1
|
González-Pech RA, Shepherd J, Fuller ZL, LaJeunesse TC, Parkinson JE. The genome of a giant clam zooxanthella (Cladocopium infistulum) offers few clues to adaptation as an extracellular symbiont with high thermotolerance. BMC Genomics 2024; 25:914. [PMID: 39354409 PMCID: PMC11443893 DOI: 10.1186/s12864-024-10822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Cladocopium infistulum (Symbiodiniaceae) is a dinoflagellate specialized to live in symbiosis with western Pacific giant clams (Tridacnidae). Unlike coral-associated symbionts, which reside within the host cells, C. infistulum inhabits the extracellular spaces of the clam's digestive diverticula. It is phylogenetically basal to a large species complex of stress-tolerant Cladocopium, many of which are associated with important reef-building corals in the genus Porites. This close phylogenetic relationship may explain why C. infistulum exhibits high thermotolerance relative to other tridacnid symbionts. Moreover, past analyses of microsatellite loci indicated that Cladocopium underwent whole-genome duplication prior to the adaptive radiations that led to its present diversity. RESULTS A draft genome assembly of C. infistulum was produced using long- and short-read sequences to explore the genomic basis for adaptations underlying thermotolerance and extracellular symbiosis among dinoflagellates and to look for evidence of genome duplication. Comparison to three other Cladocopium genomes revealed no obvious over-representation of gene groups or families whose functions would be important for maintaining C. infistulum's unique physiological and ecological properties. Preliminary analyses support the existence of partial or whole-genome duplication among Cladocopium, but additional high-quality genomes are required to substantiate these findings. CONCLUSION Although this investigation of Cladocopium infistulum revealed no patterns diagnostic of heat tolerance or extracellular symbiosis in terms of overrepresentation of gene functions or genes under selection, it provided a valuable genomic resource for comparative analyses. It also indicates that ecological divergence among Cladocopium species, and potentially among other dinoflagellates, is partially governed by mechanisms other than gene content. Thus, additional high-quality, multiomic data are needed to explore the molecular basis of key phenotypes among symbiotic microalgae.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Todd C LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Institute of Energy and the Environment, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
2
|
Novel species of parasitic green microalgae Coccomyxa veronica sp. nov. infects Anadara broughtonii from the Sea of Japan. Symbiosis 2022. [DOI: 10.1007/s13199-022-00877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Measuring Photonics in Photosynthesis: Combined Micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry at the Micrometre-Scale. Biomimetics (Basel) 2022; 7:biomimetics7030107. [PMID: 35997427 PMCID: PMC9397104 DOI: 10.3390/biomimetics7030107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Natural photonic structures are common across the biological kingdoms, serving a diversity of functionalities. The study of implications of photonic structures in plants and other phototrophic organisms is still hampered by missing methodologies for determining in situ photonic properties, particularly in the context of constantly adapting photosynthetic systems controlled by acclimation mechanisms on the cellular scale. We describe an innovative approach to determining spatial and spectral photonic properties and photosynthesis activity, employing micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry in a combined microscope setup. Using two examples from the photosynthetic realm, the dynamic Bragg-stack-like thylakoid structures of Begonia sp. and complex 2.5 D photonic crystal slabs from the diatom Coscinodiscus granii, we demonstrate how the setup can be used for measuring self-adapting photonic-photosynthetic systems and photonic properties on single-cell scales. We suggest that the setup is well-suited for the determination of photonic–photosynthetic systems in a diversity of organisms, facilitating the cellular, temporal, spectral and angular resolution of both light distribution and combined chlorophyll fluorescence determination. As the catalogue of photonic structure from photosynthetic organisms is rich and diverse in examples, a deepened study could inspire the design of novel optical- and light-harvesting technologies.
Collapse
|
4
|
Teng GC, Boo MV, Lam SH, Pang CZ, Chew SF, Ip YK. Molecular characterization and light-dependent expression of glycerol facilitator (GlpF) in coccoid Symbiodiniaceae dinoflagellates of the giant clam Tridacna squamosa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Genomic Survey and Resources for the Boring Giant Clam Tridacna crocea. Genes (Basel) 2022; 13:genes13050903. [PMID: 35627288 PMCID: PMC9140397 DOI: 10.3390/genes13050903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
The boring giant clam Tridacna crocea is an evolutionary, ecologically, economically, and culturally important reef-dwelling bivalve targeted by a profitable ornamental fishery in the Indo-Pacific Ocean. In this study, we developed genomic resources for T. crocea. Using low-pass (=low-coverage, ~6×) short read sequencing, this study, for the first time, estimated the genome size, unique genome content, and nuclear repetitive elements, including the 45S rRNA DNA operon, in T. crocea. Furthermore, we tested if the mitochondrial genome can be assembled from RNA sequencing data. The haploid genome size estimated using a k-mer strategy was 1.31–1.39 Gbp, which is well within the range reported before for other members of the family Cardiidae. Unique genome content estimates using different k-mers indicated that nearly a third and probably at least 50% of the genome of T. crocea was composed of repetitive elements. A large portion of repetitive sequences could not be assigned to known repeat element families. Taking into consideration only annotated repetitive elements, the most common were classified as Satellite DNA which were more common than Class I-LINE and Class I-LTR Ty3-gypsy retrotransposon elements. The nuclear ribosomal operon in T. crocea was partially assembled into two contigs, one encoding the complete ssrDNA and 5.8S rDNA unit and a second comprising a partial lsrDNA. A nearly complete mitochondrial genome (92%) was assembled from RNA-seq. These newly developed genomic resources are highly relevant for improving our understanding of the biology of T. crocea and for the development of conservation plans and the fisheries management of this iconic reef-dwelling invertebrate.
