1
|
Harper CC, Schloemer TH, Jordan JS, Heflin N, Narayanan P, Zhou Q, Congreve DN, Williams ER. Understanding the Formation Dynamics and Physical Properties of Nanocapsules Using Charge Detection Mass Spectrometry. ACS NANO 2025; 19:3414-3423. [PMID: 39723934 DOI: 10.1021/acsnano.4c12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles. We find that increasing the feed volume of the tetraethylorthosilicate (TEOS) precursor added to form the silica shell of the nanocapsules yielded both higher and broader nanocapsule mass distributions with differentiable densities. A two-dimensional mass versus charge analysis also revealed the formation of two distinct populations of nanocapsules. These two nanocapsule morphologies were also present in transmission electron microscopy (TEM) images and exhibited low-density spherical cores and crescent-shaped cores where the remainder of the core volume was "filled in" by more dense silica. Nanocapsule shell growth kinetics over a ∼48-h synthesis period were also monitored by sampling the reaction mixture at various times, quenching the sampled aliquots, and then characterizing these time-resolved samples by CDMS. The CDMS data reveal three distinct growth phases in nanocapsule formation; rapid initial nucleation, an "inverted" distribution of silica growth, and a final slow growth phase where the rate of mass increase and final nanocapsule masses are dictated by the initial TEOS feed volumes. CDMS-enabled understanding of the diverse nanocapsule sizes, morphologies, and growth dynamics will allow us to better predict nanocapsule properties while reducing the experimental burden in optimizing nanocapsules for real-world applications.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tracy H Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicole Heflin
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
3
|
Wang CR, Harlington AC, Snel MF, Pukala TL. Characterisation of the forest cobra (Naja melanoleuca) venom using a multifaceted mass spectrometric-based approach. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140992. [PMID: 38158032 DOI: 10.1016/j.bbapap.2023.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Snake venoms consist of highly biologically active proteins and peptides that are responsible for the lethal physiological effects of snakebite envenomation. In order to guide the development of targeted antivenom strategies, comprehensive understanding of venom compositions and in-depth characterisation of various proteoforms, often not captured by traditional bottom-up proteomic workflows, is necessary. Here, we employ an integrated 'omics' and intact mass spectrometry (MS)-based approach to profile the heterogeneity within the venom of the forest cobra (Naja melanoleuca), adopting different analytical strategies to accommodate for the dynamic molecular mass range of venom proteins present. The venom proteome of N. melanoleuca was catalogued using a venom gland transcriptome-guided bottom-up proteomics approach, revealing a venom consisting of six toxin superfamilies. The subtle diversity present in the venom components was further explored using reversed phase-ultra performance liquid chromatography (RP-UPLC) coupled to intact MS. This approach showed a significant increase in the number of venom proteoforms within various toxin families that were not captured in previous studies. Furthermore, we probed at the higher-order structures of the larger venom proteins using a combination of native MS and mass photometry and revealed significant structural heterogeneity along with extensive post-translational modifications in the form of glycosylation in these larger toxins. Here, we show the diverse structural heterogeneity of snake venom proteins in the venom of N. melanoleuca using an integrated workflow that incorporates analytical strategies that profile snake venom at the proteoform level, complementing traditional venom characterisation approaches.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Alix C Harlington
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
4
|
McFarlane LO, Pukala TL. Proteomic Investigation of Cape Cobra ( Naja nivea) Venom Reveals First Evidence of Quaternary Protein Structures. Toxins (Basel) 2024; 16:63. [PMID: 38393141 PMCID: PMC10892407 DOI: 10.3390/toxins16020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.
Collapse
Affiliation(s)
| | - Tara L. Pukala
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
5
|
Zhang T, Lyu J, Zhu Y, Laganowsky A. Cardiolipin Regulates the Activity of the Mitochondrial ABC Transporter ABCB10. Biochemistry 2023; 62:3159-3165. [PMID: 37807693 PMCID: PMC10634319 DOI: 10.1021/acs.biochem.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Indexed: 10/10/2023]
Abstract
The ATP-binding cassette (ABC) transporter ABCB10 resides in the inner membrane of mitochondria and is implicated in erythropoiesis. Mitochondria from different cell types share some specific characteristics, one of which is the high abundance of cardiolipin. Although previous studies have provided insight into ABCB10, the affinity and selectivity of this transporter toward lipids, particularly those found in the mitochondria, remain poorly understood. Here, native mass spectrometry is used to directly monitor the binding events of lipids to human ABCB10. The results reveal that ABCB10 binds avidly to cardiolipin with an affinity significantly higher than that of other phospholipids. The first three binding events of cardiolipin display positive cooperativity, which is suggestive of specific cardiolipin-binding sites on ABCB10. Phosphatidic acid is the second-best binder of the lipids investigated. The bulk lipids, phosphatidylcholine and phosphatidylethanolamine, display the weakest binding affinity for ABCB10. Other lipids bind ABCB10 with a similar affinity. Functional assays show that cardiolipin regulates the ATPase activity of ABCB10 in a dose-dependent fashion. ATPase activity of ABCB10 was also impacted in the presence of other lipids but to a lesser extent than cardiolipin. Taken together, ABCB10 has a high binding affinity for cardiolipin, and this lipid also regulates the ATPase activity of the transporter.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Wang S, Shan S, Yang J, Zhou J, Wang G. Plastic probe electrospray ionization mass spectrometry developed for rapid fingerprint profile of biological samples without pretreatment. Anal Bioanal Chem 2023; 415:6701-6709. [PMID: 37755488 DOI: 10.1007/s00216-023-04947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
A triangular-shaped flat plastic substrate probe was prepared for direct electrospray ionization mass spectrometry (ESI-MS) for analysis of untreated chemical and biological samples including liquids (Met-Arg-Phe-Ala peptide, reserpine, and dodecyl aldehyde), solids (biological samples, traditional Chinese medicine), and powders (roasted coffee, rhizoma coptidis, lotus plumule, and Schisandra sphenanthera). Quantitative analysis of reserpine in water yielded a detection limit of 1 ng mL-1, dynamic response range within 1-500 ng mL-1, and linearity of signal response ˃0.9925. Compared to the conventional capillary ESI, this plastic probe ESI offers lower cost of analysis (US $0.0056 per probe), higher sensitivity, lower sample consumption, longer signal duration (>6 min), better reproducibility, signal stability, and higher speed of analysis (<10 s per sample, including sample loading). Overall, the results indicate the potential of ESI-MS based on flat plastic probes as a versatile method for simple, sensitive, and stable analysis of untreated biological sample analysis.
