1
|
Hart WS, Buckingham JM, Keita M, Ahuka-Mundeke S, Maini PK, Polonsky JA, Thompson RN. Optimizing the timing of an end-of-outbreak declaration: Ebola virus disease in the Democratic Republic of the Congo. SCIENCE ADVANCES 2024; 10:eado7576. [PMID: 38959306 PMCID: PMC11221504 DOI: 10.1126/sciadv.ado7576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Following the apparent final case in an Ebola virus disease (EVD) outbreak, the decision to declare the outbreak over must balance societal benefits of relaxing interventions against the risk of resurgence. Estimates of the end-of-outbreak probability (the probability that no future cases will occur) provide quantitative evidence that can inform the timing of an end-of-outbreak declaration. An existing modeling approach for estimating the end-of-outbreak probability requires comprehensive contact tracing data describing who infected whom to be available, but such data are often unavailable or incomplete during outbreaks. Here, we develop a Markov chain Monte Carlo-based approach that extends the previous method and does not require contact tracing data. Considering data from two EVD outbreaks in the Democratic Republic of the Congo, we find that data describing who infected whom are not required to resolve uncertainty about when to declare an outbreak over.
Collapse
Affiliation(s)
- William S. Hart
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Jack M. Buckingham
- EPSRC Centre for Doctoral Training in Mathematics for Real-World Systems, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Mory Keita
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of the Congo
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva 1202, Switzerland
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Jonathan A. Polonsky
- Geneva Centre of Humanitarian Studies, University of Geneva, Geneva 1205, Switzerland
| | - Robin N. Thompson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
2
|
Martignoni MM, Arino J, Hurford A. Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics determine the recommended strategy. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240186. [PMID: 39100176 PMCID: PMC11295893 DOI: 10.1098/rsos.240186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Public health responses to the COVID-19 pandemic varied across the world. Some countries (e.g. mainland China, New Zealand and Taiwan) implemented elimination strategies involving strict travel measures and periods of rigorous non-pharmaceutical interventions (NPIs) in the community, aiming to achieve periods with no disease spread; while others (e.g. many European countries and the USA) implemented mitigation strategies involving less strict NPIs for prolonged periods, aiming to limit community spread. Travel measures and community NPIs have high economic and social costs, and there is a need for guidelines that evaluate the appropriateness of an elimination or mitigation strategy in regional contexts. To guide decisions, we identify key criteria and provide indicators and visualizations to help answer each question. Considerations include determining whether disease elimination is: (1) necessary to ensure healthcare provision; (2) feasible from an epidemiological point of view and (3) cost-effective when considering, in particular, the economic costs of travel measures and treating infections. We discuss our recommendations by considering the regional and economic variability of Canadian provinces and territories, and the epidemiological characteristics of different SARS-CoV-2 variants. While elimination may be a preferable strategy for regions with limited healthcare capacity, low travel volumes, and few ports of entry, mitigation may be more feasible in large urban areas with dense infrastructure, strong economies, and with high connectivity to other regions.
Collapse
Affiliation(s)
- Maria M. Martignoni
- Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy Hurford
- Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada
- Biology Department and Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
3
|
Bradbury NV, Hart WS, Lovell-Read FA, Polonsky JA, Thompson RN. Exact calculation of end-of-outbreak probabilities using contact tracing data. J R Soc Interface 2023; 20:20230374. [PMID: 38086402 PMCID: PMC10715912 DOI: 10.1098/rsif.2023.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
A key challenge for public health policymakers is determining when an infectious disease outbreak has finished. Following a period without cases, an estimate of the probability that no further cases will occur in future (the end-of-outbreak probability) can be used to inform whether or not to declare an outbreak over. An existing quantitative approach (the Nishiura method), based on a branching process transmission model, allows the end-of-outbreak probability to be approximated from disease incidence time series, the offspring distribution and the serial interval distribution. Here, we show how the end-of-outbreak probability under the same transmission model can be calculated exactly if data describing who-infected-whom (the transmission tree) are also available (e.g. from contact tracing studies). In that scenario, our novel approach (the traced transmission method) is straightforward to use. We demonstrate this by applying the method to data from previous outbreaks of Ebola virus disease and Nipah virus infection. For both outbreaks, the traced transmission method would have determined that the outbreak was over earlier than the Nishiura method. This highlights that collection of contact tracing data and application of the traced transmission method may allow stringent control interventions to be relaxed quickly at the end of an outbreak, with only a limited risk of outbreak resurgence.
