube-dwelling polychaete can move efficiently from one end of its tube to the other, brace its body during normal functions (e.g., ventilation and feeding), and anchor within its tube avoiding removal by predators. To examine the potential physical interaction between worms and the tubes they live in, scanning electron microscopy was used to reveal and quantify the morphology of worm bodies and the tubes they produce for species representing 13 families of tube-dwelling polychaetes. In the tubes of most species there were macroscopic or nearly macroscopic (∼10 μm-1 mm) bumps or ridges that protruded slightly into the lumen of the tube; these could provide purchase as a worm moves or anchors. At this scale (∼10 μm-1 mm), the surfaces of the chaetal heads that interact with the tube wall were typically small enough to fit within spaces between these bumps (created by the inward projection of exogenous materials incorporated into the tube wall) or ridges (made by secretions on the interior surface of the tube). At a finer scale (0.01-10 μm), there was a second overlap in size, usually between the dentition on the surfaces of chaetae that interact with the tube walls and the texture provided by the secreted strands or microscopic inclusions of the inner linings. These linings had a surprising diversity of micro-textures. The most common micro-texture was a "fabric" of secreted threads, but there were also orderly micro-ridges, wrinkles, and rugose surfaces provided by microorganisms incorporated into the inner tube lining. Understanding the fine structures of tubes in conjunction with the morphologies of the worms that build them gives insight into how tubes are constructed and how worms live within them.
Collapse
Affiliation(s)
- Rachel Ann Merz
- Department of Biology, Swarthmore CollegeSwarthmore, Pennsylvania, 19081, USA
| |
Collapse
|
42
|
Filippov AE, Gorb SN. Spatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry. Interface Focus 2015; 5:20140065. [PMID: 25657843 DOI: 10.1098/rsfs.2014.0065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such clusters are much larger than original fibres and, because they are less flexible, form much worse adhesive contacts especially with the rough surfaces. Main problem here is that the forces responsible for the clusterization are the same intermolecular forces which attract fibres to fractal surface of the substrate. However, arrays of real gecko setae are much less susceptible to this problem. One of the possible reasons for this is that ends of the seta have more sophisticated non-uniformly distributed three-dimensional structure than that of existing artificial systems. In this paper, we simulated three-dimensional spatial geometry of non-uniformly distributed branches of nanofibres of the setal tip numerically, studied its attachment-detachment dynamics and discussed its advantages versus uniformly distributed geometry.
Collapse
Affiliation(s)
- Alexander E Filippov
- Functional Morphology and Biomechanics, Zoological Institute , Kiel University , 24118 Kiel , Germany ; Department of Electronic and Kinetic Properties of Non-linear Systems , Donetsk Institute for Physics and Engineering, National Academy of Sciences , 83114 Donetsk , Ukraine
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute , Kiel University , 24118 Kiel , Germany
| |
Collapse
|
43
|
Wang Z, Dai Z, Li W, Ji A, Wang W. How do the substrate reaction forces acting on a gecko's limbs respond to inclines? Naturwissenschaften 2015; 102:1259. [PMID: 25645733 DOI: 10.1007/s00114-015-1259-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, Jiangsu, 210016, China
| | | | | | | | | |
Collapse
|
44
|
Autumn K, Niewiarowski PH, Puthoff JB. Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091839] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kellar Autumn
- Department of Biology, Lewis & Clark College, Portland, Oregon 97219; ,
| | | | | |
Collapse
|
45
|
The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci Rep 2014; 4:6643. [PMID: 25323067 PMCID: PMC4200409 DOI: 10.1038/srep06643] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/29/2014] [Indexed: 11/08/2022] Open
Abstract
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.
Collapse
|
46
|
Maffioli E, Nonnis S, Polo NC, Negri A, Forcella M, Fusi P, Galli P, Tedeschi G. A new bioadhesive material from fish parasite Neobenedenia girellae. J Proteomics 2014; 110:1-6. [DOI: 10.1016/j.jprot.2014.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 01/01/2023]
|
47
|
Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0557-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Spinner M, Westhoff G, Gorb SN. Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness. Sci Rep 2014; 4:5481. [PMID: 24970387 PMCID: PMC4073164 DOI: 10.1038/srep05481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.
Collapse
Affiliation(s)
- Marlene Spinner
- 1] Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany [2] Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - Guido Westhoff
- 1] Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany [2] Tierpark Hagenbeck gGmbH, Lokstedter Grenzstraβe 2, 22527 Hamburg, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
49
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
50
|
Immunolocalization of specific keratin associated beta-proteins (beta-keratins) in the adhesive setae of Gekko gecko. Tissue Cell 2013; 45:231-40. [DOI: 10.1016/j.tice.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 10/26/2022]
|