Collapse
Affiliation(s)
- Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, China
- Evaluation and Research Center of Dao-Di Herbs of Jiangxi Province, GanJiang New Area, 330000, China
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Jian Yang
- Evaluation and Research Center of Dao-Di Herbs of Jiangxi Province, GanJiang New Area, 330000, China
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junhui Zhou
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, China
| | - Guofeng Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China.
| |
Collapse
|
7
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
8
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
9
|
Bui D, Li Z, Kitov PI, Han L, Kitova EN, Fortier M, Fuselier C, Granger Joly de Boissel P, Chatenet D, Doucet N, Tompkins SM, St-Pierre Y, Mahal LK, Klassen JS. Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS. ACS CENTRAL SCIENCE 2022; 8:963-974. [PMID: 35912341 PMCID: PMC9335916 DOI: 10.1021/acscentsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ling Han
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marlène Fortier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Camille Fuselier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Philippine Granger Joly de Boissel
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Nicolas Doucet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Stephen M. Tompkins
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30605, United States
- Emory-UGA
Centers of Excellence for Influenza Research and Surveillance (CEIRS), Emory University School of Medicine, Athens, Georgia 30322, United States
| | - Yves St-Pierre
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- . Telephone: (780) 492-3501. Fax: (780) 492-8231
| |
Collapse
|
10
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry ( tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 2022; 147:2317-2337. [PMID: 35521797 PMCID: PMC9914546 DOI: 10.1039/d2an00335j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
12
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
13
|
Harvey SR, VanAernum ZL, Wysocki VH. Surface-Induced Dissociation of Anionic vs Cationic Native-Like Protein Complexes. J Am Chem Soc 2021; 143:7698-7706. [PMID: 33983719 DOI: 10.1021/jacs.1c00855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Characterizing protein-protein interactions, stoichiometries, and subunit connectivity is key to understanding how subunits assemble into biologically relevant, multisubunit protein complexes. Native mass spectrometry (nMS) has emerged as a powerful tool to study protein complexes due to its low sample consumption and tolerance for heterogeneity. In nMS, positive mode ionization is routinely used and charge reduction, through the addition of solution additives, is often used, as the resulting lower charge states are often considered more native-like. When fragmented by surface-induced dissociation (SID), charge reduced complexes often give increased structural information over their "normal-charged" counterparts. A disadvantage of solution phase charge reduction is that increased adduction, and hence peak broadening, is often observed. Previous studies have shown that protein complexes ionized using negative mode generally form lower charge states relative to positive mode. Here we demonstrate that the lower charged protein complex anions activated by surface collisions fragment in a manner consistent with their solved structures, hence providing substructural information. Negative mode ionization in ammonium acetate offers the advantage of charge reduction without the peak broadening associated with solution phase charge reduction additives and provides direct structural information when coupled with SID. SID of 20S human proteasome (a 28-mer comprised of four stacked heptamer rings in an αββα formation), for example, provides information on both substructure (e.g., splitting into a 7α ring and the corresponding ββα 21-mer, and into α dimers and trimers to provide connectivity around the 7 α ring) and proteoform information on monomers.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Caldwell BJ, Norris A, Zakharova E, Smith CE, Wheat CT, Choudhary D, Sotomayor M, Wysocki VH, Bell CE. Oligomeric complexes formed by Redβ single strand annealing protein in its different DNA bound states. Nucleic Acids Res 2021; 49:3441-3460. [PMID: 33693865 PMCID: PMC8034648 DOI: 10.1093/nar/gkab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Redβ is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redβ forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redβ in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redβ forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redβ in cells active for recombination and find it to range from 7 to 27 μM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ekaterina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher E Smith
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Carter T Wheat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Jooß K, McGee JP, Melani RD, Kelleher NL. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 2021; 42:1050-1059. [PMID: 33502026 PMCID: PMC8122066 DOI: 10.1002/elps.202000317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material. Here, we provide standard operating procedures for acquiring high-quality data using CZE in native mode coupled online to various Orbitrap mass spectrometers via a commercial sheathless interface, covering a wide range of analytes from 30-800 kDa. Using a standard protein mix, the influence of various CZE method parameters were evaluated, such as BGE/conductive liquid composition and separation voltage. Additionally, a universal approach for the optimization of fragmentation settings in the context of protein subunit and metalloenzyme characterization is discussed in detail for model analytes. A short section is dedicated to troubleshooting of the nCZE-MS setup. This study is aimed to help normalize nCZE-MS practices to enhance the CE community and provide a resource for the production of reproducible and high-quality data.
