1
|
Randall KL, Flesch IEA, Mei Y, Miosge LA, Aye R, Yu Z, Domaschenz H, Hollett NA, Russell TA, Stefanovic T, Wong YC, Seneviratne S, Ballard F, Hernandez Gallardo R, Croft SN, Goodnow CC, Bertram EM, Enders A, Tscharke DC. DOCK2 Deficiency Causes Defects in Antiviral T-Cell Responses and Impaired Control of Herpes Simplex Virus Infection. J Infect Dis 2024; 230:e712-e721. [PMID: 38366567 PMCID: PMC11420714 DOI: 10.1093/infdis/jiae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defense against infectious diseases. However, analysis of these in patients is complicated by their treatments and comorbid infections, requiring the use of mouse models for detailed investigations. We developed a mouse model of DOCK2 immunodeficiency and herein demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell-intrinsic role of DOCK2 in the priming of antiviral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1 disease, albeit not as effectively as wild-type cells. These results shed light on a cellular deficiency that is likely to impact antiviral immunity in DOCK2-deficient patients.
Collapse
Affiliation(s)
- Katrina L Randall
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Inge E A Flesch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yan Mei
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lisa A Miosge
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Racheal Aye
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Heather Domaschenz
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Natasha A Hollett
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tiffany A Russell
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tijana Stefanovic
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yik Chun Wong
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sandali Seneviratne
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fiona Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Raquel Hernandez Gallardo
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N Croft
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher C Goodnow
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW, Australia
| | - Edward M Bertram
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Randall KL, Flesch IEA, Mei Y, Miosge LA, Aye R, Yu Z, Domaschenz H, Hollett NA, Russell TA, Stefanovic T, Wong YC, Goodnow CC, Bertram EM, Enders A, Tscharke DC. DOCK2-deficiency causes defects in anti-viral T cell responses and poor control of herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551154. [PMID: 37577614 PMCID: PMC10418165 DOI: 10.1101/2023.08.02.551154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, patients with these diseases are by definition rare. In addition, any analysis is complicated by treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. Further, we found that they have a critical, cell intrinsic role of DOCK2 in the clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. These results provide a contributing cause for the frequent and devastating viral infections seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell immunity.
Collapse
Affiliation(s)
- Katrina L Randall
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
- School of Medicine and Psychology, Australian National University, Canberra ACT 2600
| | - Inge E A Flesch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Yan Mei
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Lisa A Miosge
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Racheal Aye
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Heather Domaschenz
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Natasha A Hollett
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Tiffany A Russell
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Tijana Stefanovic
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Yik Chun Wong
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Christopher C Goodnow
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Edward M Bertram
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - David C Tscharke
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| |
Collapse
|
3
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Rios JJ, Denton K, Yu H, Manickam K, Garner S, Russell J, Ludwig S, Rosenfeld JA, Liu P, Munch J, Sucato DJ, Beutler B, Wise CA. Saturation mutagenesis defines novel mouse models of severe spine deformity. Dis Model Mech 2021; 14:269194. [PMID: 34142127 PMCID: PMC8246263 DOI: 10.1242/dmm.048901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease. Summary: We report selected mouse models of spine deformity following mutagenesis across 30% of autosomal genes, results of which are made publicly available to advance understanding of spine development and disease.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shannon Garner
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Jake Munch
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Daniel J Sucato
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Mutational burden, MHC-I expression and immune infiltration as limiting factors for in situ vaccination by TNFα and IL-12 gene electrotransfer. Bioelectrochemistry 2021; 140:107831. [PMID: 33991775 DOI: 10.1016/j.bioelechem.2021.107831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-α (TNFα) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Collapse
|
6
|
Boast B, Miosge LA, Kuehn HS, Cho V, Athanasopoulos V, McNamara HA, Sontani Y, Mei Y, Howard D, Sutton HJ, Omari SA, Yu Z, Nasreen M, Andrews TD, Cockburn IA, Goodnow CC, Rosenzweig SD, Enders A. A Point Mutation in IKAROS ZF1 Causes a B Cell Deficiency in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1505-1514. [PMID: 33658297 DOI: 10.4049/jimmunol.1901464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Vicky Cho
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yovina Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yan Mei
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Debbie Howard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sofia A Omari
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Zhijia Yu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mariam Nasreen
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia; and
| | - T Daniel Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Anselm Enders
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia;
| |
Collapse
|
7
|
NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 2021; 591:131-136. [PMID: 33472215 DOI: 10.1038/s41586-021-03218-7] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/17/2023]
Abstract
Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.
Collapse
|
8
|
McKenzie MD, Ghisi M, Oxley EP, Ngo S, Cimmino L, Esnault C, Liu R, Salmon JM, Bell CC, Ahmed N, Erlichster M, Witkowski MT, Liu GJ, Chopin M, Dakic A, Simankowicz E, Pomilio G, Vu T, Krsmanovic P, Su S, Tian L, Baldwin TM, Zalcenstein DA, DiRago L, Wang S, Metcalf D, Johnstone RW, Croker BA, Lancaster GI, Murphy AJ, Naik SH, Nutt SL, Pospisil V, Schroeder T, Wall M, Dawson MA, Wei AH, de Thé H, Ritchie ME, Zuber J, Dickins RA. Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell 2020; 25:258-272.e9. [PMID: 31374198 DOI: 10.1016/j.stem.2019.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML). Here, we show in murine and human models of AML that, upon perturbation of endogenous expression of the lineage-determining transcription factor PU.1 or withdrawal of established differentiation therapies, some mature leukemia cells can de-differentiate and reacquire clonogenic and leukemogenic properties. Our results reveal plasticity of CSC maturation in AML, highlighting the need to therapeutically eradicate cancer cells across a range of differentiation states.
Collapse
Affiliation(s)
- Mark D McKenzie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Margherita Ghisi
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Steven Ngo
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Luisa Cimmino
- Department of Pathology, New York University School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Cécile Esnault
- Collège de France, PSL Research University, 75005 Paris, France; INSERM U944, CNRS UMR7212, Université de Paris, Institut de Recherche Saint Louis, 75010 Paris, France; Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St. Louis, 75010 Paris, France
| | - Ruijie Liu
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Jessica M Salmon
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael Erlichster
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew T Witkowski
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; Department of Pathology, New York University School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grace J Liu
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Chopin
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandar Dakic
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Emilia Simankowicz
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Tina Vu
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Pavle Krsmanovic
- Institute of Pathological Physiology and Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Shian Su
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Luyi Tian
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tracey M Baldwin
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Daniela A Zalcenstein
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Ladina DiRago
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Shu Wang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Donald Metcalf
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia
| | - Shalin H Naik
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Vitek Pospisil
- Institute of Pathological Physiology and Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Meaghan Wall
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Hugues de Thé
- Collège de France, PSL Research University, 75005 Paris, France; INSERM U944, CNRS UMR7212, Université de Paris, Institut de Recherche Saint Louis, 75010 Paris, France; Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St. Louis, 75010 Paris, France
| | - Matthew E Ritchie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, 1030 Vienna, Austria; Medical University of Vienna, 1030 Vienna, Austria
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
9
|
Zhu Y, Ong CS, Huttley GA. Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations. Genetics 2020; 215:25-40. [PMID: 32193188 PMCID: PMC7198283 DOI: 10.1534/genetics.120.303093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license.