Collapse
|
6
|
Li J, Zhou Y, Qin Y, Wei J, Shigong P, Ma H, Li Y, Yuan X, Zhao L, Yan H, Zhang Y, Yu Z. Assessment of the juvenile vulnerability of symbiont-bearing giant clams to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152265. [PMID: 34902424 DOI: 10.1016/j.scitotenv.2021.152265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification (OA) severely affects marine bivalves, especially their calcification processes. However, very little is known about the fate of symbiont-bearing giant clams in the acidified oceans, which hinders our ability to develop strategies to protect this ecologically and economically important group in coral reef ecosystems. Here, we explored the integrated juvenile responses of fluted giant clam Tridacna squamosa (Lamarck, 1819) to acidified seawater at different levels of biological organization. Our results revealed that OA did not cause a significant reduction in survival and shell growth performance, indicating that T. squamosa juveniles are tolerated to moderate acidification. Yet, significantly reduced net calcification rate demonstrated the calcifying physiology sensitivity to OA, in line with significant declines in symbiont photosynthetic yield and zooxanthellae density which in turn lowered the amount of energy supply for energetically expensive calcification processes. Subsequent transcriptome sequencing and comparative analysis of differentially expressed genes revealed that the regulation of calcification processes, such as transport of calcification substrates, acid-base regulation, synthesis of organic matrix in the calcifying fluid, as well as metabolic depression were the major response to OA. Taken together, the integration of physiological and molecular responses can provide a comprehensive understanding of how the early life history stages of giant clams respond to OA and make an important leap forward in assessing their fate under future ocean conditions.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Jinkuan Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Pengyang Shigong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yunqing Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Xiangcheng Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hong Yan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China.
| |
Collapse
|
7
|
McCoy DE, Shneidman AV, Davis AL, Aizenberg J. Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering. Micron 2021; 151:103160. [PMID: 34678583 DOI: 10.1016/j.micron.2021.103160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Light influences most ecosystems on earth, from sun-dappled forests to bioluminescent creatures in the ocean deep. Biologists have long studied nano- and micro-scale organismal adaptations to manipulate light using ever-more sophisticated microscopy, spectroscopy, and other analytical equipment. In combination with experimental tools, simulations of light interacting with objects can help researchers determine the impact of observed structures and explore how variations affect optical function. In particular, the finite-difference time-domain (FDTD) method is widely used throughout the nanophotonics community to efficiently simulate light interacting with a variety of materials and optical devices. More recently, FDTD has been used to characterize optical adaptations in nature, such as camouflage in fish and other organisms, colors in sexually-selected birds and spiders, and photosynthetic efficiency in plants. FDTD is also common in bioengineering, as the design of biologically-inspired engineered structures can be guided and optimized through FDTD simulations. Parameter sweeps are a particularly useful application of FDTD, which allows researchers to explore a range of variables and modifications in natural and synthetic systems (e.g., to investigate the optical effects of changing the sizes, shape, or refractive indices of a structure). Here, we review the use of FDTD simulations in biology and present a brief methods primer tailored for life scientists, with a focus on the commercially available software Lumerical FDTD. We give special attention to whether FDTD is the right tool to use, how experimental techniques are used to acquire and import the structures of interest, and how their optical properties such as refractive index and absorption are obtained. This primer is intended to help researchers understand FDTD, implement the method to model optical effects, and learn about the benefits and limitations of this tool. Altogether, FDTD is well-suited to (i) characterize optical adaptations and (ii) provide mechanistic explanations; by doing so, it helps (iii) make conclusions about evolutionary theory and (iv) inspire new technologies based on natural structures.
Collapse
Affiliation(s)
- Dakota E McCoy
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA.
| | - Alexander L Davis
- Department of Biology, Duke University, Campus Box 90338, Durham, NC, 27708, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
8
|
The colorful mantle of the giant clam Tridacna squamosa expresses a homolog of electrogenic sodium: Bicarbonate cotransporter 2 that mediates the supply of inorganic carbon to photosynthesizing symbionts. PLoS One 2021; 16:e0258519. [PMID: 34653199 PMCID: PMC8519421 DOI: 10.1371/journal.pone.0258519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Giant clams live in symbiosis with phototrophic dinoflagellates, which reside extracellularly inside zooxanthellal tubules located mainly in the colourful and extensible outer mantle. As symbiotic dinoflagellates have no access to the ambient seawater, they need to obtain inorganic carbon (Ci) from the host for photosynthesis during illumination. The outer mantle has a host-mediated and light-dependent carbon-concentrating mechanism to augment the supply of Ci to the symbionts during illumination. Iridocytes can increase the secretion of H+ through vacuolar H+-ATPase to dehydrate HCO3− present in the hemolymph to CO2. CO2 can permeate the basolateral membrane of the epithelial cells of the zooxanthellal tubules, and rehydrated back to HCO3− in the cytoplasm catalysed by carbonic anhydrase 2. This study aimed to elucidate the molecular mechanism involved in the transport of HCO3− across the apical membrane of these epithelial cells into the luminal fluid surrounding the symbionts. We had obtained the complete cDNA coding sequence of a homolog of electrogenic Na+-HCO3−cotransporter 2 (NBCe2-like gene) from the outer mantle of the fluted giant clam, Tridacna squamosa. NBCe2-like gene comprised 3,399 bp, encoding a protein of 1,132 amino acids of 127.3 kDa. NBCe2-like protein had an apical localization in the epithelial cells of zooxanthellal tubules, denoting that it could transport HCO3− between the epithelial cells and the luminal fluid. Furthermore, illumination augmented the transcript level and protein abundance of NBCe2-like gene/NBCe2-like protein in the outer mantle, indicating that it could mediate the increased transport of HCO3− into the luminal fluid to support photosynthesis in the symbionts.
Collapse
|
9
|
Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci U S A 2021; 118:2025252118. [PMID: 34215695 DOI: 10.1073/pnas.2025252118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.
Collapse
|
10
|
Brahmi C, Chapron L, Le Moullac G, Soyez C, Beliaeff B, Lazareth CE, Gaertner-Mazouni N, Vidal-Dupiol J. Effects of elevated temperature and pCO 2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. CONSERVATION PHYSIOLOGY 2021; 9:coab041. [PMID: 34150209 PMCID: PMC8208665 DOI: 10.1093/conphys/coab041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/18/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecological and socio-economic importance, its responses to these threats still need to be explored. We investigated physiological responses of 4-year-old Tridacna maxima to realistic levels of temperature (+1.5°C) and partial pressure of carbon dioxide (pCO2) (+800 μatm of CO2) predicted for 2100 in French Polynesian lagoons during the warmer season. During a 65-day crossed-factorial experiment, individuals were exposed to two temperatures (29.2°C, 30.7°C) and two pCO2 (430 μatm, 1212 μatm) conditions. The impact of each environmental parameter and their potential synergetic effect were evaluated based on respiration, biomineralization and photophysiology. Kinetics of thermal and/or acidification stress were evaluated by performing measurements at different times of exposure (29, 41, 53, 65 days). At 30.7°C, the holobiont O2 production, symbiont photosynthetic yield and density were negatively impacted. High pCO2 had a significant negative effect on shell growth rate, symbiont photosynthetic yield and density. No significant differences of the shell microstructure were observed between control and experimental conditions in the first 29 days; however, modifications (i.e. less-cohesive lamellae) appeared from 41 days in all temperature and pCO2 conditions. No significant synergetic effect was found. Present thermal conditions (29.2°C) appeared to be sufficiently stressful to induce a host acclimatization response. All these observations indicate that temperature and pCO2 are both forcing variables affecting T. maxima's physiology and jeopardize its survival under environmental conditions predicted for the end of this century.
