1
|
Guyonnet AEM, Racicot KJ, Brinkman B, Iwaniuk AN. The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition. Brain Struct Funct 2024; 230:9. [PMID: 39688732 DOI: 10.1007/s00429-024-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
Collapse
Affiliation(s)
- Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
2
|
Panagopoulos DJ, Karabarbounis A, Chrousos GP. Biophysical mechanism of animal magnetoreception, orientation and navigation. Sci Rep 2024; 14:30053. [PMID: 39627252 PMCID: PMC11615392 DOI: 10.1038/s41598-024-77883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
We describe a biophysical mechanism for animal magnetoreception, orientation and navigation in the geomagnetic field (GMF), based on the ion forced oscillation (IFO) mechanism in animal cell membrane voltage-gated ion channels (VGICs) (IFO-VGIC mechanism). We review previously suggested hypotheses. We describe the structure and function of VGICs and argue that they are the most sensitive electromagnetic sensors in all animals. We consider the magnetic force exerted by the GMF on a mobile ion within a VGIC of an animal with periodic velocity variation. We apply this force in the IFO equation resulting in solution connecting the GMF intensity with the velocity variation rate. We show that animals with periodic velocity variations, receive oscillating forces on their mobile ions within VGICs, which are forced to oscillate exerting forces on the voltage sensors of the channels, similar or greater to the forces from membrane voltage changes that normally induce gating. Thus, the GMF in combination with the varying animal velocity can gate VGICs and alter cell homeostasis in a degree depending, for a given velocity and velocity variation rate, on GMF intensity (unique in each latitude) and the angle between velocity and GMF axis, which determine animal position and orientation.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Electromagnetic Field-Biophysics Research Laboratory, Athens, Greece.
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair On Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
3
|
Ptaszyński K, Aslyamov T, Esposito M. Dissipation Bounds Precision of Current Response to Kinetic Perturbations. PHYSICAL REVIEW LETTERS 2024; 133:227101. [PMID: 39672139 DOI: 10.1103/physrevlett.133.227101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
The precision of currents in Markov networks is bounded by dissipation via the so-called thermodynamic uncertainty relation (TUR). In our Letter, we demonstrate a similar inequality that bounds the precision of the static current response to perturbations of kinetic barriers. Perturbations of such type, which affect only the system kinetics but not the thermodynamic forces, are highly important in biochemistry and nanoelectronics. We prove that our inequality cannot be derived from the standard TUR. Instead, it implies the standard TUR and provides an even tighter bound for dissipation. We also provide a procedure for obtaining the optimal response precision for a given model.
Collapse
|
4
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
5
|
Bindra JK, Malavath T, Teferi MY, Kretzschmar M, Kern J, Niklas J, Utschig LM, Poluektov OG. Light-Induced Charge Separation in Photosystem I from Different Biological Species Characterized by Multifrequency Electron Paramagnetic Resonance Spectroscopy. Int J Mol Sci 2024; 25:8188. [PMID: 39125759 PMCID: PMC11311511 DOI: 10.3390/ijms25158188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Photosystem I (PSI) serves as a model system for studying fundamental processes such as electron transfer (ET) and energy conversion, which are not only central to photosynthesis but also have broader implications for bioenergy production and biomimetic device design. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate key light-induced charge separation steps in PSI isolated from several green algal and cyanobacterial species. Following photoexcitation, rapid sequential ET occurs through either of two quasi-symmetric branches of donor/acceptor cofactors embedded within the protein core, termed the A and B branches. Using high-frequency (130 GHz) time-resolved EPR (TR-EPR) and deuteration techniques to enhance spectral resolution, we observed that at low temperatures prokaryotic PSI exhibits reversible ET in the A branch and irreversible ET in the B branch, while PSI from eukaryotic counterparts displays either reversible ET in both branches or exclusively in the B branch. Furthermore, we observed a notable correlation between low-temperature charge separation to the terminal [4Fe-4S] clusters of PSI, termed FA and FB, as reflected in the measured FA/FB ratio. These findings enhance our understanding of the mechanistic diversity of PSI's ET across different species and underscore the importance of experimental design in resolving these differences. Though further research is necessary to elucidate the underlying mechanisms and the evolutionary significance of these variations in PSI charge separation, this study sets the stage for future investigations into the complex interplay between protein structure, ET pathways, and the environmental adaptations of photosynthetic organisms.
Collapse
Affiliation(s)
- Jasleen K. Bindra
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Tirupathi Malavath
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Mandefro Y. Teferi
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Moritz Kretzschmar
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA 94720, USA; (M.K.); (J.K.)
| | - Jan Kern
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA 94720, USA; (M.K.); (J.K.)
| | - Jens Niklas
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Lisa M. Utschig
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Oleg G. Poluektov
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| |
Collapse
|
6
|
Zhang J, Chang Y, Zhang P, Zhang Y, Wei M, Han C, Wang S, Lu HM, Cai T, Xie C. On the evolutionary trail of MagRs. Zool Res 2024; 45:821-830. [PMID: 38894524 PMCID: PMC11298677 DOI: 10.24272/j.issn.2095-8137.2024.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Magnetic sense, or termed magnetoreception, has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation. MagRs, highly conserved A-type iron-sulfur proteins, are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis. However, the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear. In this study, MagR sequences from 131 species, ranging from bacteria to humans, were selected for analysis, with 23 representative sequences covering species from prokaryotes to Mollusca, Arthropoda, Osteichthyes, Reptilia, Aves, and mammals chosen for protein expression and purification. Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution. Three types of MagRs were identified, each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability, indicating continuous expansion of the functional roles of MagRs during speciation and evolution. This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.
