1
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
2
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
3
|
Mora P, Laisné M, Bourguignon C, Rouault P, Jaspard-Vinassa B, Maître M, Gadeau AP, Renault MA, Horng S, Couffinhal T, Chapouly C. Astrocytic DLL4-NOTCH1 signaling pathway promotes neuroinflammation via the IL-6-STAT3 axis. J Neuroinflammation 2024; 21:258. [PMID: 39390606 PMCID: PMC11468415 DOI: 10.1186/s12974-024-03246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Under neuroinflammatory conditions, astrocytes acquire a reactive phenotype that drives acute inflammatory injury as well as chronic neurodegeneration. We hypothesized that astrocytic Delta-like 4 (DLL4) may interact with its receptor NOTCH1 on neighboring astrocytes to regulate astrocyte reactivity via downstream juxtacrine signaling pathways. Here we investigated the role of astrocytic DLL4 on neurovascular unit homeostasis under neuroinflammatory conditions. We probed for downstream effectors of the DLL4-NOTCH1 axis and targeted these for therapy in two models of CNS inflammatory disease. We first demonstrated that astrocytic DLL4 is upregulated during neuroinflammation, both in mice and humans, driving astrocyte reactivity and subsequent blood-brain barrier permeability and inflammatory infiltration. We then showed that the DLL4-mediated NOTCH1 signaling in astrocytes directly drives IL-6 levels, induces STAT3 phosphorylation promoting upregulation of astrocyte reactivity markers, pro-permeability factor secretion and consequent blood-brain barrier destabilization. Finally we revealed that blocking DLL4 with antibodies improves experimental autoimmune encephalomyelitis symptoms in mice, identifying a potential novel therapeutic strategy for CNS autoimmune demyelinating disease. As a general conclusion, this study demonstrates that DLL4-NOTCH1 signaling is not only a key pathway in vascular development and angiogenesis, but also in the control of astrocyte reactivity during neuroinflammation.
Collapse
Affiliation(s)
- Pierre Mora
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Célia Bourguignon
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Paul Rouault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Béatrice Jaspard-Vinassa
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, F-33000, France
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marie-Ange Renault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Thierry Couffinhal
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Candice Chapouly
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France.
| |
Collapse
|
4
|
Perez DH, Antfolk D, Bustos XE, Medina E, Chang S, Ramadan AA, Rodriguez PC, Gonzalez-Perez D, Abate-Daga D, Luca VC. Engineering synthetic agonists for targeted activation of Notch signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606897. [PMID: 39149362 PMCID: PMC11326249 DOI: 10.1101/2024.08.06.606897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Notch signaling regulates cell fate decisions and has context-dependent tumorigenic or tumor suppressor functions. Although there are several classes of Notch inhibitors, the mechanical force requirement for Notch receptor activation has hindered attempts to generate soluble agonists. To address this problem, we engineered synthetic Notch agonist (SNAG) proteins by tethering affinity-matured Notch ligands to antibodies or cytokines that internalize their targets. This bispecific format enables SNAGs to "pull" on mechanosensitive Notch receptors, triggering their activation in the presence of a desired biomarker. We successfully developed SNAGs targeting six independent surface markers, including the tumor antigens PDL1, CD19, and HER2, and the immunostimulatory receptor CD40. SNAGs targeting CD40 increase expansion of central memory γδ T cells from peripheral blood, highlighting their potential to improve the phenotype and yield of low-abundance T cell subsets. These insights have broad implications for the pharmacological activation of mechanoreceptors and will expand our ability to modulate Notch signaling in biotechnology.
Collapse
Affiliation(s)
- David H. Perez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Xiomar E. Bustos
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Elliot Medina
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shiun Chang
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Ahmed A. Ramadan
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | | | | | - Daniel Abate-Daga
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| |
Collapse
|
5
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
6
|
He C, Li Y, Gan L, Lin Y, Zhang B, Ma L, Xue H. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis. J Endocrinol Invest 2024; 47:1971-1986. [PMID: 38285310 DOI: 10.1007/s40618-023-02293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Autoimmune Thyroiditis (AIT) is the most common thyroid disease; however, there were no measures to prevent the progression of the disease. The present study attempts to identify that Notch signaling regulates the differentiation of T helper 17 (Th17) cells by activating downstream Phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway participating in the thyroid injury of the experimental autoimmune thyroiditis (EAT). METHODS In vivo experiments, mice were randomly divided into 4 groups: a control group, an EAT group, and two groups with LY294002 treatment (pTg plus 25 mg/kg or 50 mg/kg LY294002, respectively). The degrees of thyroiditis were evaluated, and the percentage of Th17 cells, expression of interleukin-17A (IL-17A), and the main components of the Notch-PI3K signaling pathway were detected in different groups. In vitro experiments, two different dosages of LY294002 (25 and 50 μM) were used to intervene splenic mononuclear cells (SMCs) from EAT mice to further evaluate the regulatory effect of Notch-PI3K pathway on Th17 cells. RESULTS Our data demonstrate that the infiltration of Th17 cells and the expressions of IL-17A, Notch, hairy and split 1 (Hes1), p‑AKT (Ser473), p‑AKT (Thr308), p‑mTOR (Ser2448), S6K1, and S6K2 increased remarkably in EAT mice. After PI3K pathway was blocked, the degrees of thyroiditis were significantly alleviated, and the proportion of Th17 cells, the expression of IL-17A, and the above Notch-PI3K pathway-related molecules decreased in a dose-dependent manner. Additionally, the proportion of Th17 cells was positively correlated with the concentration of serum thyroglobulin antibody (TgAb), IL-17A, and Notch-PI3K pathway-related molecules mRNA levels. CONCLUSIONS Notch signal promotes the secretion of IL-17A from Th17 cells by regulating the downstream PI3K/AKT/mTORC1 pathway through Hes-Phosphatase and tensin homolog (PTEN) and participates in thyroid autoimmune damage, and the PI3K pathway inhibitor may play important effects on AIT by affecting Th17 cells differentiation.