Collapse
Affiliation(s)
- Yicheng Zhu
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Cheng Soon Ong
- Data61, CSIRO, Black Mountain Campus, Canberra, Australian Capital Territory 2601, Australia
- Research School of Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Gavin A Huttley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross JA, Taylor RL, van der Pijl R, Griffiths LM, Harries R, Ravenscroft G, Clayton JS, Sewry C, Lawlor MW, Ottenheijm CAC, Bakker AJ, Ochala J, Laing NG, Wallgren-Pettersson C, Pelin K, Nowak KJ. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun 2020; 8:18. [PMID: 32066503 PMCID: PMC7027239 DOI: 10.1186/s40478-020-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Collapse
|
11
|
Koay HF, Su S, Amann-Zalcenstein D, Daley SR, Comerford I, Miosge L, Whyte CE, Konstantinov IE, d'Udekem Y, Baldwin T, Hickey PF, Berzins SP, Mak JYW, Sontani Y, Roots CM, Sidwell T, Kallies A, Chen Z, Nüssing S, Kedzierska K, Mackay LK, McColl SR, Deenick EK, Fairlie DP, McCluskey J, Goodnow CC, Ritchie ME, Belz GT, Naik SH, Pellicci DG, Godfrey DI. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci Immunol 2019; 4:eaay6039. [PMID: 31757835 PMCID: PMC10627559 DOI: 10.1126/sciimmunol.aay6039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
MR1-restricted mucosal-associated invariant T (MAIT) cells play a unique role in the immune system. These cells develop intrathymically through a three-stage process, but the events that regulate this are largely unknown. Here, using bulk and single-cell RNA sequencing-based transcriptomic analysis in mice and humans, we studied the changing transcriptional landscape that accompanies transition through each stage. Many transcripts were sharply modulated during MAIT cell development, including SLAM (signaling lymphocytic activation molecule) family members, chemokine receptors, and transcription factors. We also demonstrate that stage 3 "mature" MAIT cells comprise distinct subpopulations including newly arrived transitional stage 3 cells, interferon-γ-producing MAIT1 cells and interleukin-17-producing MAIT17 cells. Moreover, the validity and importance of several transcripts detected in this study are directly demonstrated using specific mutant mice. For example, MAIT cell intrathymic maturation was found to be halted in SLAM-associated protein (SAP)-deficient and CXCR6-deficient mouse models, providing clear evidence for their role in modulating MAIT cell development. These data underpin a model that maps the changing transcriptional landscape and identifies key factors that regulate the process of MAIT cell differentiation, with many parallels between mice and humans.
Collapse
Affiliation(s)
- H-F Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Su
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - D Amann-Zalcenstein
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S R Daley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - I Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - L Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C E Whyte
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - I E Konstantinov
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - Y d'Udekem
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - T Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P F Hickey
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - S P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Federation University Australia, Ballarat, Victoria 3350, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - J Y W Mak
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Y Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C M Roots
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - T Sidwell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - A Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Z Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Nüssing
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - L K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - E K Deenick
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia
| | - D P Fairlie
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - C C Goodnow
- Garvan Institute of Medical Research, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, Australia
| | - M E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - G T Belz
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S H Naik
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - D G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - D I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
12
|
Field MA, Burgio G, Chuah A, Al Shekaili J, Hassan B, Al Sukaiti N, Foote SJ, Cook MC, Andrews TD. Recurrent miscalling of missense variation from short-read genome sequence data. BMC Genomics 2019; 20:546. [PMID: 31307400 PMCID: PMC6631443 DOI: 10.1186/s12864-019-5863-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Short-read resequencing of genomes produces abundant information of the genetic variation of individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual genome sequence information, especially should these also be carried through into in reference databases of genomic variation. RESULTS We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree, strain or human ethnic group. In human exome sequences, we identify 2-300 recurrent false positive variants per individual, almost all of which are present in public databases of human genomic variation. From the exomes of non-reference strains of inbred mice, we identify 3-5000 recurrent false positive variants per mouse - the number of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-thirds of false positive variation from only ten rounds of simulation. CONCLUSION Identification and removal of recurrent false positive variants from specific individual variant sets will improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be called for any given genome - which has profound significance for cohort studies that pool datasets collected and sequenced at different points in time.
Collapse
Affiliation(s)
- Matthew A Field
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Institute of Tropical Health and Medicine, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jalila Al Shekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Seeb, Oman
| | - Batool Hassan
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nashat Al Sukaiti
- Department of Paediatrics, Allergy, and Clinical Immunology Unit, Royal Hospital, Muscat, Oman
| | - Simon J Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Immunology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - T Daniel Andrews
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
13
|
Policheni A, Horikawa K, Milla L, Kofler J, Bouillet P, Belz GT, O'Reilly LA, Goodnow CC, Strasser A, Gray DHD. CARD11 is dispensable for homeostatic responses and suppressive activity of peripherally induced FOXP3
+
regulatory T cells. Immunol Cell Biol 2019; 97:740-752. [DOI: 10.1111/imcb.12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Antonia Policheni
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Keisuke Horikawa
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Liz Milla
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Jennifer Kofler
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Daniel HD Gray
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
14
|
Kayagaki N, Lee BL, Stowe IB, Kornfeld OS, O'Rourke K, Mirrashidi KM, Haley B, Watanabe C, Roose-Girma M, Modrusan Z, Kummerfeld S, Reja R, Zhang Y, Cho V, Andrews TD, Morris LX, Goodnow CC, Bertram EM, Dixit VM. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal 2019; 12:12/582/eaax4917. [DOI: 10.1126/scisignal.aax4917] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gasdermin-D (GSDMD) is cleaved by caspase-1, caspase-4, and caspase-11 in response to canonical and noncanonical inflammasome activation. Upon cleavage, GSDMD oligomerizes and forms plasma membrane pores, resulting in interleukin-1β (IL-1β) secretion, pyroptotic cell death, and inflammatory pathologies, including periodic fever syndromes and septic shock—a plague on modern medicine. Here, we showed that IRF2, a member of the interferon regulatory factor (IRF) family of transcription factors, was essential for the transcriptional activation of GSDMD. A forward genetic screen with N-ethyl-N-nitrosourea (ENU)–mutagenized mice linked IRF2 to inflammasome signaling. GSDMD expression was substantially attenuated in IRF2-deficient macrophages, endothelial cells, and multiple tissues, which corresponded with reduced IL-1β secretion and inhibited pyroptosis. Mechanistically, IRF2 bound to a previously uncharacterized but unique site within the GSDMD promoter to directly drive GSDMD transcription for the execution of pyroptosis. Disruption of this single IRF2-binding site abolished signaling by both the canonical and noncanonical inflammasomes. Together, our data illuminate a key transcriptional mechanism for expression of the gene encoding GSDMD, a critical mediator of inflammatory pathologies.