Collapse
Affiliation(s)
- Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yafei Chang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Chenyang Han
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| |
Collapse
|
7
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among teleost fish provides insight for improving electromagnetic perception. Open Biol 2024; 14:240092. [PMID: 39043226 PMCID: PMC11265860 DOI: 10.1098/rsob.240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared with the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homologue of Brachyhypopomus gauderio (B.g.) is inserted into EPG-EPG(B.g.)-the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among Teleost fish provides insight for improving electromagnetic perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588096. [PMID: 38617371 PMCID: PMC11014636 DOI: 10.1101/2024.04.04.588096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared to the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among Teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 Teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time, and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homolog of Brachyhypopomus gauderio (B.g.) is inserted into EPG - EPG(B.g.) - the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Shakhparonov VV, Bolshakova AA, Koblikova EO, Tsoi JA. European common frogs determine migratory direction by inclination magnetic compass and show diurnal variation in orientation. J Exp Biol 2024; 227:jeb246150. [PMID: 38264865 DOI: 10.1242/jeb.246150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Animals can use two variants of the magnetic compass: the 'polar compass' or the 'inclination compass'. Among vertebrates, the compass type has been identified for salmon, mole rats, birds, turtles and urodeles. However, no experiments have been conducted to determine the compass variant in anurans. To elucidate this, we performed a series of field and laboratory experiments on males of the European common frog during the spawning season. In field experiments in a large circular arena, we identified the direction of the stereotypic migration axis for a total of 581 frogs caught during migration from river to pond or in a breeding pond. We also found that motivation of the frogs varied throughout the day, probably to avoid deadly night freezes, which are common in spring. The laboratory experiments were conducted on a total of 450 frogs in a T-maze placed in a three-axis Merritt coil system. The maze arms were positioned parallel to the natural migration axis inferred on the basis of magnetic field. Both vertical and horizontal components of the magnetic field were altered, and frogs were additionally tested in a vertical magnetic field. We conclude that European common frogs possess an inclination magnetic compass, as for newts, birds and sea turtles, and potentially use it during the spring migration. The vertical magnetic field confuses the frogs, apparently as a result of the inability to choose a direction. Notably, diurnal variation in motivation of the frogs was identical to that in nature, indicating the presence of internal rhythms controlling this process.
Collapse
Affiliation(s)
- Vladimir V Shakhparonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, Saint-Petersburg 194223, Russia
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Alisa A Bolshakova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Eugenia O Koblikova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Julia A Tsoi
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| |
Collapse
|
10
|
Wang S, Zhang P, Fei F, Tong T, Zhou X, Zhou Y, Zhang J, Wei M, Zhang Y, Zhang L, Huang Y, Zhang L, Zhang X, Cai T, Xie C. Unexpected divergence in magnetoreceptor MagR from robin and pigeon linked to two sequence variations. Zool Res 2024; 45:69-78. [PMID: 38114434 PMCID: PMC10839668 DOI: 10.24272/j.issn.2095-8137.2023.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Birds exhibit extraordinary mobility and remarkable navigational skills, obtaining guidance cues from the Earth's magnetic field for orientation and long-distance movement. Bird species also show tremendous diversity in navigation strategies, with considerable differences even within the same taxa and among individuals from the same population. The highly conserved iron and iron-sulfur cluster binding magnetoreceptor (MagR) protein is suggested to enable animals, including birds, to detect the geomagnetic field and navigate accordingly. Notably, MagR is also implicated in other functions, such as electron transfer and biogenesis of iron-sulfur clusters, raising the question of whether variability exists in its biochemical and biophysical features among species, particularly birds. In the current study, we conducted a comparative analysis of MagR from two different bird species, including the migratory European robin and the homing pigeon. Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species, with only three sequence variations. Nevertheless, two of these variations underpinned significant differences in metal binding capacity, oligomeric state, and magnetic properties. These findings offer compelling evidence for the marked differences in MagR between the two avian species, potentially explaining how a highly conserved protein can mediate such diverse functions.
Collapse
Affiliation(s)
- Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yajie Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Lin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China. E-mail:
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China. E-mail:
| |
Collapse
|
11
|
Romanova N, Utvenko G, Prokshina A, Cellarius F, Fedorishcheva A, Pakhomov A. Migratory birds are able to choose the appropriate migratory direction under dim yellow narrowband light. Proc Biol Sci 2023; 290:20232499. [PMID: 38113940 PMCID: PMC10730290 DOI: 10.1098/rspb.2023.2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Currently, it is generally assumed that migratory birds are oriented in the appropriate migratory direction under UV, blue and green light (short-wavelength) and are unable to use their magnetic compass in total darkness and under yellow and red light (long-wavelength). However, it has also been suggested that the magnetic compass has two sensitivity peaks: in the short and long wavelengths, but with different intensities. In this project, we aimed to study the orientation of long-distance migrants, pied flycatchers (Ficedula hypoleuca), under different narrowband light conditions during autumn and spring migrations. The birds were tested in the natural magnetic field (NMF) and a changed magnetic field (CMF) rotated counterclockwise by 120° under dim green (autumn) and yellow (spring and autumn) light, which are on the 'threshold' between the short-wavelength and long-wavelength light. We showed that pied flycatchers (i) were completely disoriented under green light both in the NMF and CMF but (ii) showed the migratory direction in the NMF and the appropriate response to CMF under yellow light. Our data contradict the results of previous experiments under narrowband green and yellow light and raise doubts about the existence of only short-wavelength magnetoreception. The parameters of natural light change dramatically in spectral composition and intensity after local sunset, and the avian magnetic compass should be adapted to function properly under such constantly changing light conditions.