Collapse
Affiliation(s)
- Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - John P McGee
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
16
|
Jooß K, Schachner LF, Watson R, Gillespie ZB, Howard SA, Cheek MA, Meiners MJ, Sobh A, Licht JD, Keogh MC, Kelleher NL. Separation and Characterization of Endogenous Nucleosomes by Native Capillary Zone Electrophoresis-Top-Down Mass Spectrometry. Anal Chem 2021; 93:5151-5160. [PMID: 33749242 PMCID: PMC8040852 DOI: 10.1021/acs.analchem.0c04975] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a novel platform [native capillary zone electrophoresis-top-down mass spectrometry (nCZE-TDMS)] for the separation and characterization of whole nucleosomes, their histone subunits, and post-translational modifications (PTMs). As the repeating unit of chromatin, mononucleosomes (Nucs) are an ∼200 kDa complex of DNA and histone proteins involved in the regulation of key cellular processes central to human health and disease. Unraveling the covalent modification landscape of histones and their defined stoichiometries within Nucs helps to explain epigenetic regulatory mechanisms. In nCZE-TDMS, online Nuc separation is followed by a three-tier tandem MS approach that measures the intact mass of Nucs, ejects and detects the constituent histones, and fragments to sequence the histone. The new platform was optimized with synthetic Nucs to significantly reduce both sample requirements and cost compared to direct infusion. Limits of detection were in the low-attomole range, with linearity of over ∼3 orders of magnitude. The nCZE-TDMS platform was applied to endogenous Nucs from two cell lines distinguished by overexpression or knockout of histone methyltransferase NSD2/MMSET, where analysis of constituent histones revealed changes in histone abundances over the course of the CZE separation. We are confident the nCZE-TDMS platform will help advance nucleosome-level research in the fields of chromatin and epigenetics.
Collapse
Affiliation(s)
- Kevin Jooß
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel Watson
- EpiCypher Incorporated, Durham, North Carolina 27709, United States
| | | | - Sarah A Howard
- EpiCypher Incorporated, Durham, North Carolina 27709, United States
| | - Marcus A Cheek
- EpiCypher Incorporated, Durham, North Carolina 27709, United States
| | | | - Amin Sobh
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| | | | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Moghadamchargari Z, Shirzadeh M, Liu C, Schrecke S, Packianathan C, Russell DH, Zhao M, Laganowsky A. Molecular assemblies of the catalytic domain of SOS with KRas and oncogenic mutants. Proc Natl Acad Sci U S A 2021; 118:e2022403118. [PMID: 33723061 PMCID: PMC8000204 DOI: 10.1073/pnas.2022403118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ras is regulated by a specific guanine nucleotide exchange factor Son of Sevenless (SOS), which facilitates the exchange of inactive, GDP-bound Ras with GTP. The catalytic activity of SOS is also allosterically modulated by an active Ras (Ras-GTP). However, it remains poorly understood how oncogenic Ras mutants interact with SOS and modulate its activity. Here, native ion mobility-mass spectrometry is employed to monitor the assembly of the catalytic domain of SOS (SOScat) with KRas and three cancer-associated mutants (G12C, G13D, and Q61H), leading to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRas. We also find KRasG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its activity. A structure of the KRasG13D•SOScat complex was determined using cryogenic electron microscopy providing insight into the enhanced affinity of the mutant protein. In addition, we find that KRasG13D-GTP can allosterically increase the nucleotide exchange rate of KRas at the active site more than twofold compared to KRas-GTP. Furthermore, small-molecule Ras•SOS disruptors fail to dissociate KRasG13D•SOScat complexes, underscoring the need for more potent disruptors. Taken together, a better understanding of the interaction between oncogenic Ras mutants and SOS will provide avenues for improved therapeutic interventions.
Collapse
Affiliation(s)
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
18
|
Cejkov M, Greer T, Johnson RO, Zheng X, Li N. Electron Transfer Dissociation Parameter Optimization Using Design of Experiments Increases Sequence Coverage of Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:762-771. [PMID: 33596068 DOI: 10.1021/jasms.0c00458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Middle-down analysis of monoclonal antibodies (mAbs) by tandem mass spectrometry (MS2) can provide detailed insight into their primary structure with minimal sample preparation. The middle-down approach uses an enzyme to cleave mAbs into Fc/2, LC, and Fd subunits that are then analyzed by reversed phase liquid chromatography tandem mass spectrometry (RPLC-MS2). As maximum sequence coverage is desired to obtain meaningful structural information at the subunit level, a host of dissociation methods have been developed, and sometimes combined, to bolster fragmentation and increase the number of identified fragments. Here, we present a design of experiments (DOE) approach to optimize MS2 parameters, in particular those that may influence electron transfer dissociation (ETD) efficiency to increase the sequence coverage of antibody subunits. Applying this approach to the NIST monoclonal antibody standard (NISTmAb) using three RPLC-MS2 runs resulted in high sequence coverages of 67%, 67%, and 52% for Fc/2, LC, and Fd subunits, respectively. In addition, we apply this DOE strategy to model the parameters required to maximize the number of fragments produced in "low", "medium", and "high" mass ranges, which ultimately resulted in even higher sequence coverages of NISTmAb subunits (75%, 78%, and 64% for Fc/2, LC, and Fd subunits, respectively). The DOE approach provides high sequence coverage percentages utilizing only one fragmentation method, ETD, and could be extended to other state-of-the-art techniques that combine multiple fragmentation mechanisms to increase coverage.