Collapse
Affiliation(s)
- Chloé Brahmi
- Univ. Polynésie française, IFREMER, ILM, IRD, EIO UMR 241, F-98702 Faa’a, Tahiti, Polynésie française
| | - Leila Chapron
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Gilles Le Moullac
- IFREMER, IRD, Institut Louis-Malardé, Univ. Polynésie française, EIO, F-98719 Taravao, Tahiti, Polynésie française, France
| | - Claude Soyez
- IFREMER, IRD, Institut Louis-Malardé, Univ. Polynésie française, EIO, F-98719 Taravao, Tahiti, Polynésie française, France
| | - Benoît Beliaeff
- IFREMER, IRD, Institut Louis-Malardé, Univ. Polynésie française, EIO, F-98719 Taravao, Tahiti, Polynésie française, France
| | - Claire E Lazareth
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Muséum National d'Histoire Naturelle, 61 Rue Buffon, CP53, 75231, Paris Cedex 05, France
| | - Nabila Gaertner-Mazouni
- Univ. Polynésie française, IFREMER, ILM, IRD, EIO UMR 241, F-98702 Faa’a, Tahiti, Polynésie française
| | - Jeremie Vidal-Dupiol
- IFREMER, IRD, Institut Louis-Malardé, Univ. Polynésie française, EIO, F-98719 Taravao, Tahiti, Polynésie française, France
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France
| |
Collapse
|
11
|
Teh LSX, Poo JST, Boo MV, Chew SF, Ip YK. Using glutamine synthetase 1 to evaluate the symbionts' potential of ammonia assimilation and their responses to illumination in five organs of the giant clam, Tridacna squamosa. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110914. [PMID: 33540079 DOI: 10.1016/j.cbpa.2021.110914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Nitrogen-deficient symbiotic dinoflagellates (zooxanthellae) living inside the fluted giant clam, Tridacna squamosa, need to obtain nitrogen from the host. Glutamine synthetase 1 (GS1) is a cytosolic enzyme that assimilates ammonia into glutamine. We determined the transcript levels of zooxanthellal GS1 (Zoox-GS1), which represented comprehensively GS1 transcripts of Symbiodinium, Cladocopium and Durusdinium, in five organs of T. squamosa. The outer mantle had significantly higher transcript level of Zoox-GS1 than the inner mantle, foot muscle, hepatopancreas and ctenidium, but the transcript ratios of Zoox-GS1 to zooxanthellal form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Zoox-rbcII), which represented the potential of ammonia assimilation relative to the phototrophic potential, were comparable among these five organs. Based on transcript ratios of Zoox-GS1 to zooxanthellal Urease (Zoox-URE), the outer mantle had the highest potential of urea degradation relative to ammonia assimilation among the five organs, probably because urea degradation could furnish CO2 and NH3 for photosynthesis and amino acid synthesis, respectively, in the symbionts therein. The protein abundance of Zoox-GS1 was upregulated in the outer mantle and the inner mantle during illumination. Zoox-GS1 could catalyze light-enhanced glutamine formation using ammonia absorbed from the host or ammonia released through urea degradation in the cytoplasm. The glutamine produced could be used to synthesize other nitrogenous compounds, including amino acids in the cytoplasm or in the plastid of the dinoflagellates. Some of the amino acids synthesized by the symbionts in the inner mantle and foot muscle could be donated to the host to support shell organic matrix formation and muscle production, respectively.
Collapse
Affiliation(s)
- Leanne S X Teh
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Jeslyn S T Poo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| |
Collapse
|
12
|
Ip YK, Teng GCY, Boo MV, Poo JST, Hiong KC, Kim H, Wong WP, Chew SF. Symbiodiniaceae Dinoflagellates Express Urease in Three Subcellular Compartments and Upregulate its Expression Levels in situ in Three Organs of a Giant Clam (Tridacna squamosa) During Illumination. JOURNAL OF PHYCOLOGY 2020; 56:1696-1711. [PMID: 32725784 DOI: 10.1111/jpy.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Giant clams harbor three genera of symbiotic dinoflagellates (Symbiodinium, Cladocopium, and Durusdinium) as extracellular symbionts (zooxanthellae). While symbiotic dinoflagellates can synthesize amino acids to benefit the host, they are nitrogen-deficient. Hence, the host must supply them with nitrogen including urea, which can be degraded to ammonia and carbon dioxide by urease (URE). Here, we report three complete coding cDNA sequences of URE, one for each genus of dinoflagellate, obtained from the colorful outer mantle of the giant clam, Tridacna squamosa. The outer mantle had higher transcript level of Tridacna squamosa zooxanthellae URE (TSZURE) than the whitish inner mantle, foot muscle, hepatopancreas, and ctenidium. TSZURE was immunolocalized strongly and atypically in the plastid, moderately in the cytoplasm, and weakly in the cell wall and plasma membrane of symbiotic dinoflagellates. In the outer mantle, illumination upregulated the protein abundance of TSZURE, which could enhance urea degradation in photosynthesizing dinoflagellates. The urea-nitrogen released could then augment synthesis of amino acids to be shared with the host for its general needs. Illumination also enhanced gene and protein expression levels of TSZURE/TSZURE in the inner mantle and foot muscle, which contain only small quantities of symbiotic dinoflagellate, have no iridocyte, and lack direct exposure to light. With low phototrophic potential, dinoflagellates in the inner mantle and foot muscle might need to absorb carbohydrates in order to assimilate the urea-nitrogen into amino acids. Amino acids donated by dinoflagellates to the inner mantle and the foot muscle could be used especially for synthesis of organic matrix needed for light-enhanced shell formation and muscle protein, respectively.