Collapse
Affiliation(s)
- Nadezhda Romanova
- Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991, Russia
| | - Gleb Utvenko
- Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| | - Anisia Prokshina
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Fyodor Cellarius
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| |
Collapse
|
12
|
Bindra JK, Niklas J, Jeong Y, Jasper AW, Kretzschmar M, Kern J, Utschig LM, Poluektov OG. Coherences of Photoinduced Electron Spin Qubit Pair States in Photosystem I. J Phys Chem B 2023; 127:10108-10117. [PMID: 37980604 DOI: 10.1021/acs.jpcb.3c06658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This publication presents the first comprehensive experimental study of electron spin coherences in photosynthetic reaction center proteins, specifically focusing on photosystem I (PSI). The ultrafast electron transfer in PSI generates spin-correlated radical pairs (SCRPs), which are entangled spin pairs formed in well-defined spin states (Bell states). Since their discovery in our group in the 1980s, SCRPs have been extensively used to enhance our understanding of structure-function relationships in photosynthetic proteins. More recently, SCRPs have been utilized as tools for quantum sensing. Electron spin decoherence poses a significant challenge in realizing practical applications of electron spin qubits, particularly the creation of quantum entanglement between multiple electron spins. This work is focused on the systematic characterization of decoherence in SCRPs of PSI. These decoherence times were measured as electron spin echo decay times, termed phase memory times (TM), at various temperatures. Decoherence was recorded on both transient SCRP states P700+A1- and thermalized states. Our study reveals that TM exhibits minimal dependence on the biological species, biochemical treatment, and paramagnetic species. The analysis indicates that nuclear spin diffusion and instantaneous diffusion mechanisms alone cannot explain the observed decoherence. As a plausible explanation we discuss the assumption that the low-temperature dynamics of methyl groups in the protein surrounding the unpaired electron spin centers is the main factor governing the loss of the spin coherence in PSI.
Collapse
Affiliation(s)
- Jasleen K Bindra
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Yeonjun Jeong
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Moritz Kretzschmar
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
Ricker B, Mitra S, Castellanos EA, Grady CJ, Woldring D, Pelled G, Gilad AA. Proposed three-phenylalanine motif involved in magnetoreception signalling of an Actinopterygii protein expressed in mammalian cells. Open Biol 2023; 13:230019. [PMID: 37989224 PMCID: PMC10688439 DOI: 10.1098/rsob.230019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023] Open
Abstract
Studies at the cellular and molecular level of magnetoreception-sensing and responding to magnetic fields-are a relatively new research area. It appears that different mechanisms of magnetoreception in animals evolved from different origins, and, therefore, many questions about its mechanisms remain left open. Here we present new information regarding the Electromagnetic Perceptive Gene (EPG) from Kryptopterus vitreolus that may serve as part of the foundation to understanding and applying magnetoreception. Using HaloTag coupled with fluorescent ligands and phosphatidylinositol specific phospholipase C we show that EPG is associated with the membrane via glycosylphosphatidylinositol anchor. EPG's function of increasing intracellular calcium was also used to generate an assay using GCaMP6m to observe the function of EPG and to compare its function with that of homologous proteins. It was also revealed that EPG relies on a motif of three phenylalanine residues to function-stably swapping these residues using site directed mutagenesis resulted in a loss of function in EPG. This information not only expands upon our current understanding of magnetoreception but may provide a foundation and template to continue characterizing and discovering more within the emerging field.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | - Sunayana Mitra
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
15
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
16
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
17
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
18
|
Tonelli BA, Youngflesh C, Tingley MW. Geomagnetic disturbance associated with increased vagrancy in migratory landbirds. Sci Rep 2023; 13:414. [PMID: 36624156 PMCID: PMC9829733 DOI: 10.1038/s41598-022-26586-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Rare birds known as "accidentals" or "vagrants" have long captivated birdwatchers and puzzled biologists, but the drivers of these rare occurrences remain elusive. Errors in orientation or navigation are considered one potential driver: migratory birds use the Earth's magnetic field-sensed using specialized magnetoreceptor structures-to traverse long distances over often unfamiliar terrain. Disruption to these magnetoreceptors or to the magnetic field itself could potentially cause errors leading to vagrancy. Using data from 2 million captures of 152 landbird species in North America over 60 years, we demonstrate a strong association between disruption to the Earth's magnetic field and avian vagrancy during fall migration. Furthermore, we find that increased solar activity-a disruptor of the avian magnetoreceptor-generally counteracts this effect, potentially mitigating misorientation by disabling the ability for birds to use the magnetic field to orient. Our results link a hypothesized cause of misorientation to the phenomenon of avian vagrancy, further demonstrating the importance of magnetoreception among the orientation mechanisms of migratory birds. Geomagnetic disturbance may have important downstream ecological consequences, as vagrants may experience increased mortality rates or facilitate range expansions of avian populations and the organisms they disperse.