Collapse
Affiliation(s)
- Milos Cejkov
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Reid O'Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
19
|
Selective regulation of human TRAAK channels by biologically active phospholipids. Nat Chem Biol 2020; 17:89-95. [PMID: 32989299 PMCID: PMC7746637 DOI: 10.1038/s41589-020-00659-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
TRAAK is an ion channel from the two-pore domain potassium (K2P) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K2P4.1 towards lipids remains poorly understood. Here we show the two isoforms of K2P4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. Unexpectedly, the channel can also discriminate the fatty acid linkage at the sn-1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid (PA) had the lowest equilibrium dissociation constants for both isoforms of K2P4.1. Liposome potassium flux assays with K2P4.1 reconstituted in defined lipid environments show that those containing PA activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K2P4.1.
Collapse
|
20
|
Lyu J, Liu Y, McCabe JW, Schrecke S, Fang L, Russell DH, Laganowsky A. Discovery of Potent Charge-Reducing Molecules for Native Ion Mobility Mass Spectrometry Studies. Anal Chem 2020; 92:11242-11249. [PMID: 32672445 DOI: 10.1021/acs.analchem.0c01826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing interest in the characterization of protein complexes and their interactions with ligands using native ion mobility mass spectrometry. A particular challenge, especially for membrane proteins, is preserving noncovalent interactions and maintaining native-like structures. Different approaches have been developed to minimize activation of protein complexes by manipulating charge on protein complexes in solution and the gas-phase. Here, we report the utility of polyamines that have exceptionally high charge-reducing potencies with some molecules requiring 5-fold less than trimethylamine oxide to elicit the same effect. The charge-reducing molecules do not adduct to membrane protein complexes and are also compatible with ion-mobility mass spectrometry, paving the way for improved methods of charge reduction.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Allison TM, Barran P, Cianférani S, Degiacomi MT, Gabelica V, Grandori R, Marklund EG, Menneteau T, Migas LG, Politis A, Sharon M, Sobott F, Thalassinos K, Benesch JLP. Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Anal Chem 2020; 92:10872-10880. [DOI: 10.1021/acs.analchem.9b05791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Matteo T. Degiacomi
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Thomas Menneteau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lukasz G. Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Konstantinos Thalassinos
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - Justin L. P. Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
22
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
23
|
Wang CR, Bubner ER, Jovcevski B, Mittal P, Pukala TL. Interrogating the higher order structures of snake venom proteins using an integrated mass spectrometric approach. J Proteomics 2020; 216:103680. [PMID: 32028038 DOI: 10.1016/j.jprot.2020.103680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
Abstract
Snake venoms contain complex mixtures of proteins vital for the survival of venomous snakes. Aligned with their diverse pharmacological activities, the protein compositions of snake venoms are highly variable, and efforts to characterise the primary structures of such proteins are ongoing. Additionally, a significant knowledge gap exists in terms of the higher-order protein structures which modulate venom potency, posing a challenge for successful therapeutic applications. Here we use a multifaceted mass spectrometry approach to characterise proteins from venoms of Collett's snake Pseudechis colletti and the puff adder Bitis arietans. Following chromatographic fractionation and bottom-up proteomics analysis, native mass spectrometry identified, among other components, a non-covalent l-amino acid oxidase dimer in the P. colletti venom and a C-type lectin tetramer in the B. arietans venom. Furthermore, a covalently-linked phospholipase A2 (PLA2) dimer was identified in P. colletti venom, from which the PLA2 species were shown to adopt compact geometries using ion mobility measurements. Interestingly, we show that the dimeric PLA2 possesses greater bioactivity than the monomeric PLA2s. This work contributes to ongoing efforts cataloguing components of snake venoms, and notably, emphasises the importance of understanding higher-order venom protein interactions and the utility of a combined mass spectrometric approach for this task. SIGNIFICANCE: The protein constituents of snake venoms represent a sophisticated cocktail of biologically active molecules ideally suited for further exploration in drug design and development. Despite ongoing efforts to characterise the diverse protein components of such venoms there is still much work required in this area, particularly in moving from simply describing the protein primary sequence to providing an understanding of quaternary structure. The combined proteomic and native mass spectrometry workflow utilised here gives new insights into higher order protein structures in selected snake venoms, and can underpin further investigation into the protein interactions which govern snake venom specificity and potency.
Collapse
Affiliation(s)
- C Ruth Wang
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Emily R Bubner
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, University of Adelaide, Adelaide 5005, Australia
| | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
24
|
Krenkel H, Hartmane E, Piras C, Brown J, Morris M, Cramer R. Advancing Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Toward Ultrahigh-Throughput Analysis. Anal Chem 2020; 92:2931-2936. [PMID: 31967792 PMCID: PMC7145281 DOI: 10.1021/acs.analchem.9b05202] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Label-free high-throughput screening using mass spectrometry has the potential to provide rapid large-scale sample analysis at a speed of more than one sample per second. Such speed is important for compound library, assay and future clinical screening of millions of samples within a reasonable time frame. Herein, we present a liquid atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) setup for high-throughput large-scale sample analysis (>5 samples per second) for three substance classes (peptides, antibiotics, and lipids). Liquid support matrices (LSM) were used for the analysis of standard substances as well as complex biological fluids (milk). Throughput and analytical robustness were mainly dependent on the complexity of the sample composition and the current limitations of the commercial hardware. However, the ultimate limits of liquid AP-MALDI in sample throughput can be conservatively estimated to be beyond 10-20 samples per second. This level of analytical speed is highly competitive compared with other label-free MS methods, including electrospray ionization and solid state MALDI, as well as MS methods using multiplexing by labeling, which in principle can also be used in combination with liquid AP-MALDI MS.