Collapse
Affiliation(s)
- Yuen Kwong Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Germaine Ching Yun Teng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Mel Veen Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Jeslyn Shi Ting Poo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Kum Chew Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Hyoju Kim
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Wai Peng Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Shit Fun Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616
| |
Collapse
|
13
|
Mouchet SR, Luke S, McDonald LT, Vukusic P. Optical costs and benefits of disorder in biological photonic crystals. Faraday Discuss 2020; 223:9-48. [PMID: 33000817 DOI: 10.1039/d0fd00101e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photonic structures in ordered, quasi-ordered or disordered forms have evolved across many different animal and plant systems. They can produce complex and often functional optical responses through coherent and incoherent scattering processes, often too, in combination with broadband or narrowband absorbing pigmentation. Interestingly, these systems appear highly tolerant of faults in their photonic structures, with imperfections in their structural order appearing not to impact, discernibly, the systems' optical signatures. The extent to which any such biological system deviates from presenting perfect structural order can dictate the optical properties of that system and, thereby, the optical properties that system delivers. However, the nature and extent of the optical costs and benefits of imperfect order in biological systems demands further elucidation. Here, we identify the extent to which biological photonic systems are tolerant of defects and imperfections. Certainly, it is clear that often significant inherent variations in the photonic structures of these systems, for instance a relatively broad distribution of lattice constants, can consistently produce what appear to be effective visual appearances and optical performances. In this article, we review previously investigated biological photonic systems that present ordered, quasi-ordered or disordered structures. We discuss the form and nature of the optical behaviour of these structures, focusing particularly on the associated optical costs and benefits surrounding the extent to which their structures deviate from what might be considered ideal systems. Then, through detailed analyses of some well-known 1D and 2D structurally coloured systems, we analyse one of the common manifestations of imperfect order, namely, the extent and nature of positional disorder in the systems' spatial distribution of layers and scattering centres. We use these findings to inform optical modelling that presents a quantitative and qualitative description of the optical costs and benefits of such positional disorder among ordered and quasi-ordered 1D and 2D photonic systems. As deviation from perfectly ordered structures invariably limits the performance of technology-oriented synthetic photonic processes, we suggest that the use of bio-inspired fault tolerance principles would add value to applied photonic technologies.
Collapse
Affiliation(s)
- Sébastien R Mouchet
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK. and Department of Physics, Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stephen Luke
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| | - Luke T McDonald
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| | - Pete Vukusic
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| |
Collapse
|
14
|
Zhang KX, D'Souza S, Upton BA, Kernodle S, Vemaraju S, Nayak G, Gaitonde KD, Holt AL, Linne CD, Smith AN, Petts NT, Batie M, Mukherjee R, Tiwari D, Buhr ED, Van Gelder RN, Gross C, Sweeney A, Sanchez-Gurmaches J, Seeley RJ, Lang RA. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 2020; 585:420-425. [PMID: 32879486 PMCID: PMC8130195 DOI: 10.1038/s41586-020-2683-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.
Collapse
Affiliation(s)
- Kevin X Zhang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Shane D'Souza
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin D Gaitonde
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Amanda L Holt
- Department of Physics, Yale University, New Haven, CT, USA
| | - Courtney D Linne
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - April N Smith
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Department of Biological Structure, University of Washington Medical School, Seattle, WA, USA
- Department of Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Alison Sweeney
- Department of Physics, Yale University, New Haven, CT, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Chew SF, Koh CZY, Hiong KC, Boo MV, Wong WP, Ip YK. The fluted giant clam (Tridacna squamosa) increases the protein abundance of the host's copper-zinc superoxide dismutase in the colorful outer mantle, but not the whitish inner mantle, during light exposure. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110791. [PMID: 32798693 DOI: 10.1016/j.cbpa.2020.110791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 01/27/2023]
Abstract
The colorful outer mantle of giant clams contains abundance of symbiotic dinoflagellates (zooxanthellae) and iridocytes, and has direct exposure to light. In light, photosynthesizing dinoflagellates produce O2, and the host cells in the outer mantle would be confronted with hyperoxia-related oxidative stress. In comparison, the whitish inner mantle contains few symbiotic dinoflagellates and no iridocytes. It is involved in shell formation, and is shaded from light. CuZnSOD is a cytosolic enzyme that scavenges intracellular O2-. We had obtained from the outer mantle of the fluted giant clam, Tridacna squamosa, the complete cDNA coding sequence of a host-derived copper zinc superoxide dismutase (CuZnSOD), which comprised 462 bp and encoded for 154 amino acids with a calculated MW of 15.6 kDa. CuZnSOD was expressed strongly in the outer mantle, ctenidium, hepatopancreas and kidney. The transcript level of CuZnSOD remained unchanged in the outer mantle during light exposure, but the protein abundance of CuZnSOD increased ~3-fold after exposure to light for 6 or 12 h. By contrast, 12 h of light exposure had no significant effects on the gene and protein expression levels of CuZnSOD/CuZnSOD in the inner mantle. Hence, the increased expression of CuZnSOD in the outer mantle of T. squamosa was probably a host's response to ameliorate oxidative stress related to photosynthesis in the symbionts, and not simply due to increased metabolic rate in the host cells. Evidently, the host clam must possess light- or O2-responsive anti-oxidative defenses in order to align with the light-dependent photosynthetic activity of its symbionts.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore.
| | - Clarissa Z Y Koh
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| |
Collapse
|
16
|
Shedding light: a phylotranscriptomic perspective illuminates the origin of photosymbiosis in marine bivalves. BMC Evol Biol 2020; 20:50. [PMID: 32357841 PMCID: PMC7195748 DOI: 10.1186/s12862-020-01614-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosymbiotic associations between metazoan hosts and photosynthetic dinoflagellates are crucial to the trophic and structural integrity of many marine ecosystems, including coral reefs. Although extensive efforts have been devoted to study the short-term ecological interactions between coral hosts and their symbionts, long-term evolutionary dynamics of photosymbiosis in many marine animals are not well understood. Within Bivalvia, the second largest class of mollusks, obligate photosymbiosis is found in two marine lineages: the giant clams (subfamily Tridacninae) and the heart cockles (subfamily Fraginae), both in the family Cardiidae. Morphologically, giant clams show relatively conservative shell forms whereas photosymbiotic fragines exhibit a diverse suite of anatomical adaptations including flattened shells, leafy mantle extensions, and lens-like microstructural structures. To date, the phylogenetic relationships between these two subfamilies remain poorly resolved, and it is unclear whether photosymbiosis in cardiids originated once or twice. RESULTS In this study, we establish a backbone phylogeny for Cardiidae utilizing RNASeq-based transcriptomic data from Tridacninae, Fraginae and other cardiids. A variety of phylogenomic approaches were used to infer the relationship between the two groups. Our analyses found conflicting gene signals and potential rapid divergence among the lineages. Overall, results support a sister group relationship between Tridacninae and Fraginae, which diverged during the Cretaceous. Although a sister group relationship is recovered, ancestral state reconstruction using maximum likelihood-based methods reveals two independent origins of photosymbiosis, one at the base of Tridacninae and the other within a symbiotic Fraginae clade. CONCLUSIONS The newly revealed common ancestry between Tridacninae and Fraginae brings a possibility that certain genetic, metabolic, and/or anatomical exaptations existed in their last common ancestor, which promoted both lineages to independently establish photosymbiosis, possibly in response to the modern expansion of reef habitats.