Collapse
|
15
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
16
|
Skvortsova K, Masle-Farquhar E, Luu PL, Song JZ, Qu W, Zotenko E, Gould CM, Du Q, Peters TJ, Colino-Sanguino Y, Pidsley R, Nair SS, Khoury A, Smith GC, Miosge LA, Reed JH, Kench JG, Rubin MA, Horvath L, Bogdanovic O, Lim SM, Polo JM, Goodnow CC, Stirzaker C, Clark SJ. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell 2019; 35:297-314.e8. [PMID: 30753827 DOI: 10.1016/j.ccell.2019.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 11/14/2018] [Accepted: 01/07/2019] [Indexed: 01/20/2023]
Abstract
Promoter CpG islands are typically unmethylated in normal cells, but in cancer a proportion are subject to hypermethylation. Using methylome sequencing we identified CpG islands that display partial methylation encroachment across the 5' or 3' CpG island borders. CpG island methylation encroachment is widespread in prostate and breast cancer and commonly associates with gene suppression. We show that the pattern of H3K4me1 at CpG island borders in normal cells predicts the different modes of cancer CpG island hypermethylation. Notably, genetic manipulation of Kmt2d results in concordant alterations in H3K4me1 levels and CpG island border DNA methylation encroachment. Our findings suggest a role for H3K4me1 in the demarcation of CpG island methylation borders in normal cells, which become eroded in cancer.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; Developmental Epigenomics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Jenny Z Song
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Wenjia Qu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Elena Zotenko
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Cathryn M Gould
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Qian Du
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Timothy J Peters
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Yolanda Colino-Sanguino
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Shalima S Nair
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Amanda Khoury
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Grady C Smith
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia
| | - Lisa A Miosge
- Immunogenomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Joanne H Reed
- Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2010, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2010, Australia; Cancer Division, The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York 10021, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York 10065, USA; Department for Biomedical Research, University of Bern, Bern, CH-3012, Switzerland; Bern Center for Precision Medicine, Inselspital, Bern University Hospital, Bern, CH-3012, Switzerland
| | - Lisa Horvath
- Sydney Medical School, University of Sydney, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW, Sydney, NSW 2010, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; Cancer Division, The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Ozren Bogdanovic
- St Vincent's Clinical School, UNSW, Sydney, NSW 2010, Australia; Developmental Epigenomics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sue Mei Lim
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jose M Polo
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher C Goodnow
- Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW, Sydney, NSW 2010, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
17
|
Anuar ND, Kurscheid S, Field M, Zhang L, Rebar E, Gregory P, Buchou T, Bowles J, Koopman P, Tremethick DJ, Soboleva TA. Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Biol 2019; 20:23. [PMID: 30704500 PMCID: PMC6357441 DOI: 10.1186/s13059-019-1633-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Altering the biochemical makeup of chromatin by the incorporation of histone variants during development represents a key mechanism in regulating gene expression. The histone variant H2A.B, H2A.B.3 in mice, appeared late in evolution and is most highly expressed in the testis. In the mouse, it is encoded by three different genes. H2A.B expression is spatially and temporally regulated during spermatogenesis being most highly expressed in the haploid round spermatid stage. Active genes gain H2A.B where it directly interacts with polymerase II and RNA processing factors within splicing speckles. However, the importance of H2A.B for gene expression and fertility are unknown. RESULTS Here, we report the first mouse knockout of this histone variant and its effects on fertility, nuclear organization, and gene expression. In view of the controversy related to the generation of off-target mutations by gene editing approaches, we test the specificity of TALENs by disrupting the H2A.B multi-copy gene family using only one pair of TALENs. We show that TALENs do display a high level of specificity since no off-target mutations are detected by bioinformatics analyses of exome sequences obtained from three consecutive generations of knockout mice and by Sanger DNA sequencing. Male H2A.B.3 knockout mice are subfertile and display an increase in the proportion of abnormal sperm and clogged seminiferous tubules. Significantly, a loss of proper RNA Pol II targeting to distinct transcription-splicing territories and changes to pre-mRNA splicing are observed. CONCLUSION We have produced the first H2A.B knockout mouse using the TALEN approach.
Collapse
Affiliation(s)
- Nur Diana Anuar
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matt Field
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Present Address: James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lei Zhang
- Sangamo Therapeutics, 501 Canal Blvd, Richmond, CA, 94804, USA
| | - Edward Rebar
- Sangamo Therapeutics, 501 Canal Blvd, Richmond, CA, 94804, USA
| | - Philip Gregory
- Sangamo Therapeutics, 501 Canal Blvd, Richmond, CA, 94804, USA.,Present Address: bluebird bio, 60 Binney St, Cambridge, MA, 02142, USA
| | - Thierry Buchou
- CNRS UMR 5309, Inserm U1209, Universite' Grenoble Alpes, Institute for Advanced Biosciences, 38700, Grenoble, France
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Tatiana A Soboleva
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
18
|
Mancini M, Caignard G, Charbonneau B, Dumaine A, Wu N, Leiva-Torres GA, Gerondakis S, Pearson A, Qureshi ST, Sladek R, Vidal SM. Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1479-1493. [DOI: 10.4049/jimmunol.1800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
|
19
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Tomberg K, Westrick RJ, Kotnik EN, Cleuren AC, Siemieniak DR, Zhu G, Saunders TL, Ginsburg D. Whole exome sequencing of ENU-induced thrombosis modifier mutations in the mouse. PLoS Genet 2018; 14:e1007658. [PMID: 30188893 PMCID: PMC6143275 DOI: 10.1371/journal.pgen.1007658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/18/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
Although the Factor V Leiden (FVL) gene variant is the most prevalent genetic risk factor for venous thrombosis, only 10% of FVL carriers will experience such an event in their lifetime. To identify potential FVL modifier genes contributing to this incomplete penetrance, we took advantage of a perinatal synthetic lethal thrombosis phenotype in mice homozygous for FVL (F5L/L) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/-) to perform a sensitized dominant ENU mutagenesis screen. Linkage analysis conducted in the 3 largest pedigrees generated from the surviving F5L/L Tfpi+/- mice ('rescues') using ENU-induced coding variants as genetic markers was unsuccessful in identifying major suppressor loci. Whole exome sequencing was applied to DNA from 107 rescue mice to identify candidate genes enriched for ENU mutations. A total of 3,481 potentially deleterious candidate ENU variants were identified in 2,984 genes. After correcting for gene size and multiple testing, Arl6ip5 was identified as the most enriched gene, though not reaching genome-wide significance. Evaluation of CRISPR/Cas9 induced loss of function in the top 6 genes failed to demonstrate a clear rescue phenotype. However, a maternally inherited (not ENU-induced) de novo mutation (Plcb4R335Q) exhibited significant co-segregation with the rescue phenotype (p = 0.003) in the corresponding pedigree. Thrombosis suppression by heterozygous Plcb4 loss of function was confirmed through analysis of an independent, CRISPR/Cas9-induced Plcb4 mutation (p = 0.01).