Collapse
Affiliation(s)
- Henriette Krenkel
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Evita Hartmane
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Cristian Piras
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Jeffery Brown
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom.,Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , United Kingdom
| | - Michael Morris
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , United Kingdom
| | - Rainer Cramer
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
25
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Gault J, Robinson CV. Cracking Complexes To Build Models of Protein Assemblies. ACS CENTRAL SCIENCE 2019; 5:1310-1311. [PMID: 31482112 PMCID: PMC6716198 DOI: 10.1021/acscentsci.9b00775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
27
|
Moghadamchargari Z, Huddleston J, Shirzadeh M, Zheng X, Clemmer DE, M Raushel F, Russell DH, Laganowsky A. Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry 2019; 58:3396-3405. [PMID: 31306575 DOI: 10.1021/acs.biochem.9b00532] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in RAS are associated with many different cancers and have been a therapeutic target for more than three decades. RAS cycles from an active to inactive state by both intrinsic and GTPase-activating protein (GAP)-stimulated hydrolysis. The activated enzyme interacts with downstream effectors, leading to tumor proliferation. Mutations in RAS associated with cancer are insensitive to GAP, and the rate of inactivation is limited to their intrinsic hydrolysis rate. Here, we use high-resolution native mass spectrometry (MS) to determine the kinetics and transition state thermodynamics of intrinsic hydrolysis for K-RAS and its oncogenic mutants. MS data reveal heterogeneity where both 2'-deoxy and 2'-hydroxy forms of GDP (guanosine diphosphate) and GTP (guanosine triphosphate) are bound to the recombinant enzyme. Intrinsic GTPase activity is directly monitored by the loss in mass of K-RAS bound to GTP, which corresponds to the release of phosphate. The rates determined from MS are in direct agreement with those measured using an established solution-based assay. Our results show that the transition state thermodynamics for the intrinsic GTPase activity of K-RAS is both enthalpically and entropically unfavorable. The oncogenic mutants G12C, Q61H, and G13D unexpectedly exhibit a 2'-deoxy GTP intrinsic hydrolysis rate higher than that for GTP.
Collapse
Affiliation(s)
- Zahra Moghadamchargari
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jamison Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Mehdi Shirzadeh
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Xueyun Zheng
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , Indiana , 47405 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
28
|
Schachner LF, Ives AN, McGee JP, Melani RD, Kafader JO, Compton PD, Patrie SM, Kelleher NL. Standard Proteoforms and Their Complexes for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1190-1198. [PMID: 30963455 PMCID: PMC6592724 DOI: 10.1007/s13361-019-02191-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 05/09/2023]
Abstract
Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.
Collapse
Affiliation(s)
- Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA.
| |
Collapse
|
29
|
Patrick JW, Laganowsky A. Probing Heterogeneous Lipid Interactions with Membrane Proteins Using Mass Spectrometry. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2003:175-190. [PMID: 31218619 DOI: 10.1007/978-1-4939-9512-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Native mass spectrometry (Native MS) enables the detection of intact membrane protein complexes in the gas phase. Membrane proteins are encapsulated in nonionic detergent micelles that protect them during transfer into the gas phase and preserves structure and noncovalent interactions. Herein, we describe methods to gently transfer membrane protein complexes bound to a mixture of heterogeneous lipid species into the gas phase. Through careful titrations, equilibrium dissociation constants can be directly determined to elucidate lipid interactions that induce positive, neutral, or negative allostery. These methods can lead to the identification of lipids that modulate membrane protein structure and function.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
30
|
Patrick JW, Laganowsky A. Generation of Charge-Reduced Ions of Membrane Protein Complexes for Native Ion Mobility Mass Spectrometry Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:886-892. [PMID: 30887461 PMCID: PMC6504596 DOI: 10.1007/s13361-019-02187-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Recent advances in native mass spectrometry (MS) have enabled the elucidation of how small molecule binding to membrane proteins modulates their structure and function. The protein-stabilizing osmolyte, trimethylamine oxide (TMAO), exhibits attractive properties for native MS studies. Here, we report significant charge reduction, nearly threefold, for three membrane protein complexes in the presence of this osmolyte without compromising mass spectral resolution. TMAO improves the ability to resolve individual lipid-binding events to the ammonia channel (AmtB) by over 200% compared to typical native conditions. The generation of ions with compact structure and access to a larger number of lipid-binding events through the incorporation of TMAO increases the utility of IM-MS for structural biology studies. Graphical Abstract.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
- Janssen Research & Development, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.
| |
Collapse
|
31
|
Farooq QUA, Haq NU, Aziz A, Aimen S, Inam ul Haq M. Mass Spectrometry for Proteomics and Recent Developments in ESI, MALDI and other Ionization Methodologies. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190204154653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:
Mass spectrometry is a tool used in analytical chemistry to identify components
in a chemical compound and it is of tremendous importance in the field of biology for high
throughput analysis of biomolecules, among which protein is of great interest.
Objective:
Advancement in proteomics based on mass spectrometry has led the way to quantify multiple
protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which
is a breakthrough in the field of bioinformatics.
Methods:
Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted
Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution
and many other key features for the characterization of proteins.
Results:
The advent of ambient mass spectrometry and its different versions like Desorption Electrospray
Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research.
Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules.
These drastic developments have paved the way to analyze large proteins of >200kDa easily.