Collapse
Affiliation(s)
- Benjamin A Tonelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Casey Youngflesh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Sensitivity threshold of avian magnetic compass to oscillating magnetic field is species-specific. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Brown TM, Wilhelm SI, Mastromonaco GF, Burness G. A path forward in the investigation of seabird strandings attributed to light attraction. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Taylor Marie Brown
- Environmental and Life Sciences Graduate Program Trent University Peterborough Ontario Canada
| | - Sabina I. Wilhelm
- Environment and Climate Change Canada Mount Pearl Newfoundland Canada
| | | | - Gary Burness
- Department of Biology Trent University Peterborough Ontario Canada
| |
Collapse
|
21
|
Levitt BB, Lai HC, Manville AM. Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front Public Health 2022; 10:1000840. [PMID: 36505009 PMCID: PMC9732734 DOI: 10.3389/fpubh.2022.1000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0 Hz to 300 GHz. The focus of this Perspective paper is on the unique physiology of non-human species, their extraordinary sensitivity to both natural and anthropogenic EMF, and the likelihood that artificial EMF in the static, extremely low frequency (ELF) and radiofrequency (RF) ranges of the non-ionizing electromagnetic spectrum are capable at very low intensities of adversely affecting both fauna and flora in all species studied. Any existing exposure standards are for humans only; wildlife is unprotected, including within the safety margins of existing guidelines, which are inappropriate for trans-species sensitivities and different non-human physiology. Mechanistic, genotoxic, and potential ecosystem effects are discussed.
Collapse
Affiliation(s)
- B. Blake Levitt
- National Association of Science Writers, Berkeley, CA, United States
| | - Henry C. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Albert M. Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington, DC, United States
| |
Collapse
|
22
|
Smith LD, Chowdhury FT, Peasgood I, Dawkins N, Kattnig DR. Driven Radical Motion Enhances Cryptochrome Magnetoreception: Toward Live Quantum Sensing. J Phys Chem Lett 2022; 13:10500-10506. [PMID: 36332112 PMCID: PMC9677492 DOI: 10.1021/acs.jpclett.2c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity. We demonstrate that sensitivity can be restored by driving the spin system through a modulation of the inter-radical distance. It is shown that this dynamical process markedly enhances geomagnetic field sensitivity in strongly coupled radical pairs via Landau-Zener-Stückelberg-Majorana transitions between singlet and triplet states. These findings suggest that a "live" harmonically driven magnetoreceptor can be more sensitive than its "dead" static counterpart.
Collapse
|
23
|
Feng J, Song B, Zhang Y. Semantic parsing of the life process by quantum biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:79-89. [PMID: 36126802 DOI: 10.1016/j.pbiomolbio.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
A fact that an ever-increasingly number of research attention has focused on quantum biology demonstrates that it is, by no means, new to works in physic and mathematics, but to molecular biologists, geneticists, and biochemists. This is owing to that quantum biology serves as a distinctive discipline, by using quantum theory to study life sciences in combination with physics, mechanics, mathematics, statistics, and modern biology. Notably, quantum mechanics and its fundamental principles have been employed to clarify complex biological processes and molecular homeostasis within the organic life. Consequently, using the principles of quantum mechanics to study dynamic changes and energy transfer of molecules at the quantum level in biology has been accepted as an unusually distinguishable way to a better explanation of many phenomena in life. It is plausible that a clear conceptual quantum theoretical event is also considered to generally occur for short-term picoseconds or femtoseconds on microscopic nano- and subnanometer scales in biology and biosciences. For instance, photosynthesis, enzyme -catalyzed reactions, magnetic perception, the capture of smell and vision, DNA fragmentation, cellular breathing, mitochondrial processing, as well as brain thinking and consciousness, are all manifested within quantum superposition, quantum coherence, quantum entanglement, quantum tunneling, and other effects. In this mini-review, we describe the recent progress in quantum biology, with a promising direction for further insights into this field.
Collapse
Affiliation(s)
- Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Bo Song
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, No. 580 Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
24
|
The amphibian magnetic sense(s). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:723-742. [PMID: 36269404 DOI: 10.1007/s00359-022-01584-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Sensitivity to the earth's magnetic field is the least understood of the major sensory systems, despite being virtually ubiquitous in animals and of widespread interest to investigators in a wide range of fields from behavioral ecology to quantum physics. Although research on the use of magnetic cues by migratory birds, fish, and sea turtles is more widely known, much of our current understanding of the functional properties of vertebrate magnetoreception has come from research on amphibians. Studies of amphibians established the presence of a light-dependent magnetic compass, a second non-light-dependent mechanism involving particles of magnetite and/or maghemite, and an interaction between these two magnetoreception mechanisms that underlies the "map" component of homing. Simulated magnetic displacement experiments demonstrated the use of a high-resolution magnetic map for short-range homing to breeding ponds requiring a sampling strategy to detect weak spatial gradients in the magnetic field despite daily temporal variation at least an order of magnitude greater. Overall, reliance on a magnetic map for short-range homing places greater demands on the underlying sensory detection, processing, and memory mechanisms than comparable mechanisms used by long-distance migrants. Moreover, unlike sea turtles and migratory birds, amphibians are exceptionally well suited to serve as model organisms in which to characterize the molecular and biophysical mechanisms underlying the light-dependent 'quantum compass'.
Collapse
|
25
|
Rotov AY, Goriachenkov AA, Cherbunin RV, Firsov ML, Chernetsov N, Astakhova LA. Magnetoreceptory Function of European Robin Retina: Electrophysiological and Morphological Non-Homogeneity. Cells 2022; 11:cells11193056. [PMID: 36231018 PMCID: PMC9564291 DOI: 10.3390/cells11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for the role of primary magnetosensory molecules are the cryptochromes that are known to be expressed in the avian retina and must be able to interact with phototransduction proteins. Previously, we reported that in migratory birds change in magnetic field direction induces significant effects on electroretinogram amplitude in response to blue flashes, and such an effect was observed only in the nasal quadrant of the retina. Here, we report new electroretinographic, microscopic and microspectrophotometric data on European robins, confirming the magnetosensitivity of the retinal nasal quadrant after applying the background illumination. We hypothesized that magnetoreceptive distinction of this region may be related to its morphology and analyzed the retinal distribution and optical properties of oil droplets, the filtering structures within cones. We found that the nasal quadrant contains double cones with the most intensely colorized oil droplets compared to the rest of the retina, which may be related to its magnetosensory function.