Collapse
Affiliation(s)
- N. V. Bradbury
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - W. S. Hart
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | | | - J. A. Polonsky
- Geneva Centre of Humanitarian Studies, University of Geneva, Geneva 1205, Switzerland
| | - R. N. Thompson
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
4
|
Parag KV, Cowling BJ, Lambert BC. Angular reproduction numbers improve estimates of transmissibility when disease generation times are misspecified or time-varying. Proc Biol Sci 2023; 290:20231664. [PMID: 37752839 PMCID: PMC10523088 DOI: 10.1098/rspb.2023.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
We introduce the angular reproduction number Ω, which measures time-varying changes in epidemic transmissibility resulting from variations in both the effective reproduction number R, and generation time distribution w. Predominant approaches for tracking pathogen spread infer either R or the epidemic growth rate r. However, R is biased by mismatches between the assumed and true w, while r is difficult to interpret in terms of the individual-level branching process underpinning transmission. R and r may also disagree on the relative transmissibility of epidemics or variants (i.e. rA > rB does not imply RA > RB for variants A and B). We find that Ω responds meaningfully to mismatches and time-variations in w while mostly maintaining the interpretability of R. We prove that Ω > 1 implies R > 1 and that Ω agrees with r on the relative transmissibility of pathogens. Estimating Ω is no more difficult than inferring R, uses existing software, and requires no generation time measurements. These advantages come at the expense of selecting one free parameter. We propose Ω as complementary statistic to R and r that improves transmissibility estimates when w is misspecified or time-varying and better reflects the impact of interventions, when those interventions concurrently change R and w or alter the relative risk of co-circulating pathogens.
Collapse
Affiliation(s)
- Kris V. Parag
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Hong Kong
| | - Ben C. Lambert
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Creswell R, Robinson M, Gavaghan D, Parag KV, Lei CL, Lambert B. A Bayesian nonparametric method for detecting rapid changes in disease transmission. J Theor Biol 2023; 558:111351. [PMID: 36379231 DOI: 10.1016/j.jtbi.2022.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
Whether an outbreak of infectious disease is likely to grow or dissipate is determined through the time-varying reproduction number, Rt. Real-time or retrospective identification of changes in Rt following the imposition or relaxation of interventions can thus contribute important evidence about disease transmission dynamics which can inform policymaking. Here, we present a method for estimating shifts in Rt within a renewal model framework. Our method, which we call EpiCluster, is a Bayesian nonparametric model based on the Pitman-Yor process. We assume that Rt is piecewise-constant, and the incidence data and priors determine when or whether Rt should change and how many times it should do so throughout the series. We also introduce a prior which induces sparsity over the number of changepoints. Being Bayesian, our approach yields a measure of uncertainty in Rt and its changepoints. EpiCluster is fast, straightforward to use, and we demonstrate that it provides automated detection of rapid changes in transmission, either in real-time or retrospectively, for synthetic data series where the Rt profile is known. We illustrate the practical utility of our method by fitting it to case data of outbreaks of COVID-19 in Australia and Hong Kong, where it finds changepoints coinciding with the imposition of non-pharmaceutical interventions. Bayesian nonparametric methods, such as ours, allow the volume and complexity of the data to dictate the number of parameters required to approximate the process and should find wide application in epidemiology. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Richard Creswell
- Department of Computer Science, University of Oxford, Oxford, United Kingdom.
| | - Martin Robinson
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - David Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kris V Parag
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, United Kingdom
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macao Special Administrative Region of China
| | - Ben Lambert
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
6
|
Inward RP, Jackson F, Dasgupta A, Lee G, Battle AL, Parag KV, Kraemer MU. Impact of spatiotemporal heterogeneity in COVID-19 disease surveillance on epidemiological parameters and case growth rates. Epidemics 2022; 41:100627. [PMID: 36099708 PMCID: PMC9443927 DOI: 10.1016/j.epidem.2022.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/04/2022] [Accepted: 09/03/2022] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 case data are primary sources for estimating epidemiological parameters and for modelling the dynamics of outbreaks. Understanding biases within case-based data sources used in epidemiological analyses is important as they can detract from the value of these rich datasets. This raises questions of how variations in surveillance can affect the estimation of epidemiological parameters such as the case growth rates. We use standardised line list data of COVID-19 from Argentina, Brazil, Mexico and Colombia to estimate delay distributions of symptom-onset-to-confirmation, -hospitalisation and -death as well as hospitalisation-to-death at high spatial resolutions and throughout time. Using these estimates, we model the biases introduced by the delay from symptom-onset-to-confirmation on national and state level case growth rates (rt) using an adaptation of the Richardson-Lucy deconvolution algorithm. We find significant heterogeneities in the estimation of delay distributions through time and space with delay difference of up to 19 days between epochs at the state level. Further, we find that by changing the spatial scale, estimates of case growth rate can vary by up to 0.13 d-1. Lastly, we find that states with a high variance and/or mean delay in symptom-onset-to-diagnosis also have the largest difference between the rt estimated from raw and deconvolved case counts at the state level. We highlight the importance of high-resolution case-based data in understanding biases in disease reporting and how these biases can be avoided by adjusting case numbers based on empirical delay distributions. Code and openly accessible data to reproduce analyses presented here are available.