Conclusion:
Here, we discuss the recent advancement in mass spectrometry, which is of great importance
and it could lead us to further deep analysis of the molecules from different perspectives and
further advancement in these techniques will enable us to find better ways for prediction of molecules
and their behavioral properties.
Collapse
Affiliation(s)
- Qurat ul Ain Farooq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Sara Aimen
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Muhammad Inam ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
32
|
Liu Y, LoCaste CE, Liu W, Poltash ML, Russell DH, Laganowsky A. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Nat Commun 2019; 10:1352. [PMID: 30902995 PMCID: PMC6430785 DOI: 10.1038/s41467-019-09333-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/05/2019] [Indexed: 02/05/2023] Open
Abstract
G-protein-gated inward rectifying potassium channels (GIRKs) require Gβγ subunits and phosphorylated phosphatidylinositides (PIPs) for gating. Although studies have provided insight into these interactions, the mechanism of how these events are modulated by Gβγ and the binding affinity between PIPs and GIRKs remains poorly understood. Here, native ion mobility mass spectrometry is employed to directly monitor small molecule binding events to mouse GIRK2. GIRK2 binds the toxin tertiapin Q and PIPs selectively and with significantly higher affinity than other phospholipids. A mutation in GIRK2 that causes a rotation in the cytoplasmic domain, similarly to Gβγ-binding to the wild-type channel, revealed differences in the selectivity towards PIPs. More specifically, PIP isoforms known to weakly activate GIRKs have decreased binding affinity. Taken together, our results reveal selective small molecule binding and uncover a mechanism by which rotation of the cytoplasmic domain can modulate GIRK•PIP interactions.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Catherine E LoCaste
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Wen Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.
| |
Collapse
|
33
|
Månsson EP, Wanie V, Galli M, Castrovilli MC, Frassetto F, Poletto L, Nisoli M, Calegari F. High-resolution mass spectrometry and velocity map imaging for ultrafast electron dynamics in complex biomolecules. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920503007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a design combining a velocity map imaging electron spectrometer with a reflectron mass spectrometer. Since the two spectrometer sides have different intrinsic requirements for the electric field in the central region, a large number of electrodes and a reflectron-geometry of the mass spectrometer were employed to achieve simultaneous high resolutions. Together with femtosecond and attosecond pump-probe methods it will enable studies of ultrafast dynamics in large molecular systems.
Collapse
|
34
|
A capillary zone electrophoresis method to investigate the oligomerization of the human Islet Amyloid Polypeptide involved in Type 2 Diabetes. J Chromatogr A 2018; 1578:83-90. [DOI: 10.1016/j.chroma.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/25/2018] [Accepted: 10/06/2018] [Indexed: 12/18/2022]
|
35
|
Sitkowski J, Bocian W, Bednarek E, Urbańczyk M, Koźmiński W, Borowicz P, Płucienniczak G, Łukasiewicz N, Sokołowska I, Kozerski L. Insight into human insulin aggregation revisited using NMR derived translational diffusion parameters. JOURNAL OF BIOMOLECULAR NMR 2018; 71:101-114. [PMID: 29948440 DOI: 10.1007/s10858-018-0197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled 13C,15N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution. The analysis of the experimental data of diffusion measurements, using the direct exponential curve resolution algorithm (DECRA) allows suggesting the two main components of the oligomeric ensemble. The 3D HSQC-iDOSY, (diffusion ordered HSQC) experiments performed on 13C, 15N-fully labeled insulin at the two pH values, 4 and 7.5, allow for the first time a more detailed experimental observation of individual components in the ensemble. The discussion involves earlier static and dynamic laser light scattering experiments and recent NMR derived translational diffusion results. The results bring new informations concerning the preparation of pharmaceutical formulation and in particular a role of Zn2+ ions. They also will enable better understanding and unifying the results of studies on insulin misfolding effects performed in solution by diverse physicochemical methods at different pH and concentration.
Collapse
Affiliation(s)
- Jerzy Sitkowski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | - Wojciech Bocian
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | | | - Mateusz Urbańczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Piotr Borowicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Iwona Sokołowska
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Lech Kozerski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland.
| |
Collapse
|
36
|
Consta S, Oh MI, Sharawy M, Malevanets A. Macroion–Solvent Interactions in Charged Droplets. J Phys Chem A 2018; 122:5239-5250. [DOI: 10.1021/acs.jpca.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Anatoly Malevanets
- Department of Electrical and Computer Engineering, The University of University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
37
|
Shiu-Hin Chan D, Seetoh WG, McConnell BN, Matak-Vinković D, Thomas SE, Mendes V, Blaszczyk M, Coyne AG, Blundell TL, Abell C. Structural insights into the EthR-DNA interaction using native mass spectrometry. Chem Commun (Camb) 2018; 53:3527-3530. [PMID: 28287239 DOI: 10.1039/c7cc00804j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EthR is a transcriptional repressor that increases Mycobacterium tuberculosis resistance to ethionamide. In this study, the EthR-DNA interaction has been investigated by native electrospray-ionization mass spectrometry for the first time. The results show that up to six subunits of EthR are able to bind to its operator.
Collapse
Affiliation(s)
- Daniel Shiu-Hin Chan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| | - Wei-Guang Seetoh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| | - Brendan N McConnell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| | - Sherine E Thomas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, UK.
| |
Collapse
|
38
|
Abstract
Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein-lipid assemblies. Despite this inherent complexity, the identification of specific protein-lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88-118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid-protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.