Collapse
Affiliation(s)
- Alexander Yu. Rotov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Arsenii A. Goriachenkov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Roman V. Cherbunin
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Spin Optics Laboratory, Physics Faculty, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Michael L. Firsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Nikita Chernetsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Department of Vertebrate Zoology, Biological Faculty, St. Petersburg State University, 199034 St. Petersburg, Russia
- Ornithology Lab, Zoological Institute RAS, 199034 St. Petersburg, Russia
| | - Luba A. Astakhova
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
26
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
27
|
Li Y, Sun C, Zhou H, Huang H, Chen Y, Duan X, Huang S, Li J. Extremely Low-Frequency Electromagnetic Field Impairs the Development of Honeybee (Apis cerana). Animals (Basel) 2022; 12:ani12182420. [PMID: 36139284 PMCID: PMC9495099 DOI: 10.3390/ani12182420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The ELF-EMF pollution generated by the increase in electrically powered devices and power lines, accompanied by economic development, has a widespread effect on surrounding organisms. Honeybees are one of the most important pollinators. The decline in the honeybee population caused by a variety factors, including EMFs, has attracted attention worldwide. It was already known that ELF-EMFs could impair the ability of learning and cognition, causing foraging bees to lose their ability to find their way home. The pollination ability of foraging bees is derived from the rearing quantity of larvae and continuous eclosion of new adult bees in the colony. However, the effect of ELF-EMFs on honeybee larvae is not clear. The aims and objectives of this study were therefore to investigate it. The results showed that ELF-EMF exposure decreases honeybee survival rate and body weight and extends the duration of development time. Transcriptome sequencing showed that ELF-EMF exposure decreases the biological process of nutrient and energy metabolism, impedes the degradation of larvae tissues and the rebuilding of pupae tissues in the metamorphosis process, and seriously interferes with the growth and development of honeybee larvae. This provides an experimental basis and new perspective for protecting honeybee populations from ELF-EMF pollution. Abstract Increasing ELF-EMF pollution in the surrounding environment could impair the cognition and learning ability of honeybees, posing a threat to the honeybee population and its pollination ability. In a social honeybee colony, the numbers of adult bees rely on the successful large-scale rearing of larvae and continuous eclosion of new adult bees. However, no studies exist on the influence of ELF-EMFs on honeybee larvae. Therefore, we investigated the survival rate, body weight, and developmental duration of first instar larvae continuously subjected to ELF-EMF exposure. Moreover, the transcriptome of fifth instar larvae were sequenced for analyzing the difference in expressed genes. The results showed that ELF-EMF exposure decreases the survival rate and body weight of both white-eye pupae and newly emerged adults, extends the duration of development time and seriously interferes with the process of metamorphosis and pupation. The transcriptome sequencing showed that ELF-EMF exposure decreases the nutrient and energy metabolism and impedes the degradation of larvae tissues and rebuilding of pupae tissues in the metamorphosis process. The results provide an experimental basis and a new perspective for the protection of honeybee populations from ELF-EMF pollution.
Collapse
Affiliation(s)
- Yingjiao Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaoxia Sun
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongji Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijie Chen
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
28
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
29
|
Further Reading. Anim Welf 2022. [DOI: 10.1002/9781119857099.furread] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Shaev IA, Novikov VV, Yablokova EV, Fesenko EE. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
32
|
Takahashi S, Hombe T, Matsumoto S, Ide K, Yoda K. Head direction cells in a migratory bird prefer north. SCIENCE ADVANCES 2022; 8:eabl6848. [PMID: 35119935 PMCID: PMC8816328 DOI: 10.1126/sciadv.abl6848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Animals exhibit remarkable navigation abilities as if they have an internal compass. Head direction (HD) cells encoding the animal's heading azimuth are found in the brain of several animal species; the HD cell signals are dependent on the vestibular nuclei, where magnetic responsive cells are present in birds. However, it is difficult to determine whether HD cell signals drive the compass orientation in animals, as they do not necessarily rely on the magnetic compass under all circumstances. Recording of HD cell activities from the medial pallium of shearwater chicks (Calonectris leucomelas) just before their first migration, during which they strongly rely on compass orientation, revealed that shearwater HD cells prefer a north orientation. The preference remained stable regardless of geolocations and environmental cues, suggesting the existence of a magnetic compass regulated by internally generated HD signals. Our findings provide insight into the integration of the direction and magnetoreception senses.
Collapse
Affiliation(s)
- Susumu Takahashi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Takumi Hombe
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Sakiko Matsumoto
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kaoru Ide
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
33
|
Bellinger MR, Wei J, Hartmann U, Cadiou H, Winklhofer M, Banks MA. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc Natl Acad Sci U S A 2022; 119:e2108655119. [PMID: 35012979 PMCID: PMC8784154 DOI: 10.1073/pnas.2108655119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Animals use geomagnetic fields for navigational cues, yet the sensory mechanism underlying magnetic perception remains poorly understood. One idea is that geomagnetic fields are physically transduced by magnetite crystals contained inside specialized receptor cells, but evidence for intracellular, biogenic magnetite in eukaryotes is scant. Certain bacteria produce magnetite crystals inside intracellular compartments, representing the most ancient form of biomineralization known and having evolved prior to emergence of the crown group of eukaryotes, raising the question of whether magnetite biomineralization in eukaryotes and prokaryotes might share a common evolutionary history. Here, we discover that salmonid olfactory epithelium contains magnetite crystals arranged in compact clusters and determine that genes differentially expressed in magnetic olfactory cells, contrasted to nonmagnetic olfactory cells, share ancestry with an ancient prokaryote magnetite biomineralization system, consistent with exaptation for use in eukaryotic magnetoreception. We also show that 11 prokaryote biomineralization genes are universally present among a diverse set of eukaryote taxa and that nine of those genes are present within the Asgard clade of archaea Lokiarchaeota that affiliates with eukaryotes in phylogenomic analysis. Consistent with deep homology, we present an evolutionary genetics hypothesis for magnetite formation among eukaryotes to motivate convergent approaches for examining magnetite-based magnetoreception, molecular origins of matrix-associated biomineralization processes, and eukaryogenesis.