Collapse
Affiliation(s)
- Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Westrick
- Department of Biological Sciences and Center for Data Science and Big Data Analysis, Oakland University, Rochester, Michigan, United States of America
| | - Emilee N. Kotnik
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Audrey C. Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Transgenic Animal Model Core Laboratory, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David Ginsburg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
An intronic mutation in Chd7 creates a cryptic splice site, causing aberrant splicing in a mouse model of CHARGE syndrome. Sci Rep 2018; 8:5482. [PMID: 29615807 PMCID: PMC5882948 DOI: 10.1038/s41598-018-23856-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Alternate splicing is a critical regulator of gene expression in eukaryotes, however genetic mutations can cause erroneous splicing and disease. Most recorded splicing disorders are caused by mutations of splice donor/acceptor sites, however intronic mutations can affect splicing. Clinical exome analyses largely ignore intronic sequence, limiting the detection of mutations to within coding regions. We describe ‘Trooper’, a novel mouse model of CHARGE syndrome harbouring a pathogenic point mutation in Chd7. The mutation is 18 nucleotides upstream of exon 10 and creates a cryptic acceptor site, causing exon skipping and partial intron retention. This mutation, though detectable in exome sequence, was initially dismissed by computational filtering due to its intronic location. The Trooper strain exhibited many of the previously described CHARGE-like anomalies of CHD7 deficient mouse lines; including hearing impairment, vestibular hypoplasia and growth retardation. However, more common features such as facial asymmetry and circling were rarely observed. Recognition of these characteristic features prompted manual reexamination of Chd7 sequence and subsequent validation of the intronic mutation, highlighting the importance of phenotyping alongside exome analyses. The Trooper mouse serves as a valuable model of atypical CHARGE syndrome and reveals a molecular mechanism that may underpin milder clinical presentation of the syndrome.
Collapse
|
22
|
Speca DJ, Trimmer JS, Peterson AS, Díaz E. Whole exome sequencing reveals a functional mutation in the GAIN domain of the Bai2 receptor underlying a forward mutagenesis hyperactivity QTL. Mamm Genome 2017; 28:465-475. [PMID: 28894906 PMCID: PMC5702255 DOI: 10.1007/s00335-017-9716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The identification of novel genes underlying complex mouse behavioral traits remains an important step in understanding normal brain function and its dysfunction in mental health disorders. To identify dominant mutations that influence locomotor activity, we performed a mouse N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen and mapped several loci as quantitative traits. Here we describe the fine-mapping and positional cloning of a hyperactivity locus mapped to the medial portion of mouse chromosome four. We employed a modified recombinant progeny testing approach to fine-map the confidence interval from ≈20 Mb down to ≈5 Mb. Whole exome resequencing of all exons in this region revealed a single missense mutation in the adhesion G protein-coupled receptor brain-specific angiogenesis inhibitor 2 (Bai2). This mutation, R619W, is located in a critical extracellular domain that is a hotspot for mutations in this receptor class. We find that in two different mammalian cell lines, surface expression of Bai2 R619W is markedly reduced relative to wild-type Bai2, suggesting that R619W is a loss-of-function mutation. Our results highlight the powerful combination of ENU mutagenesis and next-generation sequencing to identify specific mutations that manifest as subtle behavioral phenotypes.
Collapse
Affiliation(s)
- David J Speca
- Department of Pharmacology, University of California, Davis, CA, 95616, USA.
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Elva Díaz
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Wang H, Li S, Chao T, Wang X, Shi L, Zhang L, Liang Y, Zheng Q, Lu L. A point mutation in the extracellular domain of CD4 completely abolishes CD4 T cell development in C57BL/6 mouse. Mol Immunol 2017; 92:12-20. [DOI: 10.1016/j.molimm.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|
24
|
Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, Bergmann M, O’Bryan MK. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet 2017; 13:e1007078. [PMID: 29136647 PMCID: PMC5705150 DOI: 10.1371/journal.pgen.1007078] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022] Open
Abstract
The katanin microtubule-severing proteins are essential regulators of microtubule dynamics in a diverse range of species. Here we have defined critical roles for the poorly characterised katanin protein KATNAL2 in multiple aspects of spermatogenesis: the initiation of sperm tail growth from the basal body, sperm head shaping via the manchette, acrosome attachment, and ultimately sperm release. We present data suggesting that depending on context, KATNAL2 can partner with the regulatory protein KATNB1 or act autonomously. Moreover, our data indicate KATNAL2 may regulate δ- and ε-tubulin rather than classical α-β-tubulin microtubule polymers, suggesting the katanin family has a greater diversity of function than previously realised. Together with our previous research, showing the essential requirement of katanin proteins KATNAL1 and KATNB1 during spermatogenesis, our data supports the concept that in higher order species the presence of multiple katanins has allowed for subspecialisation of function within complex cellular settings such as the seminiferous epithelium. Male infertility affects one in twenty men of reproductive age in western countries. Despite this, the biochemical basis of common defects, including reduced sperm count and abnormal sperm structure and function, remains poorly defined. Microtubules are cellular “scaffolds” that serve critical roles in all cells, including developing male germ cells wherein they facilitate mitosis and meiosis (cell division), sperm head remodelling and sperm tail formation. The precise regulation of microtubule number, length and movement is thus, essential for male fertility. Within this manuscript, we have used spermatogenesis to define the function of the putative microtubule-severing protein katanin-like 2 (KATNAL2). We show that mice with compromised KATNAL2 function are male sterile as a consequence of defects in the structural remodelling of germ cells. Notably, we show the function of microtubule-based structures involved in sperm head shaping and tail formation are disrupted. Further, we show for the first time, that KATNAL2 can function both independently or in concert with the katanin regulatory protein KATNB1 and that it can target the poorly characterized tubulin subunits delta and epsilon. Our research has immediate relevance to the origins of human male infertility and provides novel insights into aspects of microtubule regulation relevant to numerous tissues and species.