Collapse
|
39
|
Oh MI, Consta S. What factors determine the stability of a weak protein-protein interaction in a charged aqueous droplet? Phys Chem Chem Phys 2018; 19:31965-31981. [PMID: 29177351 DOI: 10.1039/c7cp05043g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining the interface of a weak transient protein complex transferred from bulk solution to the gaseous state via evaporating droplets is a critical question in the detection of the complex association (dissociation) constant by using electrospray ionization mass spectrometry (ESI-MS). Here we explore the factors that may affect the stability of a protein-protein interaction (PPI) using atomistic molecular dynamics (MD) modelling of a complex of ubiquitin (Ub) and the ubiquitin-associated domain (UbA) (RCSB PDB code ) and a non-covalent complex of diubiquitin (RCSB PDB code ) in aqueous droplets. A general method is presented to determine the protonation states of the complexes we investigate in particular, and that of a protein in general, under various pH conditions that an evaporating droplet acquires due to its change in size. We find that the combination of high temperature and high charge states of the protein complexes may destabilize the interface by creating new interfaces instead of a direct rupture of the initial stable interface. We provide evidence that highly charged protein complexes are found in droplets that form conical extrusions of the solvent on the surface due to charge-induced instability. This distinct droplet morphology leads to a higher solvent evaporation rate that assists in transferring the complex in the gaseous state without dissociation. The conical solvent protrusions expose on the droplet surface certain amino acids that otherwise would be solvated in a droplet with the protein complex of low charge states. The new vapor-protein interface does not have a direct effect on the stability of the PPI. A common way in experiments to stabilize the protein complexes in droplets is to reduce the protonation state of the proteins. Here we find that weakly bound protein complexes even at high protonation states can be stabilized by the presence of a small number of counterions, without affecting the protonation state of the protein. Our findings may provide guiding principles in ESI-MS experiments to stabilize weak transient PPIs.
Collapse
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
40
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem trapped ion mobility spectrometry. Analyst 2018; 143:2249-2258. [DOI: 10.1039/c7an02054f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Design, characteristics, and application of tandem trapped ion mobility spectrometry (TIMS-TIMS).
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Institute of Molecular Biophysics
| |
Collapse
|
41
|
Chandler SA, Benesch JL. Mass spectrometry beyond the native state. Curr Opin Chem Biol 2017; 42:130-137. [PMID: 29288996 DOI: 10.1016/j.cbpa.2017.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Native mass spectrometry allows the study of proteins by probing in vacuum the interactions they form in solution. It is a uniquely useful approach for structural biology and biophysics due to the high resolution of separation it affords, allowing the concomitant interrogation of multiple protein components with high mass accuracy. At its most basic, native mass spectrometry reports the mass of intact proteins and the assemblies they form in solution. However, the opportunities for more detailed characterisation are extensive, enabled by the exquisite control of ion motion that is possible in vacuum. Here we describe recent developments in mass spectrometry approaches to the structural interrogation of proteins both in, and beyond, their native state.
Collapse
Affiliation(s)
- Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Justin Lp Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
42
|
Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat Commun 2017; 8:2203. [PMID: 29259178 PMCID: PMC5736629 DOI: 10.1038/s41467-017-02397-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein–protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB–GlnK in the absence of lipids indicates conformational dynamics. A small number of lipids bound to AmtB is sufficient to modulate the interaction with GlnK, and lipids with different headgroups display a range of allosteric modulation. We also find that lipid chain length and stereochemistry can affect the degree of allosteric modulation, indicating an unforeseen selectivity of membrane proteins toward the chemistry of lipid tails. These results demonstrate that individual lipid-binding events can allosterically modulate the interactions of integral membrane and soluble proteins. Native mass spectrometry (MS) is a technique that preserves non-covalent interactions in the mass spectrometer. Here the authors use native MS to study integral membrane proteins, and find that lipids with different headgroups and tails can allosterically modulate protein-protein interactions in different fashions.
Collapse
|
43
|
Beck MW, Derrick JS, Suh JM, Kim M, Korshavn KJ, Kerr RA, Cho WJ, Larsen SD, Ruotolo BT, Ramamoorthy A, Lim MH. Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological Factors in Alzheimer's Disease. ChemMedChem 2017; 12:1828-1838. [PMID: 28990338 DOI: 10.1002/cmdc.201700456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2017] [Indexed: 12/12/2022]
Abstract
Chemical tools have been valuable for establishing a better understanding of the relationships between metal ion dyshomeostasis, the abnormal aggregation and accumulation of amyloid-β (Aβ), and oxidative stress in Alzheimer's disease (AD). Still, very little information is available to correlate the structures of chemical tools with specific reactivities used to uncover such relationships. Recently, slight structural variations to the framework of a chemical tool were found to drastically determine the tool's reactivities toward multiple pathological facets to various extents. Herein, we report our rational design and characterization of a structural series to illustrate the extent to which the reactivities of small molecules vary toward different targets as a result of minor structural modifications. These compounds were rationally and systematically modified based on consideration of properties, including ionization potentials and metal binding, to afford their desired reactivities with metal-free or metal-bound Aβ, reactive oxygen species (ROS), and free organic radicals. Our results show that although small molecules are structurally similar, they can interact with multiple factors associated with AD pathogenesis and alleviate their reactivities to different degrees. Together, our studies demonstrate the rational structure-directed design that can be used to develop chemical tools capable of regulating individual or interrelated pathological features in AD.