Collapse
Affiliation(s)
- M Renee Bellinger
- Coastal Oregon Marine Experiment Station, Department Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365;
| | - Jiandong Wei
- Experimental Physics Department, Saarland University, D-66041 Saarbruecken, Germany
| | - Uwe Hartmann
- Experimental Physics Department, Saarland University, D-66041 Saarbruecken, Germany
| | - Hervé Cadiou
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique UPR3212, F-67100 Strasbourg, France
| | - Michael Winklhofer
- Institute of Biology and Environmental Science, University of Oldenburg, D-26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Michael A Banks
- Coastal Oregon Marine Experiment Station, Department Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365
| |
Collapse
|
34
|
Wiltschko R, Wiltschko W. The discovery of the use of magnetic navigational information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:9-18. [PMID: 34476571 PMCID: PMC8918449 DOI: 10.1007/s00359-021-01507-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022]
Abstract
The magnetic field of the Earth provides animals with various kinds of information. Its use as a compass was discovered in the mid-1960s in birds, when it was first met with considerable skepticism, because it initially proved difficult to obtain evidence for magnetic sensitivity by conditioning experiments. Meanwhile, a magnetic compass was found to be widespread. It has now been demonstrated in members of all vertebrate classes, in mollusks and several arthropod species, in crustaceans as well as in insects. The use of the geomagnetic field as a 'map' for determining position, although already considered in the nineteenth century, was demonstrated by magnetically simulating displacements only after 2000, namely when animals, tested in the magnetic field of a distant site, responded as if they were physically displaced to that site and compensated for the displacement. Another use of the magnetic field is that as a 'sign post' or trigger: specific magnetic conditions elicit spontaneous responses that are helpful when animals reach the regions where these magnetic characteristics occur. Altogether, the geomagnetic field is a widely used valuable source of navigational information for mobile animals.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - Wolfgang Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Jandačka P, Burda H, Ščučka J. Investigating the impact of weak geomagnetic fluctuations on pigeon races. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:177-184. [PMID: 35088124 PMCID: PMC8918452 DOI: 10.1007/s00359-021-01534-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
The existence of avian magnetic orientation has been proved by many experimental studies, however, evidence for the use of magnetic cues by homing pigeons remains controversial. To investigate magnetic orientation by homing pigeons, we analyzed the results of pigeon races relative to weak fluctuations in the geomagnetic field, assuming that such disturbances could impact navigational efficiency if based on magnetoreception. Whereas most of the previous studies recorded and analyzed vanishing bearing of individually released pigeons, we evaluated relative duration of the homeward flight (homing speed, as a proxy of navigational efficiency) and its dependence on specific geomagnetic indices in racing pigeons released collectively. Our analysis of orientation efficiency of about 289 pigeon races over 15 years suggested slight negative correlations between geomagnetic fluctuations and homing time. Although the interpretation of this finding is manifold and not clear, it suggests that natural magnetic variations or disturbances can affect the homing orientation performance of pigeons. We suggest that studying pigeon races may have a heuristic potential and since these races are regularly and frequently organized in many countries all over the globe, examining homing performance relative to a suite of environmental variables may be useful for exploring hypotheses about pigeon navigation.
Collapse
Affiliation(s)
- Petr Jandačka
- 7775 Company, Evžena Rošického 1062/3, 721 00, Ostrava-Svinov, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Jiří Ščučka
- Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, 708 33, Ostrava, Czech Republic
| |
Collapse
|
36
|
Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proc Natl Acad Sci U S A 2021; 118:2112749118. [PMID: 34782471 PMCID: PMC8617482 DOI: 10.1073/pnas.2112749118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
The ability of pigeons to sense geomagnetic fields has been conclusively established despite a notable lack of determination of the underlying biophysical mechanisms. Quasi-spherical iron organelles previously termed "cuticulosomes" in the cochlea of pigeons have potential relevance to magnetoreception due to their location and iron composition; however, data regarding the magnetic susceptibility of these structures are currently limited. Here quantum magnetic imaging techniques are applied to characterize the magnetic properties of individual iron cuticulosomes in situ. The stray magnetic fields emanating from cuticulosomes are mapped and compared to a detailed analytical model to provide an estimate of the magnetic susceptibility of the individual particles. The images reveal the presence of superparamagnetic and ferrimagnetic domains within individual cuticulosomes and magnetic susceptibilities within the range 0.029 to 0.22. These results provide insights into the elusive physiological roles of cuticulosomes. The susceptibilities measured are not consistent with a torque-based model of magnetoreception, placing iron storage and stereocilia stabilization as the two leading putative cuticulosome functions. This work establishes quantum magnetic imaging as an important tool to complement the existing array of techniques used to screen for potential magnetic particle-based magnetoreceptor candidates.