Collapse
Affiliation(s)
- Jessica E. M. Dunleavy
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Hidenobu Okuda
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Anne E. O’Connor
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - D. Jo Merriner
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Liza O’Donnell
- Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Victoria; Australia
| | - Duangporn Jamsai
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Hesse; Germany
| | - Moira K. O’Bryan
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
- * E-mail:
| |
Collapse
|
25
|
Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci U S A 2017; 114:E5216-E5225. [PMID: 28607084 DOI: 10.1073/pnas.1705795114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell immunity requires extremely rapid clonal proliferation of rare, antigen-specific T lymphocytes to form effector cells. Here we identify a critical role for ETAA1 in this process by surveying random germ line mutations in mice using exome sequencing and bioinformatic annotation to prioritize mutations in genes of unknown function with potential effects on the immune system, followed by breeding to homozygosity and testing for immune system phenotypes. Effector CD8+ and CD4+ T-cell formation following immunization, lymphocytic choriomeningitis virus (LCMV) infection, or herpes simplex virus 1 (HSV1) infection was profoundly decreased despite normal immune cell development in adult mice homozygous for two different Etaa1 mutations: an exon 2 skipping allele that deletes Gly78-Leu119, and a Cys166Stop truncating allele that eliminates most of the 877-aa protein. ETAA1 deficiency decreased clonal expansion cell autonomously within the responding T cells, causing no decrease in their division rate but increasing TP53-induced mRNAs and phosphorylation of H2AX, a marker of DNA replication stress induced by the ATM and ATR kinases. Homozygous ETAA1-deficient adult mice were otherwise normal, healthy, and fertile, although slightly smaller, and homozygotes were born at lower frequency than expected, consistent with partial lethality after embryonic day 12. Taken together with recently reported evidence in human cancer cell lines that ETAA1 activates ATR kinase through an exon 2-encoded domain, these findings reveal a surprisingly specific requirement for this ATR activator in adult mice restricted to rapidly dividing effector T cells. This specific requirement may provide new ways to suppress pathological T-cell responses in transplantation or autoimmunity.
Collapse
|
26
|
Genome-Wide Exome Analysis of Cmv5-Disparate Mouse Strains that Differ in Host Resistance to Murine Cytomegalovirus Infection. G3-GENES GENOMES GENETICS 2017; 7:1979-1984. [PMID: 28450376 PMCID: PMC5473773 DOI: 10.1534/g3.117.042531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Host resistance to murine cytomegalovirus (MCMV) varies in different strains of laboratory mice due to differences in expression of determinants that control and clear viral infection. The major histocompatibility complex class I Dk molecule is one such determinant that controls MCMV through the action of natural killer (NK) cells. However, the extent of NK cell–mediated Dk-dependent resistance to infection varies in different mouse strains. The molecular genetic basis of this variation remains unclear. Previous work to examine the Dk effect on MCMV resistance in MA/My × C57L offspring discovered multiple quantitative trait loci (QTL) that may serve to modify NK cells or their capacity to respond during MCMV infection. One QTL in particular, Cmv5, was found to regulate the frequency of NK cells and secondary lymphoid organ structure in spleen during MCMV infection. Cmv5 alleles, however, have not been identified. We therefore sequenced and analyzed genome-wide exome (GWE) variants, including those aligned to the critical genetic interval, in Cmv5-disparate mouse strains. Their GWE variant profiles were compared to assess strain-specific sequence data integrity and to analyze mouse strain relatedness across the genome. GWE content was further compared against data from the Mouse Genomes Project. This approach was developed as a platform for using GWE variants to define genomic regions of divergence and similarity in different mouse strains while also validating the overall quality of GWE sequence data. Moreover, the analysis provides a framework for the selection of novel QTL candidate sequences, including at the Cmv5 critical region.
Collapse
|
27
|
Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, Ortiz-Brüchle N, Hilger N, Metzis V, Hiersche M, Tay SY, Tunningley R, Vij S, Courtney AD, Whittle B, Wühl E, Vester U, Hartleben B, Neuber S, Frank V, Little MH, Epting D, Papathanasiou P, Perkins AC, Wright GD, Hunziker W, Gee HY, Otto EA, Zerres K, Hildebrandt F, Roy S, Wicking C, Bergmann C. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet 2017; 49:1025-1034. [PMID: 28530676 DOI: 10.1038/ng.3871] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/24/2017] [Indexed: 12/21/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Singapore
| | - Maria C Rondón Galeano
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Elisabeth Ott
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geraldine Kaeslin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Carina Kramer
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Nadescha Hilger
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Vicki Metzis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Milan Hiersche
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | | | - Robert Tunningley
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Shubha Vij
- Institute of Molecular and Cell Biology, Singapore
| | - Andrew D Courtney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Belinda Whittle
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Elke Wühl
- Division of Pediatric Nephrology, University Children's Hospital Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Udo Vester
- Department of Pediatric Nephrology, University Children's Hospital Essen, Essen, Germany
| | - Björn Hartleben
- Institute of Pathology, MHH University Medical School Hannover, Hannover, Germany
| | - Steffen Neuber
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Valeska Frank
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Epting
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Papathanasiou
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Andrew C Perkins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Mater Research Institute, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Walter Hunziker
- Institute of Molecular and Cell Biology, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Eye Research Institute, Singapore
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Edgar A Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Human Genetics, RWTH Aachen University, Aachen, Germany.,Center for Human Genetics, Bioscientia, Ingelheim, Germany
| |
Collapse
|
28
|
Masle-Farquhar E, Bröer A, Yabas M, Enders A, Bröer S. ASCT2 (SLC1A5)-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production. Front Immunol 2017; 8:549. [PMID: 28553292 PMCID: PMC5427077 DOI: 10.3389/fimmu.2017.00549] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
SLC1A5 (solute carrier family 1, member 5) is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5's primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Mehmet Yabas
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Hashimoto H, Kawabe T, Fukuda T, Kusakabe M. A Novel Ataxic Mutant Mouse Line Having Sensory Neuropathy Shows Heavy Iron Deposition in Kidney. NEURODEGENER DIS 2017; 17:181-198. [DOI: 10.1159/000457126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023] Open
|
30
|
Identification of mutations through dominant screening for obesity using C57BL/6 substrains. Sci Rep 2016; 6:32453. [PMID: 27585985 PMCID: PMC5009433 DOI: 10.1038/srep32453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023] Open
Abstract
The discovery of leptin substantiated the usefulness of a forward genetic approach in elucidating the molecular network regulating energy metabolism. However, no successful dominant screening for obesity has been reported, which may be due to the influence of quantitative trait loci between the screening and counter strains and the low fertility of obese mice. Here, we performed a dominant screening for obesity using C57BL/6 substrains, C57BL/6J and C57BL/6N, with the routine use of in vitro fertilization. The screening of more than 5000 mutagenized mice established two obese pedigrees in which single nucleotide substitutions in Mc4r and Sim1 genes were identified through whole-exome sequencing. The mutation in the Mc4r gene produces a premature stop codon, and the mutant SIM1 protein lacks transcriptional activity, showing that the haploinsufficiency of SIM1 and MC4R results in obesity. We further examined the hypothalamic neuropeptide expressions in the mutant pedigrees and mice with diet-induced obesity, which showed that each obesity mouse model has distinct neuropeptide expression profiles. This forward genetic screening scheme is useful and applicable to any research field in which mouse models work.