Collapse
|
17
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
18
|
Zhou H, Xiao C, Yang Z, Du Y. 3D structured materials and devices for artificial photosynthesis. NANOTECHNOLOGY 2020; 31:282001. [PMID: 32240995 DOI: 10.1088/1361-6528/ab85ea] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Artificial photosynthesis is an effective way to convert solar energy into fuels, which is of great significance to energy production and reduction of atmospheric CO2 content. In recent years, 3D structured artificial photosynthetic system has made great progress as an effective design strategy. This review first highlights several typical mechanisms for improved artificial photosynthesis with 3D structures: improved light harvesting, mass transfer and charge separation. Then, we summarize typical examples of 3D structured artificial photosynthetic systems, including bioinspired structures, photonic crystals (PC), designed photonic structures (PC coupling structure, plasmon resonance structure, optical resonance structure, metamaterials), 3D-printed systems, nanowire integrated systems and hierarchical 3D structures. Finally, we discuss the problems and challenges to the application and development of 3D artificial photosynthetic system and the possible trends of future development. We hope this review can inspire more progress in the field of artificial photosynthesis.
Collapse
Affiliation(s)
- Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Alves Monteiro HJ, Brahmi C, Mayfield AB, Vidal-Dupiol J, Lapeyre B, Le Luyer J. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. GLOBAL CHANGE BIOLOGY 2020; 26:1271-1284. [PMID: 31692206 DOI: 10.1111/gcb.14907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.
Collapse
Affiliation(s)
| | - Chloé Brahmi
- Université de la Polynésie Française, UMR Ecosystèmes Insulaires Océaniens, Ifremer, ILM, IRD, Tahiti, Polynésie Française
| | - Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Bruno Lapeyre
- EPHE-CNRS-UPVD, USR3278-CRIOBE, Labex CORAIL, Moorea, Polynésie Française
| | - Jérémy Le Luyer
- IFREMER, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, Polynésie Française
| |
Collapse
|
20
|
Nayak G, Zhang KX, Vemaraju S, Odaka Y, Buhr ED, Holt-Jones A, Kernodle S, Smith AN, Upton BA, D'Souza S, Zhan JJ, Diaz N, Nguyen MT, Mukherjee R, Gordon SA, Wu G, Schmidt R, Mei X, Petts NT, Batie M, Rao S, Hogenesch JB, Nakamura T, Sweeney A, Seeley RJ, Van Gelder RN, Sanchez-Gurmaches J, Lang RA. Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. Cell Rep 2020; 30:672-686.e8. [PMID: 31968245 PMCID: PMC7341981 DOI: 10.1016/j.celrep.2019.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023] Open
Abstract
Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.
Collapse
Affiliation(s)
- Gowri Nayak
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kevin X Zhang
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shruti Vemaraju
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yoshinobu Odaka
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Amanda Holt-Jones
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - April N Smith
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brian A Upton
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shane D'Souza
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesse J Zhan
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nicolás Diaz
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Minh-Thanh Nguyen
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shannon A Gordon
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Gang Wu
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert Schmidt
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xue Mei
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sujata Rao
- The Cleveland Clinic, Ophthalmic Research, 9500 Euclid Avenue, OH 44195, USA
| | - John B Hogenesch
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takahisa Nakamura
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA; Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Alison Sweeney
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA; Department of Biological Structure, University of Washington Medical School, Seattle, WA 98104, USA; Department of Pathology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Joan Sanchez-Gurmaches
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Richard A Lang
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Kim JB, Lee GH, Kim SH. Interfacial Assembly of Amphiphilic Tiles for Reconfigurable Photonic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45237-45245. [PMID: 31697465 DOI: 10.1021/acsami.9b17290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nature has created photonic structures in cells and assembled them to make photonic layers for a living. Inspired from nature, we design amphiphilic photonic tiles and assemble them at air-water interface to compose highly reconfigurable photonic layers. The photonic tiles are prepared by photolithographically defining the shape of the disc using a photocurable dispersion of repulsive particles. The tiles are further treated by directional dry etching to selectively render top and side surfaces of the discs hydrophobic. The amphiphilic photonic tiles deform the air-water interface by gravity, which causes a strong attractive force driven by capillarity. Therefore, the tiles form two-dimensional (2D) dense-packing, which rapidly adapts dynamic fluctuation and shape change of the interface, providing highly reconfigurable photonic layers. In addition, the assembly can be transferred into target solid surfaces through the Langmuir-Blodgett method to make photonic coatings. Moreover, the amphiphilic tiles can be assembled on the surface of water drops, forming a photonic shell on liquid marbles which resembles photonic structures in nature. We believe that our strategy based on a 2D tile assembly at the free interface will provide a simple yet useful means to create photonic layers on various purposes.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Gun Ho Lee
- Department of Chemical and Biomolecular Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering , KAIST , Daejeon 34141 , Republic of Korea
| |
Collapse
|
22
|
Harris OK, Kingston ACN, Wolfe CS, Ghoshroy S, Johnsen S, Speiser DI. Core-shell nanospheres behind the blue eyes of the bay scallop Argopecten irradians. J R Soc Interface 2019; 16:20190383. [PMID: 31640501 PMCID: PMC6833330 DOI: 10.1098/rsif.2019.0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bay scallop Argopecten irradians (Mollusca: Bivalvia) has dozens of iridescent blue eyes that focus light using mirror-based optics. Here, we test the hypothesis that these eyes appear blue because of photonic nanostructures that preferentially scatter short-wavelength light. Using transmission electron microscopy, we found that the epithelial cells covering the eyes of A. irradians have three distinct layers: an outer layer of microvilli, a middle layer of random close-packed nanospheres and an inner layer of pigment granules. The nanospheres are approximately 180 nm in diameter and consist of electron-dense cores approximately 140 nm in diameter surrounded by less electron-dense shells 20 nm thick. They are packed at a volume density of approximately 60% and energy-dispersive X-ray spectroscopy indicates that they are not mineralized. Optical modelling revealed that the nanospheres are an ideal size for producing angle-weighted scattering that is bright and blue. A comparative perspective supports our hypothesis: epithelial cells from the black eyes of the sea scallop Placopecten magellanicus have an outer layer of microvilli and an inner layer of pigment granules but lack a layer of nanospheres between them. We speculate that light-scattering nanospheres help to prevent UV wavelengths from damaging the internal structures of the eyes of A. irradians and other blue-eyed scallops.