Collapse
|
37
|
Babcock N, Kattnig DR. Radical Scavenging Could Answer the Challenge Posed by Electron-Electron Dipolar Interactions in the Cryptochrome Compass Model. JACS AU 2021; 1:2033-2046. [PMID: 34841416 PMCID: PMC8611662 DOI: 10.1021/jacsau.1c00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Many birds are endowed with a visual magnetic sense that may exploit magnetosensitive radical recombination processes in the protein cryptochrome. In this widely accepted but unproven model, geomagnetic sensitivity is suggested to arise from variations in the recombination rate of a pair of radicals, whose unpaired electron spins undergo coherent singlet-triplet interconversion in the geomagnetic field by coupling to nuclear spins via hyperfine interactions. However, simulations of this conventional radical pair mechanism (RPM) predicted only tiny magnetosensitivities for realistic conditions because the RPM's directional sensitivity is strongly suppressed by the intrinsic electron-electron dipolar (EED) interactions, casting doubt on its viability as a magnetic sensor. We show how this RPM-suppression problem is overcome in a three-radical system in which a third "scavenger" radical reacts with one member of the primary pair. We use this finding to predict substantial magnetic field effects that exceed those of the RPM in the presence of EED interactions in animal cryptochromes.
Collapse
Affiliation(s)
- Nathan
Sean Babcock
- Quantum
Biology Laboratory, Howard University, 2400 Sixth Street NW, Washington District of Columbia, 20059, United States of America
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Daniel R. Kattnig
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
38
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|
39
|
Geurdes H, Nagata K, Nakamura T. The CHSH Bell Inequality: A Critical Look at Its Mathematics and Some Consequences for Physical Chemistry. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Abstract
Increased control of biological growth and form is an essential gateway to transformative medical advances. Repairing of birth defects, restoring lost or damaged organs, normalizing tumors, all depend on understanding how cells cooperate to make specific, functional large-scale structures. Despite advances in molecular genetics, significant gaps remain in our understanding of the meso-scale rules of morphogenesis. An engineering approach to this problem is the creation of novel synthetic living forms, greatly extending available model systems beyond evolved plant and animal lineages. Here, we review recent advances in the emerging field of synthetic morphogenesis, the bioengineering of novel multicellular living bodies. Emphasizing emergent self-organization, tissue-level guided self-assembly, and active functionality, this work is the essential next generation of synthetic biology. Aside from useful living machines for specific functions, the rational design and analysis of new, coherent anatomies will greatly increase our understanding of foundational questions in evolutionary developmental and cell biology.
Collapse
Affiliation(s)
- Mo R. Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, A809B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
41
|
Wiltschko R, Nießner C, Wiltschko W. The Magnetic Compass of Birds: The Role of Cryptochrome. Front Physiol 2021; 12:667000. [PMID: 34093230 PMCID: PMC8171495 DOI: 10.3389/fphys.2021.667000] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Christine Nießner
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Parlevliet PP, Kanaev A, Hung CP, Schweiger A, Gregory FD, Benosman R, de Croon GCHE, Gutfreund Y, Lo CC, Moss CF. Autonomous Flying With Neuromorphic Sensing. Front Neurosci 2021; 15:672161. [PMID: 34054420 PMCID: PMC8160287 DOI: 10.3389/fnins.2021.672161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control.
Collapse
Affiliation(s)
| | - Andrey Kanaev
- U.S. Office of Naval Research Global, London, United Kingdom
| | - Chou P. Hung
- United States Army Research Laboratory, Aberdeen Proving Ground, Maryland, MD, United States
| | | | - Frederick D. Gregory
- U.S. Army Research Laboratory, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ryad Benosman
- Institut de la Vision, INSERM UMRI S 968, Paris, France
- Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Guido C. H. E. de Croon
- Micro Air Vehicle Laboratory, Department of Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
| | - Yoram Gutfreund
- The Neuroethological lab, Department of Neurobiology, The Rappaport Institute for Biomedical Research, Technion – Israel Institute of Technology, Haifa, Israel
| | - Chung-Chuan Lo
- Brain Research Center/Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Cynthia F. Moss
- Laboratory of Comparative Neural Systems and Behavior, Department of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
43
|
Amplification of weak magnetic field effects on oscillating reactions. Sci Rep 2021; 11:9615. [PMID: 33953230 PMCID: PMC8100163 DOI: 10.1038/s41598-021-88871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
We explore the possibility that chemical feedback and autocatalysis in oscillating chemical reactions could amplify weak magnetic field effects on the rate constant of one of the constituent reactions, assumed to proceed via a radical pair mechanism. Using the Brusselator model oscillator, we find that the amplitude of limit cycle oscillations in the concentrations of reaction intermediates can be extraordinarily sensitive to minute changes in the rate constant of the initiation step. The relevance of such amplification to biological effects of 50/60 Hz electromagnetic fields is discussed.