Collapse
|
31
|
Wilmott JS, Field MA, Johansson PA, Kakavand H, Shang P, De Paoli-Iseppi R, Vilain RE, Pupo GM, Tembe V, Jakrot V, Shang CA, Cebon J, Shackleton M, Fitzgerald A, Thompson JF, Hayward NK, Mann GJ, Scolyer RA. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes. Pathology 2016; 47:683-93. [PMID: 26517638 DOI: 10.1097/pat.0000000000000324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer specific SNVs which will aid researchers and clinicians in study design and implementation of WGS for the identification of somatic mutations in other cancers.
Collapse
Affiliation(s)
- James S Wilmott
- 1Melanoma Institute Australia, North Sydney, NSW 2Sydney Medical School, The University of Sydney, Camperdown, NSW 3Immunogenomics Laboratory, Australian National University, Canberra, ACT 4Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Qld 5Centre for Cancer Research, The University of Sydney at Westmead Millennium Institute, Westmead, NSW 6Bioplatforms Australia, Macquarie University, North Ryde, NSW 7Ludwig Institute for Cancer Research, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Vic 8The Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Vic 9Departments of Melanoma and Surgical Oncology 10Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; these authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gallego-Llamas J, Timms AE, Pitstick R, Peters J, Carlson GA, Beier DR. Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice. PLoS One 2016; 11:e0159377. [PMID: 27441645 PMCID: PMC4956170 DOI: 10.1371/journal.pone.0159377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/03/2016] [Indexed: 12/05/2022] Open
Abstract
ENU mutagenesis is a powerful method for generating novel lines of mice that are informative with respect to both fundamental biological processes and human disease. Rapid developments in genomic technology have made the task of identifying causal mutations by positional cloning remarkably efficient. One limitation of this approach remains the mutation frequency achievable using standard treatment protocols, which currently generate approximately 1–2 sequence changes per megabase when optimized. In this study we used two strategies to attempt to increase the number of mutations induced by ENU treatment. One approach employed mice carrying a mutation in the DNA repair enzyme Msh6. The second strategy involved injection of ENU to successive generations of mice. To evaluate the number of ENU-induced mutations, single mice or pooled samples were analyzed using whole exome sequencing. The results showed that there is considerable variability in the induced mutation frequency using these approaches, but an overall increase in ENU-induced variants from one generation to another was observed. The analysis of the mice deficient for Msh6 also showed an increase in the ENU-induced variants compared to the wild-type ENU-treated mice. However, in both cases the increase in ENU-induced mutation frequency was modest.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Andrew E. Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Richman TR, Spåhr H, Ermer JA, Davies SMK, Viola HM, Bates KA, Papadimitriou J, Hool LC, Rodger J, Larsson NG, Rackham O, Filipovska A. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016; 7:11884. [PMID: 27319982 PMCID: PMC4915168 DOI: 10.1038/ncomms11884] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. Mutations in the translational activator of cytochrome c oxidase subunit I (TACO1) causes cytochrome c oxidase deficiency and Leigh Syndrome in patients. Here, the authors characterize mice with a mutation that causes lack of TACO1 expression, identifying a mouse model that could be useful for preclinical trials.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
34
|
Tomberg K, Khoriaty R, Westrick RJ, Fairfield HE, Reinholdt LG, Brodsky GL, Davizon-Castillo P, Ginsburg D, Di Paola J. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice. PLoS One 2016; 11:e0150852. [PMID: 26950939 PMCID: PMC4780761 DOI: 10.1371/journal.pone.0150852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/19/2016] [Indexed: 01/06/2023] Open
Abstract
During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.
Collapse
Affiliation(s)
- Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | | | | | - Gary L. Brodsky
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Pavel Davizon-Castillo
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David Ginsburg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
- Human Medical Genetics and Genomics Program, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
35
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
36
|
Field MA, Cho V, Andrews TD, Goodnow CC. Reliably Detecting Clinically Important Variants Requires Both Combined Variant Calls and Optimized Filtering Strategies. PLoS One 2015; 10:e0143199. [PMID: 26600436 PMCID: PMC4658170 DOI: 10.1371/journal.pone.0143199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
A diversity of tools is available for identification of variants from genome sequence data. Given the current complexity of incorporating external software into a genome analysis infrastructure, a tendency exists to rely on the results from a single tool alone. The quality of the output variant calls is highly variable however, depending on factors such as sequence library quality as well as the choice of short-read aligner, variant caller, and variant caller filtering strategy. Here we present a two-part study first using the high quality 'genome in a bottle' reference set to demonstrate the significant impact the choice of aligner, variant caller, and variant caller filtering strategy has on overall variant call quality and further how certain variant callers outperform others with increased sample contamination, an important consideration when analyzing sequenced cancer samples. This analysis confirms previous work showing that combining variant calls of multiple tools results in the best quality resultant variant set, for either specificity or sensitivity, depending on whether the intersection or union, of all variant calls is used respectively. Second, we analyze a melanoma cell line derived from a control lymphocyte sample to determine whether software choices affect the detection of clinically important melanoma risk-factor variants finding that only one of the three such variants is unanimously detected under all conditions. Finally, we describe a cogent strategy for implementing a clinical variant detection pipeline; a strategy that requires careful software selection, variant caller filtering optimizing, and combined variant calls in order to effectively minimize false negative variants. While implementing such features represents an increase in complexity and computation the results offer indisputable improvements in data quality.