Collapse
Affiliation(s)
- Olivia K Harris
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alexandra C N Kingston
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Caitlin S Wolfe
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Soumitra Ghoshroy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Electron Microscopy Center, University of South Carolina, Columbia, SC 29208, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
23
|
Kim JB, Lee SY, Lee JM, Kim SH. Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14485-14509. [PMID: 30943000 DOI: 10.1021/acsami.8b21276] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Structural coloration provides a great potential for various applications due to unique optical properties distinguished from conventional pigment colors. Structural colors are nonfading, iridescent, and tunable, which is difficult to achieve with pigments. In addition, structural color is potentially less toxic than pigments. However, it is challenging to develop structural colors because elaborate nanostructures are a prerequisite for the coloration. Furthermore, it is highly suggested the nanostructures be patterned at various length scales on a large area to provide practical formats. There have been intensive studies to develop pragmatic methods for producing structural-color patterns in a controlled manner using either colloidal crystals or glasses. This article reviews the current state of the art in the structural-color patterning based on the colloidal arrays. We first discuss common and different features between colloidal crystals and glasses. We then categorize colloidal arrays into six distinct structures of 3D opals, inverse opals, non-close-packed arrays, 2D colloidal crystals, 1D colloidal strings, and 3D amorphous arrays and study various methods to make them patterned from recent key contributions. Finally, we outline the current challenges and future perspectives of the structural-color patterns.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Seung Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Jung Min Lee
- The Fourth R&D Institute , Agency for Defense Development , Daejeon 34060 , Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
24
|
Diversity of endosymbiotic Symbiodiniaceae in giant clams at Dongsha Atoll, northern South China Sea. Symbiosis 2019. [DOI: 10.1007/s13199-019-00615-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Swift TA, Oliver TAA, Galan MC, Whitney HM. Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. Interface Focus 2019; 9:20180048. [PMID: 30603068 PMCID: PMC6304006 DOI: 10.1098/rsfs.2018.0048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
At the current population growth rate, we will soon be unable to meet increasing food demands. As a consequence of this potential problem, considerable efforts have been made to enhance crop productivity by breeding, genetics and improving agricultural practices. While these techniques have traditionally been successful, their efficacy since the 'green revolution' has begun to significantly plateau. This stagnation of gains combined with the negative effects of climate change on crop yields has prompted researchers to develop novel and radical methods to increase crop productivity. Recent work has begun exploring the use of nanomaterials as synthetic probes to augment how plants use light. Photosynthesis in crops is often limited by their ability to absorb and exploit solar energy for photochemistry. The capacity to interact with and optimize how plants use light has the potential to increase the productivity of crops and enable the tailoring of crops for different environments and to compensate for predicted climate changes. Advances in the synthesis and surface modification of nanomaterials have overcome previous drawbacks and renewed their potential use as synthetic probes to enhance crop yields. Here, we review the current applications of functional nanomaterials in plants and will make an argument for the continued development of promising new nanomaterials and future applications in agriculture. This will highlight that functional nanomaterials have the clear potential to provide a much-needed route to enhanced future food security. In addition, we will discuss the often-ignored current evidence of nanoparticles present in the environment as well as inform and encourage caution on the regulation of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Thomas A. Swift
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TL, UK
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - M. Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Heather M. Whitney
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TL, UK
| |
Collapse
|
26
|
Masters NJ, Lopez-Garcia M, Oulton R, Whitney HM. Characterization of chloroplast iridescence in Selaginella erythropus. J R Soc Interface 2018; 15:rsif.2018.0559. [PMID: 30487239 DOI: 10.1098/rsif.2018.0559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Iridescence in shade-dwelling plants has previously been described in only a few plant groups, and even fewer where the structural colour is produced by intracellular structures. In contrast with other Selaginella species, this work reports the first example in the genus of structural colour originating from modified chloroplasts. Characterization of these structures determines that they form one-dimensional photonic multilayers. The Selaginella bizonoplasts present an analogous structure to recently reported Begonia iridoplasts; however, unlike Begonia species that produce iridoplasts, this Selaginella species was not previously described as iridescent. This therefore raises the possibility of widespread but unobserved and uncharacterized photonic structures in plants.
Collapse
Affiliation(s)
- Nathan J Masters
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin Lopez-Garcia
- Department of Nanophotonics, INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Ruth Oulton
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK.,H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
27
|
Armstrong EJ, Roa JN, Stillman JH, Tresguerres M. Symbiont photosynthesis in giant clams is promoted by V-type H +-ATPase from host cells. ACTA ACUST UNITED AC 2018; 221:jeb.177220. [PMID: 30065035 DOI: 10.1242/jeb.177220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.
Collapse
Affiliation(s)
- Eric J Armstrong
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA .,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Goessling JW, Su Y, Cartaxana P, Maibohm C, Rickelt LF, Trampe ECL, Walby SL, Wangpraseurt D, Wu X, Ellegaard M, Kühl M. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis. THE NEW PHYTOLOGIST 2018; 219:122-134. [PMID: 29672846 DOI: 10.1111/nph.15149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/06/2018] [Indexed: 05/08/2023]
Abstract
The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology.