Collapse
Affiliation(s)
- Rhys P.D. Inward
- Department of Biology, University of Oxford, United Kingdom,Corresponding author
| | - Felix Jackson
- Department of Biology, University of Oxford, United Kingdom,Department of Computer Science, University of Oxford, United Kingdom
| | - Abhishek Dasgupta
- Department of Biology, University of Oxford, United Kingdom,Department of Computer Science, University of Oxford, United Kingdom
| | - Graham Lee
- Department of Biology, University of Oxford, United Kingdom,Department of Computer Science, University of Oxford, United Kingdom
| | | | - Kris V. Parag
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom,NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, United Kingdom
| | - Moritz U.G. Kraemer
- Department of Biology, University of Oxford, United Kingdom,Reuben College, University of Oxford, United Kingdom,Corresponding author at: Department of Biology, University of Oxford, United Kingdom
| | | |
Collapse
|
7
|
Inward RPD, Parag KV, Faria NR. Using multiple sampling strategies to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing data. Nat Commun 2022; 13:5587. [PMID: 36151084 PMCID: PMC9508174 DOI: 10.1038/s41467-022-32812-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The choice of viral sequences used in genetic and epidemiological analysis is important as it can induce biases that detract from the value of these rich datasets. This raises questions about how a set of sequences should be chosen for analysis. We provide insights on these largely understudied problems using SARS-CoV-2 genomic sequences from Hong Kong, China, and the Amazonas State, Brazil. We consider multiple sampling schemes which were used to estimate Rt and rt as well as related R0 and date of origin parameters. We find that both Rt and rt are sensitive to changes in sampling whilst R0 and the date of origin are relatively robust. Moreover, we find that analysis using unsampled datasets result in the most biased Rt and rt estimates for both our Hong Kong and Amazonas case studies. We highlight that sampling strategy choices may be an influential yet neglected component of sequencing analysis pipelines.
Collapse
Affiliation(s)
| | - Kris V Parag
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK.
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK.
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK.
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK.
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Tomov L, Miteva D, Sekulovski M, Batselova H, Velikova T. Pandemic control - do's and don'ts from a control theory perspective. World J Methodol 2022; 12:392-401. [PMID: 36186747 PMCID: PMC9516542 DOI: 10.5662/wjm.v12.i5.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023] Open
Abstract
Managing a pandemic is a difficult task. Pandemics are part of the dynamics of nonlinear systems with multiple different interactive features that co-adapt to each other (such as humans, animals, and pathogens). The target of controlling such a nonlinear system is best achieved using the control system theory developed in engineering and applied in systems biology. But is this theory and its principles actually used in controlling the current coronavirus disease-19 pandemic? We review the evidence for applying principles in different aspects of pandemic control related to different goals such as disease eradication, disease containment, and short- or long-term economic loss minimization. Successful policies implement multiple measures in concordance with control theory to achieve a robust response. In contrast, unsuccessful policies have numerous failures in different measures or focus only on a single measure (only testing, vaccines, etc.). Successful approaches rely on predictions instead of reactions to compensate for the costs of time delay, on knowledge-based analysis instead of trial-and-error, to control complex nonlinear systems, and on risk assessment instead of waiting for more evidence. Iran is an example of the effects of delayed response due to waiting for evidence to arrive instead of a proper risk analytical approach. New Zealand, Australia, and China are examples of appropriate application of basic control theoretic principles and focusing on long-term adaptive strategies, updating measures with the evolution of the pandemic.