Collapse
Affiliation(s)
- Matthew A. Field
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- National Computational Infrastructure, Australian National University, Canberra, ACT, Australia
| | - Vicky Cho
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Australian Phenomics Facility, Australian National University, Canberra, ACT, Australia
| | - T. Daniel Andrews
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- National Computational Infrastructure, Australian National University, Canberra, ACT, Australia
| | - Chris C. Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Immunogenomics Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
37
|
Sustaining large-scale infrastructure to promote pre-competitive biomedical research: lessons from mouse genomics. N Biotechnol 2015; 33:280-94. [PMID: 26563511 DOI: 10.1016/j.nbt.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/07/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023]
Abstract
Bio-repositories and databases for biomedical research enable the efficient community-wide sharing of reagents and data. These archives play an increasingly prominent role in the generation and dissemination of bioresources and data essential for fundamental and translational research. Evidence suggests, however, that current funding and governance models, generally short-term and nationally focused, do not adequately support the role of archives in long-term, transnational endeavours to make and share high-impact resources. Our qualitative case study of the International Knockout Mouse Consortium and the International Mouse Phenotyping Consortium examines new governance mechanisms for archive sustainability. Funders and archive managers highlight in interviews that archives need stable public funding and new revenue-generation models to be sustainable. Sustainability also requires archives, journal publishers, and funders to implement appropriate incentives, associated metrics, and enforcement mechanisms to ensure that researchers use archives to deposit reagents and data to make them publicly accessible for academia and industry alike.
Collapse
|
38
|
Gallego-Llamas J, Timms AE, Geister KA, Lindsay A, Beier DR. Variant mapping and mutation discovery in inbred mice using next-generation sequencing. BMC Genomics 2015; 16:913. [PMID: 26552429 PMCID: PMC4640199 DOI: 10.1186/s12864-015-2173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/31/2015] [Indexed: 12/04/2022] Open
Abstract
Background The development of powerful new methods for DNA sequencing enable the discovery of sequence variants, their utilization for the mapping of mutant loci, and the identification of causal variants in a single step. We have applied this approach for the analysis of ENU-mutagenized mice maintained on an inbred background. Results We ascertained ENU-induced variants in four different phenotypically mutant lines. These were then used as informative markers for positional cloning of the mutated genes. We tested both whole genome (WGS) and whole exome (WES) datasets. Conclusion Both approaches were successful as a means to localize a region of homozygosity, as well as identifying mutations of candidate genes, which could be individually assessed. As expected, the WGS strategy was more reliable, since many more ENU-induced variants were ascertained. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Krista A Geister
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Anna Lindsay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - David R Beier
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| |
Collapse
|
39
|
Simon MM, Moresco EMY, Bull KR, Kumar S, Mallon AM, Beutler B, Potter PK. Current strategies for mutation detection in phenotype-driven screens utilising next generation sequencing. Mamm Genome 2015; 26:486-500. [PMID: 26449678 PMCID: PMC4602060 DOI: 10.1007/s00335-015-9603-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Mutagenesis-based screens in mice are a powerful discovery platform to identify novel genes or gene functions associated with disease phenotypes. An N-ethyl-N-nitrosourea (ENU) mutagenesis screen induces single nucleotide variants randomly in the mouse genome. Subsequent phenotyping of mutant and wildtype mice enables the identification of mutated pathways resulting in phenotypes associated with a particular ENU lesion. This unbiased approach to gene discovery conducts the phenotyping with no prior knowledge of the functional mutations. Before the advent of affordable next generation sequencing (NGS), ENU variant identification was a limiting step in gene characterization, akin to ‘finding a needle in a haystack’. The emergence of a reliable reference genome alongside advances in NGS has propelled ENU mutation discovery from an arduous, time-consuming exercise to an effective and rapid form of mutation discovery. This has permitted large mouse facilities worldwide to use ENU for novel mutation discovery in a high-throughput manner, helping to accelerate basic science at the mechanistic level. Here, we describe three different strategies used to identify ENU variants from NGS data and some of the subsequent steps for mutation characterisation.
Collapse
Affiliation(s)
- Michelle M Simon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine R Bull
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Saumya Kumar
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paul K Potter
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
40
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526:666-71. [PMID: 26375259 DOI: 10.1038/nature15541] [Citation(s) in RCA: 2551] [Impact Index Per Article: 255.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022]
Abstract
Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
Collapse
Affiliation(s)
- Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Irma B Stowe
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Bettina L Lee
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Karen O'Rourke
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Keith Anderson
- Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | - Søren Warming
- Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA
| | - Qui T Phung
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Peter S Liu
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Jennie R Lill
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Jiansheng Wu
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| | - Sarah Kummerfeld
- Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA
| | - Juan Zhang
- Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA
| | - Scott J Snipas
- Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Guy S Salvesen
- Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Lucy X Morris
- The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Linda Fitzgerald
- The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yafei Zhang
- The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Edward M Bertram
- The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Australia, Darlinghurst, New South Wales 2010, Australia
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
41
|
|
42
|
Comparison of predicted and actual consequences of missense mutations. Proc Natl Acad Sci U S A 2015; 112:E5189-98. [PMID: 26269570 DOI: 10.1073/pnas.1511585112] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Collapse
|
43
|
Eppig JT, Richardson JE, Kadin JA, Ringwald M, Blake JA, Bult CJ. Mouse Genome Informatics (MGI): reflecting on 25 years. Mamm Genome 2015; 26:272-84. [PMID: 26238262 PMCID: PMC4534491 DOI: 10.1007/s00335-015-9589-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/02/2022]
Abstract
From its inception in 1989, the mission of the Mouse Genome Informatics (MGI) resource remains to integrate genetic, genomic, and biological data about the laboratory mouse to facilitate the study of human health and disease. This mission is ever more feasible as the revolution in genetics knowledge, the ability to sequence genomes, and the ability to specifically manipulate mammalian genomes are now at our fingertips. Through major paradigm shifts in biological research and computer technologies, MGI has adapted and evolved to become an integral part of the larger global bioinformatics infrastructure and honed its ability to provide authoritative reference datasets used and incorporated by many other established bioinformatics resources. Here, we review some of the major changes in research approaches over that last quarter century, how these changes are reflected in the MGI resource you use today, and what may be around the next corner.
Collapse
Affiliation(s)
- Janan T. Eppig
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Joel E. Richardson
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - James A. Kadin
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Martin Ringwald
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Judith A. Blake
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Carol J. Bult
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| |
Collapse
|
44
|
Eppig JT, Richardson JE, Kadin JA, Smith CL, Blake JA, Bult CJ. Mouse Genome Database: From sequence to phenotypes and disease models. Genesis 2015; 53:458-73. [PMID: 26150326 PMCID: PMC4545690 DOI: 10.1002/dvg.22874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
Abstract
The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
|
45
|
Haelterman NA, Jiang L, Li Y, Bayat V, Sandoval H, Ugur B, Tan KL, Zhang K, Bei D, Xiong B, Charng WL, Busby T, Jawaid A, David G, Jaiswal M, Venken KJT, Yamamoto S, Chen R, Bellen HJ. Large-scale identification of chemically induced mutations in Drosophila melanogaster. Genome Res 2015; 24:1707-18. [PMID: 25258387 PMCID: PMC4199363 DOI: 10.1101/gr.174615.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ∼3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (∼70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes.