Collapse
Affiliation(s)
- Johannes W Goessling
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Yanyan Su
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Paulo Cartaxana
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Christian Maibohm
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Lars F Rickelt
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Oxyguard International A/S, Farum Gydevej 64, 3520, Farum, Denmark
- Zenzor, Krondrevet 31, 3140, Ålsgårde, Denmark
| | - Erik C L Trampe
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Sandra L Walby
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Daniel Wangpraseurt
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Xia Wu
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Marianne Ellegaard
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
29
|
Living Light 2018: Conference Report. Biomimetics (Basel) 2018; 3:biomimetics3020011. [PMID: 31105233 PMCID: PMC6352687 DOI: 10.3390/biomimetics3020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Living Light is a biennial conference focused on all aspects of light–matter interaction in biological organisms with a broad, interdisciplinary outlook. The 2018 edition was held at the Møller Centre in Cambridge, UK, from April 11th to April 14th, 2018. Living Light’s main goal is to bring together researchers from different backgrounds (e.g., biologists, physicists and engineers) in order to discuss the current state of the field and sparkle new collaborations and new interdisciplinary projects. With over 90 national and international attendees, the 2018 edition of the conference was strongly multidisciplinary: oral and poster presentations encompassed a wide range of topics ranging from the evolution and development of structural colors in living organisms and their genetic manipulation to the study of fossil photonic structures.
Collapse
|
30
|
Fam RR, Hiong KC, Choo CY, Wong WP, Chew SF, Ip YK. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa , and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Gene 2018; 656:40-52. [DOI: 10.1016/j.gene.2018.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
|
31
|
Lopez-Garcia M, Masters N, O’Brien HE, Lennon J, Atkinson G, Cryan MJ, Oulton R, Whitney HM. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. SCIENCE ADVANCES 2018; 4:eaan8917. [PMID: 29651457 PMCID: PMC5895443 DOI: 10.1126/sciadv.aan8917] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 02/22/2018] [Indexed: 05/23/2023]
Abstract
Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia. The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.
Collapse
Affiliation(s)
- Martin Lopez-Garcia
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK
- Department of Nanophotonics, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Nathan Masters
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Heath E. O’Brien
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Joseph Lennon
- School of Physics, Henry Herbert Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - George Atkinson
- School of Physics, Henry Herbert Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Martin J. Cryan
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK
| | - Ruth Oulton
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK
- School of Physics, Henry Herbert Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
32
|
Hiong KC, Cao-Pham AH, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK. Light-dependent expression of a Na +/H + exchanger 3-like transporter in the ctenidium of the giant clam, Tridacna squamosa, can be related to increased H + excretion during light-enhanced calcification. Physiol Rep 2018; 5:5/8/e13209. [PMID: 28438983 PMCID: PMC5408280 DOI: 10.14814/phy2.13209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/03/2022] Open
Abstract
Na+/H+ exchangers (NHEs) regulate intracellular pH and ionic balance by mediating H+ efflux in exchange for Na+ uptake in a 1:1 stoichiometry. This study aimed to obtain from the ctenidium of the giant clam Tridacna squamosa (TS) the complete cDNA sequence of a NHE3‐like transporter (TSNHE3), and to determine the effect of light exposure on its mRNA expression level and protein abundance therein. The coding sequence of TSNHE3 comprised 2886 bp, encoding 961 amino acids with an estimated molecular mass of 105.7 kDa. Immunofluorescence microscopy revealed that TSNHE3 was localized to the apical membrane of epithelial cells of the ctenidial filaments and the tertiary water channels. Particularly, the apical immunofluorescence of the ctenidial filaments was consistently stronger in the ctenidium of clams exposed to 12 h of light than those of the control kept in darkness. Indeed, light induced significant increases in the transcript level and protein abundance of TSNHE3/TSNHE3 in the ctenidium, indicating that the transcription and translation of TSNHE3/TSNHE3 were light‐dependent. As light‐enhanced calcification generates H+, the increased expression of TSNHE3/TSNHE3 in the ctenidium could be a response to augment H+ excretion in pursuance of whole‐body acid‐base balance during light exposure. These results signify that shell formation in giant clams requires the collaboration between the ctenidium, which is a respiratory and iono‐regulatory organ, and the inner mantle, which is directly involved in the calcification process, and provide new insights into the mechanisms of light‐enhanced calcification in giant clams.
Collapse
Affiliation(s)
- Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Anh H Cao-Pham
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Nanyang Walk, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore .,The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
33
|
Kolle M, Lee S. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702669. [PMID: 29057519 DOI: 10.1002/adma.201702669] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/13/2017] [Indexed: 05/24/2023]
Abstract
Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics.
Collapse
Affiliation(s)
- Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Seungwoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
34
|
Kim HN, Vahidinia S, Holt AL, Sweeney AM, Yang S. Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702922. [PMID: 29034980 DOI: 10.1002/adma.201702922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/20/2017] [Indexed: 06/07/2023]
Abstract
It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production.
Collapse
Affiliation(s)
- Hye-Na Kim
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Sanaz Vahidinia
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104, USA
- The Nature Conservancy, 4245 North Fairfax Drive, Arlington, VA, 22203, USA
| | - Amanda L Holt
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Alison M Sweeney
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Boo MV, Hiong KC, Choo CYL, Cao-Pham AH, Wong WP, Chew SF, Ip YK. The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium. PLoS One 2017; 12:e0186865. [PMID: 29049367 PMCID: PMC5648256 DOI: 10.1371/journal.pone.0186865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Na+/K+-ATPase (NKA) is essential for maintaining the Na+ and K+ gradients, and supporting the secondary active transport of certain ions/molecules, across the plasma membrane of animal cells. This study aimed to clone the NKA α-subunit (NKAα) from the inner mantle adjacent to the extrapallial fluid of Tridacna squamosa, to determine its subcellular localization, and to examine the effects of light exposure on its transcript level and protein abundance. The cDNA coding sequence of NKAα from T. squamosa comprised 3105 bp, encoding 1034 amino acids with an estimated molecular mass of 114 kDa. NKAα had a basolateral localization along the shell-facing epithelium of the inner mantle. Exposure to 12 h of light led to a significantly stronger basolateral NKAα-immunofluorescence at the shell-facing epithelium, indicating that NKA might play a role in light-enhanced calcification in T. squamosa. After 3 h of light exposure, the transcript level of NKAα decreased transiently in the inner mantle, but returned to the control level thereafter. In comparison, the protein abundance of NKAα remained unchanged at hour 3, but became significantly higher than the control after 12 h of light exposure. Hence, the expression of NKAα in the inner mantle of T. squamosa was light-dependent. It is probable that a higher expression level of NKA was needed in the shell-facing epithelial cells of the inner mantle to cope with a rise in Na+ influx, possibly caused by increases in activities of some Na+-dependent ion transporters/channels involved in light-enhanced calcification.