Collapse
|
44
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
45
|
Zhukov I, Kiryutin A, Panov M, Fishman N, Morozova O, Lukzen N, Ivanov K, Vieth HM, Sagdeev R, Yurkovskaya A. Exchange interaction in short-lived flavine adenine dinucleotide biradical in aqueous solution revisited by CIDNP (chemically induced dynamic nuclear polarization) and nuclear magnetic relaxation dispersion. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:139-148. [PMID: 37904760 PMCID: PMC10539776 DOI: 10.5194/mr-2-139-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/01/2023]
Abstract
Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP). The question of whether one or two types of biradicals of FAD in aqueous solution are formed stays unresolved so far. In the present work, we revisited the CIDNP study of FAD using a robust mechanical sample shuttling setup covering a wide magnetic field range with sample illumination by a light-emitting diode. Also, a cost efficient fast field cycling apparatus with high spectral resolution detection up to 16.4 T for nuclear magnetic relaxation dispersion studies was built based on a 700 MHz NMR spectrometer. Site-specific proton relaxation dispersion data for FAD show a strong restriction of the relative motion of its isoalloxazine and adenine rings with coincident correlation times for adenine, flavin, and their ribityl phosphate linker. This finding is consistent with the assumption that the molecular structure of FAD is rigid and compact. The structure with close proximity of the isoalloxazine and purine moieties is favorable for reversible light-induced intramolecular electron transfer from adenine to triplet excited flavin with formation of a transient spin-correlated triplet biradical F⚫ - -A⚫ + . Spin-selective recombination of the biradical leads to the formation of CIDNP with a common emissive maximum at 4.0 mT detected for adenine and flavin protons. Careful correction of the CIDNP data for relaxation losses during sample shuttling shows that only a single maximum of CIDNP is formed in the magnetic field range from 0.1 mT to 9 T; thus, only one type of FAD biradical is detectable. Modeling of the CIDNP field dependence provides good agreement with the experimental data for a normal distance distribution between the two radical centers around 0.89 nm and an effective electron exchange interaction of - 2.0 mT.
Collapse
Affiliation(s)
- Ivan V. Zhukov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Mikhail S. Panov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Natalya N. Fishman
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga B. Morozova
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nikita N. Lukzen
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Renad Z. Sagdeev
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
46
|
Bo TB, Kohl KD. Stabilization and optimization of host-microbe-environment interactions as a potential reason for the behavior of natal philopatry. Anim Microbiome 2021; 3:26. [PMID: 33785073 PMCID: PMC8011129 DOI: 10.1186/s42523-021-00087-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G. Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS One 2021; 16:e0248141. [PMID: 33667278 PMCID: PMC7935302 DOI: 10.1371/journal.pone.0248141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic field direction and location.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan C. Ashbaugh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Mark Reimers
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriela Saldana De Jimenez
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Moore
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Synthetic Biology Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Fay TP, Lindoy LP, Manolopoulos DE. Spin relaxation in radical pairs from the stochastic Schrödinger equation. J Chem Phys 2021; 154:084121. [PMID: 33639770 DOI: 10.1063/5.0040519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We show that the stochastic Schrödinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to include in this approach, and their treatment can be combined with a highly efficient stochastic evaluation of the trace over nuclear spin states that is required to compute experimental observables. These features are illustrated in example applications to a flavin-tryptophan radical pair of interest in avian magnetoreception and to a problem involving spin-selective radical pair recombination along a molecular wire. In the first of these examples, the SSE is shown to be both more efficient and more widely applicable than a recent stochastic implementation of the Lindblad equation, which only provides a valid treatment of relaxation in the extreme-narrowing limit. In the second, the exact SSE results are used to assess the accuracy of a recently proposed combination of Nakajima-Zwanzig theory for the spin relaxation and Schulten-Wolynes theory for the spin dynamics, which is applicable to radical pairs with many more nuclear spins. We also analyze the efficiency of trace sampling in some detail, highlighting the particular advantages of sampling with SU(N) coherent states.
Collapse
Affiliation(s)
- Thomas P Fay
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lachlan P Lindoy
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
49
|
Abstract
Recently, there has been much interest in the chirality-induced spin selectivity effect, whereby electron spin polarization, which is dependent on molecular chirality, is produced in electrode-molecule electron transfer processes. Naturally, one might consider if a similar effect can be observed in simple molecular charge transfer reactions, for example, in light-induced electron transfer from an electron donor to an electron acceptor. In this work, I explore the effect of electron transfer on spins in chiral single radicals and chiral radical pairs using Nakajima-Zwanzig theory. In these cases, chirality, in conjuction with spin-orbit coupling, does not lead to spin polarization, but instead, the electron transfer generates quantum coherence between spins states. In principle, this chirality-induced spin coherence could manifest in a range of experiments, and in particular, I demonstrate that the out of phase electron spin echo envelope modulation pulse electron paramagnetic resonance experiment would be able to detect this effect in oriented radical pairs.
Collapse
Affiliation(s)
- Thomas P Fay
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
50
|
Astakhova LA, Rotov AY, Cherbunin RV, Goriachenkov AA, Kavokin KV, Firsov ML, Chernetsov N. Electroretinographic study of the magnetic compass in European robins. Proc Biol Sci 2020; 287:20202507. [PMID: 33290671 DOI: 10.1098/rspb.2020.2507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migratory birds are known to be sensitive to external magnetic field (MF). Much indirect evidence suggests that the avian magnetic compass is localized in the retina. Previously, we showed that changes in the MF direction could modulate retinal responses in pigeons. In the present study, we performed similar experiments using the traditional model animal to study the magnetic compass, European robins. The photoresponses of isolated retina were recorded using ex vivo electroretinography (ERG). Blue- and red-light stimuli were applied under an MF with the natural intensity and two MF directions, when the angle between the plane of the retina and the field lines was 0° and 90°, respectively. The results were separately analysed for four quadrants of the retina. A comparison of the amplitudes of the a- and b-waves of the ERG responses to blue stimuli under the two MF directions revealed a small but significant difference in a- but not b-waves, and in only one (nasal) quadrant of the retina. The amplitudes of both the a- and b-waves of the ERG responses to red stimuli did not show significant effects of the MF direction. Thus, changes in the external MF modulate the European robin retinal responses to blue flashes, but not to red flashes. This result is in a good agreement with behavioural data showing the successful orientation of birds in an MF under blue, but not under red illumination.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Alexander Yu Rotov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Roman V Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Arsenii A Goriachenkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Kirill V Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Michael L Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Nikita Chernetsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| |
Collapse
|