Collapse
Affiliation(s)
- Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lichun Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Theodore Busby
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adeel Jawaid
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Koen J T Venken
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Verna and Mars Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA; Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Derdak S, Sabrautzki S, de Angelis MH, Gut M, Gut IG, Beltran S. Genomic characterization of mutant laboratory mouse strains by exome sequencing and annotation lift-over. BMC Genomics 2015; 16:351. [PMID: 25943197 PMCID: PMC4422528 DOI: 10.1186/s12864-015-1548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Background Exome sequencing has become a popular method to evaluate undirected mutagenesis experiments in mice. However, the most suitable mouse strain for the biological model may be relatively distant from the standard mouse reference genome. For pinpointing causative variants, a matching reference with gene annotations is essential, but not always readily available. Results We present an approach that allows to use murine Ensembl annotations on alternative mouse strain assemblies. We resolved ENU-induced mutation screening for 8 phenotypic mutant lines generated on C3HeB/FeJ background aligning the sequences against the closely related, but not annotated reference of C3H/HeJ. Variants occurring in all strains were filtered out as specific for the C3HeB/FeJ strain but unrelated to mutagenesis. Variants occurring exclusively in all individuals of one mutant line and matching the inheritance model were selected as mutagenesis-related. These variants were annotated with gene and exon names lifted over from the standard murine reference mm9 to C3H/HeJ using megablast. For each mutant line, we could restrict the results to exonic variants in between 1 and 23 genes. Conclusions The presented method of exonic annotation lift-over proved to be a valuable tool in the search for mutagenesis-derived coding genomic variants and the assessment of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Sophia Derdak
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Technische Universität München, Lehrstuhl für Experimentelle Genetik, 85350, Freising-Weihenstephan, Germany.
| | - Marta Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| |
Collapse
|
47
|
Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction. PLoS Genet 2015; 11:e1005089. [PMID: 25816300 PMCID: PMC4376678 DOI: 10.1371/journal.pgen.1005089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age. Mitochondria make most of the energy required by eukaryotic cells and therefore they are essential for their normal function and survival. Mitochondrial function is regulated by both the mitochondrial and nuclear genome. Mutations in nuclear genes encoding mitochondrial proteins lead to mitochondrial dysfunction and consequently diminished energy production, a major symptom of metabolic and mitochondrial diseases. The molecular mechanisms that regulate mitochondrial gene expression and how dysfunction of these processes causes the pathologies observed in these diseases are not well understood. Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and mitochondria-specific proteins, which can be unique to different organisms. Mitochondria-specific ribosomal proteins have key roles in disease however their functions within mitochondria are not known. Here we show that a point mutation in a mammalian-specific ribosomal protein causes mitochondrial dysfunction, heart abnormalities and progressive liver disease. This mouse provides a valuable model to elucidate the pathogenic mechanisms and progression of metabolic diseases with age, while enabling a more thorough understanding of mitochondrial ribosomes and protein synthesis.
Collapse
|
48
|
Flesch IEA, Randall KL, Hollett NA, Di Law H, Miosge LA, Sontani Y, Goodnow CC, Tscharke DC. Delayed control of herpes simplex virus infection and impaired CD4(+) T-cell migration to the skin in mouse models of DOCK8 deficiency. Immunol Cell Biol 2015; 93:517-21. [PMID: 25776845 PMCID: PMC4496291 DOI: 10.1038/icb.2015.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/01/2015] [Accepted: 02/14/2015] [Indexed: 12/19/2022]
Abstract
DOCK8 deficiency in humans and mice leads to multiple defects in immune cell numbers and function. Patients with this immunodeficiency have a high morbidity and mortality, and are distinguished by chronic cutaneous viral infections, including those caused by herpes simplex virus (HSV). The underlying mechanism of the specific susceptibility to these chronic cutaneous viral infections is currently unknown, largely because the effect of DOCK8 deficiency has not been studied in suitable models. A better understanding of these mechanisms is required to underpin the development of more specific therapies. Here we show that DOCK8-deficient mice have poor control of primary cutaneous herpes simplex lesions and this is associated with increased virus loads. Furthermore, DOCK8-deficient mice showed a lack of CD4(+) T-cell infiltration into HSV-infected skin.
Collapse
Affiliation(s)
- Inge E A Flesch
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katrina L Randall
- 1] John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia [2] ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Natasha A Hollett
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hsei Di Law
- 1] John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia [2] ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa A Miosge
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yovina Sontani
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher C Goodnow
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C Tscharke
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
49
|
Siggs OM, Miosge LA, Daley SR, Asquith K, Foster PS, Liston A, Goodnow CC. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2587-95. [PMID: 25662996 PMCID: PMC4355390 DOI: 10.4049/jimmunol.1400326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Lisa A Miosge
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephen R Daley
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kelly Asquith
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Adrian Liston
- Department of Microbiology and Immunology, Flanders Institute for Biotechnology and University of Leuven, Leuven 3000, Belgium
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia;
| |
Collapse
|
50
|
Field MA, Cho V, Cook MC, Enders A, Vinuesa CG, Whittle B, Andrews TD, Goodnow CC. Reducing the search space for causal genetic variants with VASP. Bioinformatics 2015; 31:2377-9. [PMID: 25755272 PMCID: PMC4495293 DOI: 10.1093/bioinformatics/btv135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Motivation: Increasingly, cost-effective high-throughput DNA sequencing technologies are being utilized to sequence human pedigrees to elucidate the genetic cause of a wide variety of human diseases. While numerous tools exist for variant prioritization within a single genome, the ability to concurrently analyze variants within pedigrees remains a challenge, especially should there be no prior indication of the underlying genetic cause of the disease. Here, we present a tool, variant analysis of sequenced pedigrees (VASP), a flexible data integration environment capable of producing a summary of pedigree variation, providing relevant information such as compound heterozygosity, genome phasing and disease inheritance patterns. Designed to aggregate data across a sequenced pedigree, VASP allows both powerful filtering and custom prioritization of both single nucleotide variants (SNVs) and small indels. Hence, clinical and research users with prior knowledge of a disease are able to dramatically reduce the variant search space based on a wide variety of custom prioritization criteria. Availability and implementation: Source code available for academic non-commercial research purposes at https://github.com/mattmattmattmatt/VASP. Contact: matt.field@anu.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthew A Field
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
| | - Vicky Cho
- Australian Phenomics Facility, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew C Cook
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia, Department of Immunology, The Canberra Hospital, Canberra, ACT 2605, Australia
| | - Anselm Enders
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia, Rammaciotti Immunisation Genomics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia and
| | - Carola G Vinuesa
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, Australian National University, Canberra, ACT 2601, Australia
| | - T Daniel Andrews
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia
| | - Chris C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia, Immunogenomics Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|