Collapse
Affiliation(s)
- Michael W Beck
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyle J Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Woo Jong Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
44
|
Chan DSH, Kavanagh ME, McLean KJ, Munro AW, Matak-Vinković D, Coyne AG, Abell C. Effect of DMSO on Protein Structure and Interactions Assessed by Collision-Induced Dissociation and Unfolding. Anal Chem 2017; 89:9976-9983. [DOI: 10.1021/acs.analchem.7b02329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel S.-H. Chan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Madeline E. Kavanagh
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J. McLean
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew. W. Munro
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Dijana Matak-Vinković
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony G. Coyne
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chris Abell
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
45
|
Consta S, Sharawy M, Oh MI, Malevanets A. Advances in Modeling the Stability of Noncovalent Complexes in Charged Droplets with Applications in Electrospray Ionization-MS Experiments. Anal Chem 2017; 89:8192-8202. [DOI: 10.1021/acs.analchem.7b01941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Styliani Consta
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Mahmoud Sharawy
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Myong In Oh
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Anatoly Malevanets
- Department
of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
46
|
Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An Electrospray Ionization Mass Spectrometry Study on the "In Vacuo" Hetero-Oligomers Formed by the Antimicrobial Peptides, Surfactin and Gramicidin S. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1623-1637. [PMID: 28560564 DOI: 10.1007/s13361-017-1685-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
It was previously observed that the lipopeptide surfactants in surfactin (Srf) have an antagonistic action towards the highly potent antimicrobial cyclodecapeptide, gramicidin S (GS). This study reports on some of the molecular aspects of the antagonism as investigated through complementary electrospray ionization mass spectrometry techniques. We were able to detect stable 1:1 and 2:1 hetero-oligomers in a mixture of surfactin and gramicidin S. The noncovalent interaction between GS and Srf, with the proposed equilibrium: GS~Srf↔GS+Srf correlated to apparent K d values of 6-9 μM in gas-phase and 1 μM in aqueous solution. The apparent K d values decreased with a longer incubation time and indicated a slow oligomerization equilibrium. Furthermore, the low μM K dapp values of GS~Srf↔GS+Srf fell within the biological concentration range and related to the 2- to 3-fold increase in [GS] needed for bacterial growth inhibition in the presence of Srf. Competition studies indicated that neither Na+ nor Ca2+ had a major effect on the stability of preformed heterodimers and that GS in fact out-competed Ca2+ and Na+ from Srf. Traveling wave ion mobility mass spectrometry revealed near symmetrical peaks of the heterodimers correlating to a compact dimer conformation that depend on specific interactions. Collision-induced dissociation studies indicated that the peptide interaction is most probably between one Orn residue in GS and the Asp residue, but not the Glu residue in Srf. We propose that flanking hydrophobic residues in both peptides stabilize the antagonistic and inactive peptide hetero-oligomers and shield the specific polar interactions in an aqueous environment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa.
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa.
| | - N Maré Vlok
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Hans A Eyéghé-Bickong
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Marthinus J van der Merwe
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- LCMS Central Analytical Facility, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Marietjie A Stander
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- LCMS Central Analytical Facility, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| |
Collapse
|
47
|
Laszlo KJ, Bush MF. Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions. Anal Chem 2017. [PMID: 28636334 DOI: 10.1021/acs.analchem.7b01474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of charge state on structures of native-like cations of serum albumin, streptavidin, avidin, and alcohol dehydrogenase were probed using cation-to-anion proton-transfer reactions (CAPTR), ion mobility, mass spectrometry, and complementary energy-dependent experiments. The CAPTR products all have collision cross-section (Ω) values that are within 5.5% of the original precursor cations. The first CAPTR event for each precursor yields products that have smaller Ω values and frequently exhibit the greatest magnitude of change in Ω resulting from a single CAPTR event. To investigate how the structures of the precursors affect the structures of the products, ions were activated as a function of energy prior to CAPTR. In each case, the Ω values of the activated precursors increase with increasing energy, but the Ω values of the CAPTR products are smaller than the activated precursors. To investigate the stabilities of the CAPTR products, the products were activated immediately prior to ion mobility. These results show that additional structures with smaller or larger Ω values can be populated and that the structures and stabilities of these ions depend most strongly on the identity of the protein and the charge state of the product, rather than the charge state of the precursor or the number of CAPTR events. Together, these results indicate that the excess charges initially present on native-like ions have a modest, but sometimes statistically significant, effect on their Ω values. Therefore, potential contributions from charge state should be considered when using experimental Ω values to elucidate structures in solution.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
48
|
Laszlo KJ, Buckner JH, Munger EB, Bush MF. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1382-1391. [PMID: 28224394 PMCID: PMC5555649 DOI: 10.1007/s13361-017-1620-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than ~4. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - John H Buckner
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Eleanor B Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
49
|
Chan DSH, Mendes V, Thomas SE, McConnell BN, Matak-Vinković D, Coyne AG, Blundell TL, Abell C. Fragment Screening against the EthR-DNA Interaction by Native Mass Spectrometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Shiu-Hin Chan
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Vitor Mendes
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Sherine E. Thomas
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Brendan N. McConnell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Dijana Matak-Vinković
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Anthony G. Coyne
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Tom L. Blundell
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
50
|
Chan DSH, Mendes V, Thomas SE, McConnell BN, Matak-Vinković D, Coyne AG, Blundell TL, Abell C. Fragment Screening against the EthR-DNA Interaction by Native Mass Spectrometry. Angew Chem Int Ed Engl 2017; 56:7488-7491. [DOI: 10.1002/anie.201702888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Shiu-Hin Chan
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Vitor Mendes
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Sherine E. Thomas
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Brendan N. McConnell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Dijana Matak-Vinković
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Anthony G. Coyne
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Tom L. Blundell
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road CB2 1GA Cambridge UK
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|