Collapse
Affiliation(s)
- Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Celine Y. L. Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Anh H. Cao-Pham
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
36
|
Ip YK, Hiong KC, Goh EJK, Boo MV, Choo CYL, Ching B, Wong WP, Chew SF. The Whitish Inner Mantle of the Giant Clam, Tridacna squamosa, Expresses an Apical Plasma Membrane Ca 2+-ATPase (PMCA) Which Displays Light-Dependent Gene and Protein Expressions. Front Physiol 2017; 8:781. [PMID: 29066980 PMCID: PMC5641333 DOI: 10.3389/fphys.2017.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Giant clams live in symbiosis with extracellular zooxanthellae and display high rates of growth and shell formation (calcification) in light. Light-enhanced calcification requires an increase in the supply of Ca2+ to, and simultaneously an augmented removal of H+ from, the extrapallial fluid where shell formation occurs. We have obtained the complete coding cDNA sequence of Plasma Membrane Ca2+-ATPase (PMCA) from the thin and whitish inner mantle, which is in touch with the extrapallial fluid, of the giant clam Tridacna squamosa. The deduced PMCA sequence consisted of an apical targeting element. Immunofluorescence microscopy confirmed that PMCA had an apical localization in the shell-facing epithelium of the inner mantle, whereby it can actively secrete Ca2+ in exchange for H+. More importantly, the apical PMCA-immunofluorescence of the shell-facing epithelium of the inner mantle increased significantly after 12 h of exposure to light. The transcript and protein levels of PMCA/PMCA also increased significantly in the inner mantle after 6 or 12 h of light exposure. These results offer insights into a light-dependable mechanism of shell formation in T. squamosa and a novel explanation of light-enhanced calcification in general. As the inner mantle normally lacks light sensitive pigments, our results support a previous proposition that symbiotic zooxanthellae, particularly those in the colorful and extensible outer mantle, may act as light-sensing elements for the host clam.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,The Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Enan J K Goh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
37
|
Jacobs M, Lopez-Garcia M, Phrathep OP, Lawson T, Oulton R, Whitney HM. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. NATURE PLANTS 2016; 2:16162. [PMID: 27775728 DOI: 10.1038/nplants.2016.162] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture1,2. Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses3,4, but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia5, notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found5,6. A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts7-9, suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts10,11, our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry.
Collapse
Affiliation(s)
- Matthew Jacobs
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin Lopez-Garcia
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK
| | - O-Phart Phrathep
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ruth Oulton
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK
- HH Wills Physics Laboratory, University of Bristol, BS8 1TL, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
38
|
Ghoshal A, Eck E, Gordon M, Morse DE. Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. J R Soc Interface 2016; 13:20160285. [PMID: 27383420 PMCID: PMC4971220 DOI: 10.1098/rsif.2016.0285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023] Open
Abstract
A surprising recent discovery revealed that the brightly reflective cells ('iridocytes') in the epithelia of giant clams actually send the majority of incident photons 'forward' into the tissue. While the intracellular Bragg reflectors in these cells are responsible for their colourful back reflection, Mie scattering produces the forward scattering, thus illuminating a dense population of endosymbiotic, photosynthetic microalgae. We now present a detailed micro-spectrophotometric characterization of the Bragg stacks in the iridocytes in live tissue to obtain the refractive index of the high-index layers (1.39 to 1.58, average 1.44 ± 0.04), the thicknesses of the high- and low-index layers (50-150 nm), and the numbers of pairs of layers (2-11) that participate in the observed spectral reflection. Based on these measurements, we performed electromagnetic simulations to better understand the optical behaviour of the iridocytes. The results open a deeper understanding of the optical behaviour of these cells, with the counterintuitive discovery that specific combinations of iridocyte diameter and Bragg-lamellar spacing can produce back reflection of the same colour that is also scattered forward, in preference to other wavelengths that are scattered at higher angles. We find for all values of size and wavelength investigated that more than 90% of the incident energy is carried by the photons that are scattered in the forward direction; while this forward scattering from each iridocyte shows very narrow angular dispersion (ca ±6°), the multiplicative scattering from a layer of ca 20 iridocytes broadens this dispersion to a cone of approximately ±90°. This understanding of the complex biophotonic dynamics enhances our comprehension of the physiologically, ecologically and evolutionarily significant light environment inside the giant clam, which is diffuse and nearly white at small tissue depths and downwelling, relatively monochromatic, and can be the same colour as the back-reflected light at greater depths in the tissue. Originally thought to be unique, cells of similar structure and photonic activity are now recognized in other species, where they serve other functions. The behaviour of the iridocytes opens possible new considerations for conservation and management of the valuable giant clam resource and new avenues for biologically inspired photonic applications.
Collapse
Affiliation(s)
- Amitabh Ghoshal
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106-5100, USA
| | - Elizabeth Eck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Michael Gordon
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106-5100, USA Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5100, USA
| | - Daniel E Morse
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106-5100, USA Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| |
Collapse
|
39
|
Kientz B, Luke S, Vukusic P, Péteri R, Beaudry C, Renault T, Simon D, Mignot T, Rosenfeld E. A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Sci Rep 2016; 6:19906. [PMID: 26819100 PMCID: PMC4730217 DOI: 10.1038/srep19906] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Iridescent color appearances are widespread in nature. They arise from the interaction of light with micron- and submicron-sized physical structures spatially arranged with periodic geometry and are usually associated with bright angle-dependent hues. Iridescence has been reported for many animals and marine organisms. However, iridescence has not been well studied in bacteria. Recently, we reported a brilliant "pointillistic" iridescence in colony biofilms of marine Flavobacteria that exhibit gliding motility. The mechanism of their iridescence is unknown. Here, using a multi-disciplinary approach, we show that the cause of iridescence is a unique periodicity of the cell population in the colony biofilm. Cells are arranged together to form hexagonal photonic crystals. Our model highlights a novel pattern of self-organization in a bacterial biofilm. "Pointillistic" bacterial iridescence can be considered a new light-dependent phenomenon for the field of microbiology.
Collapse
Affiliation(s)
- Betty Kientz
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Stephen Luke
- School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Peter Vukusic
- School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, France
| | - Cyrille Beaudry
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, France
| | - Tristan Renault
- Institut Français pour la Recherche et l'Exploitation de la Mer, Unité Santé Génétique et Microbiologie des Mollusques, Laboratoire de Génétique et de Pathologie des Mollusques Marins, La Tremblade, France
| | - David Simon
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|