Collapse
Affiliation(s)
- Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Dimitrina Miteva
- Department of Genetics, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| | - Metodija Sekulovski
- Department of Anesthesiology and Intensive care, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital "St George", Plovdiv 6000, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
9
|
Yuan B, Liu R, Tang S. A quantitative method to project the probability of the end of an epidemic: Application to the COVID-19 outbreak in Wuhan, 2020. J Theor Biol 2022; 545:111149. [PMID: 35500676 PMCID: PMC9055421 DOI: 10.1016/j.jtbi.2022.111149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
The end-of-outbreak declaration is an important part of epidemic control, marking the relaxation or cancellation of prevention and control measures. We propose a probability model to retrospectively quantify the confidence of giving the end-of-outbreak declaration during the COVID-19 epidemic in early 2020 in Wuhan. By using the linear spline, we firstly estimates the time-varying proportion of cases who miss the nonpharmaceutical interventions (NPIs) among all reported cases. Assuming the reproduction numbers being 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0, the respective probability of the end of the COVID-19 outbreak with time after the last reported case can be iteratively computed. Consequently, the varying reproduction numbers produce slightly different increasing patterns of NPI effectiveness, and the end-of-outbreak declarations with 95% confidence are projected consistently earlier than the day when the lockdown was actually lifted. The reason for the timing discrepancy is discussed as well.
Collapse
Affiliation(s)
- Baoyin Yuan
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China; Pazhou Lab, Guangzhou 510330, China.
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Jin S, Dickens BL, Lim JT, Cook AR. EpiRegress: A Method to Estimate and Predict the Time-Varying Effective Reproduction Number. Viruses 2022; 14:v14071576. [PMID: 35891556 PMCID: PMC9323923 DOI: 10.3390/v14071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
The time-varying reproduction (Rt) provides a real-time estimate of pathogen transmissibility and may be influenced by exogenous factors such as mobility and mitigation measures which are not directly related to epidemiology parameters and observations. Meanwhile, evaluating the impacts of these factors is vital for policy makers to propose and adjust containment strategies. Here, we developed a Bayesian regression framework, EpiRegress, to provide Rt estimates and assess impacts of diverse factors on virus transmission, utilising daily case counts, mobility, and policy data. To demonstrate the method’s utility, we used simulations as well as data in four regions from the Western Pacific with periods of low COVID-19 incidence, namely: New South Wales, Australia; New Zealand; Singapore; and Taiwan, China. We found that imported cases had a limited contribution on the overall epidemic dynamics but may degrade the quality of the Rt estimate if not explicitly accounted for. We additionally demonstrated EpiRegress’s capability in nowcasting disease transmissibility before contemporaneous cases diagnosis. The approach was proved flexible enough to respond to periods of atypical local transmission during epidemic lulls and to periods of mass community transmission. Furthermore, in epidemics where travel restrictions are present, it is able to distinguish the influence of imported cases.
Collapse
Affiliation(s)
- Shihui Jin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, # 10-01 Tahir Foundation Building, 12 Science Drive 2, Singapore 117549, Singapore; (S.J.); (B.L.D.); (J.T.L.)
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Borame Lee Dickens
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, # 10-01 Tahir Foundation Building, 12 Science Drive 2, Singapore 117549, Singapore; (S.J.); (B.L.D.); (J.T.L.)
| | - Jue Tao Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, # 10-01 Tahir Foundation Building, 12 Science Drive 2, Singapore 117549, Singapore; (S.J.); (B.L.D.); (J.T.L.)
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, # 10-01 Tahir Foundation Building, 12 Science Drive 2, Singapore 117549, Singapore; (S.J.); (B.L.D.); (J.T.L.)
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
- Correspondence:
| |
Collapse
|
11
|
Parag KV, Donnelly CA. Fundamental limits on inferring epidemic resurgence in real time using effective reproduction numbers. PLoS Comput Biol 2022; 18:e1010004. [PMID: 35404936 PMCID: PMC9022826 DOI: 10.1371/journal.pcbi.1010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/21/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023] Open
Abstract
We find that epidemic resurgence, defined as an upswing in the effective reproduction number (R) of the contagion from subcritical to supercritical values, is fundamentally difficult to detect in real time. Inherent latencies in pathogen transmission, coupled with smaller and intrinsically noisier case incidence across periods of subcritical spread, mean that resurgence cannot be reliably detected without significant delays of the order of the generation time of the disease, even when case reporting is perfect. In contrast, epidemic suppression (where R falls from supercritical to subcritical values) may be ascertained 5-10 times faster due to the naturally larger incidence at which control actions are generally applied. We prove that these innate limits on detecting resurgence only worsen when spatial or demographic heterogeneities are incorporated. Consequently, we argue that resurgence is more effectively handled proactively, potentially at the expense of false alarms. Timely responses to recrudescent infections or emerging variants of concern are more likely to be possible when policy is informed by a greater quality and diversity of surveillance data than by further optimisation of the statistical models used to process routine outbreak data.
Collapse
Affiliation(s)
- Kris V. Parag
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|