Collapse
Affiliation(s)
- C He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - L Gan
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - B Zhang
- Nanchang University Queen Mary School, Nanchang, 330031, People's Republic of China
| | - L Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - H Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China.
| |
Collapse
|
7
|
Sun Y, Tong H, Chu X, Li Y, Zhang J, Ding Y, Zhang S, Gui X, Chen C, Xu M, Li Z, Gardiner EE, Andrews RK, Zeng L, Xu K, Qiao J. Notch1 regulates hepatic thrombopoietin production. Blood 2024; 143:2778-2790. [PMID: 38603632 DOI: 10.1182/blood.2023023559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.
Collapse
Affiliation(s)
- Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
8
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Novak S, Tanigawa H, Singh V, Root SH, Schmidt TA, Hankenson KD, Kalajzic I. Endothelial to mesenchymal Notch signaling regulates skeletal repair. JCI Insight 2024; 9:e181073. [PMID: 38781018 PMCID: PMC11383173 DOI: 10.1172/jci.insight.181073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hitoshi Tanigawa
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Institute for Systems Genomics, Computational Biology Core, UConn, Storrs, Connecticut, USA
| | - Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Giaimo BD, Friedrich T, Ferrante F, Bartkuhn M, Borggrefe T. Comprehensive genomic features indicative for Notch responsiveness. Nucleic Acids Res 2024; 52:5179-5194. [PMID: 38647081 PMCID: PMC11109962 DOI: 10.1093/nar/gkae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factor RBPJ is the central component in Notch signal transduction and directly forms a coactivator complex together with the Notch intracellular domain (NICD). While RBPJ protein levels remain constant in most tissues, dynamic expression of Notch target genes varies depending on the given cell-type and the Notch activity state. To elucidate dynamic RBPJ binding genome-wide, we investigated RBPJ occupancy by ChIP-Seq. Surprisingly, only a small set of the total RBPJ sites show a dynamic binding behavior in response to Notch signaling. Compared to static RBPJ sites, dynamic sites differ in regard to their chromatin state, binding strength and enhancer positioning. Dynamic RBPJ sites are predominantly located distal to transcriptional start sites (TSSs), while most static sites are found in promoter-proximal regions. Importantly, gene responsiveness is preferentially associated with dynamic RBPJ binding sites and this static and dynamic binding behavior is repeatedly observed across different cell types and species. Based on the above findings we used a machine-learning algorithm to predict Notch responsiveness with high confidence in different cellular contexts. Our results strongly support the notion that the combination of binding strength and enhancer positioning are indicative of Notch responsiveness.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
- Institute for Lung Health, Aulweg 132, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
11
|
Hu Y, Sarkar A, Song K, Michael S, Hook M, Wang R, Heczey A, Song X. Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity. Cell Rep Med 2024; 5:101530. [PMID: 38688275 PMCID: PMC11148642 DOI: 10.1016/j.xcrm.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor β1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.
Collapse
MESH Headings
- Animals
- Adenosine Deaminase/metabolism
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Immunotherapy, Adoptive/methods
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Inosine
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
Collapse
Affiliation(s)
- Yue Hu
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Abhijit Sarkar
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kevin Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA
| | - Sara Michael
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Synthesis Biology, University of Houston, Houston, TX, USA
| | - Magnus Hook
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Andras Heczey
- Texas Children's Hospital, Houston, TX, USA; Department of Pediatric, Baylor College of Medicine, Houston, TX, USA
| | - Xiaotong Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
12
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
13
|
Bremer SJ, Boxnick A, Glau L, Biermann D, Joosse SA, Thiele F, Billeb E, May J, Kolster M, Hackbusch R, Fortmann MI, Kozlik-Feldmann R, Hübler M, Tolosa E, Sachweh JS, Gieras A. Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease. J Clin Immunol 2024; 44:69. [PMID: 38393459 PMCID: PMC10891212 DOI: 10.1007/s10875-024-01662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.
Collapse
Affiliation(s)
- Sarah-Jolan Bremer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Boxnick
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel Biermann
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Thiele
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Elena Billeb
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan May
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Manuela Kolster
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Romy Hackbusch
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | | | - Rainer Kozlik-Feldmann
- Department of Pediatric Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hübler
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Jörg Siegmar Sachweh
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Singh L, Bhatti R. Signaling Pathways Involved in the Neuroprotective Effect of Osthole: Evidence and Mechanisms. Mol Neurobiol 2024; 61:1100-1118. [PMID: 37682453 DOI: 10.1007/s12035-023-03580-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Neurodegenerative diseases constitute a major threat to human health and are usually accompanied by progressive structural and functional loss of neurons. Abnormalities in synaptic plasticity are involved in neurodegenerative disorders. Aberrant cell signaling cascades play a predominant role in the initiation, progress as well as in the severity of these ailments. Notch signaling is a pivotal role in the maintenance of neural stem cells and also participates in neurogenesis. PI3k/Akt cascade regulates different biological processes including cell proliferation, apoptosis, and metabolism. It regulates neurotoxicity and mediates the survival of neurons. Moreover, the activated BDNF/TrkB cascade is involved in promoting the transcription of genes responsible for cell survival and neurogenesis. Despite significant progress made in delineating the underlying pathological mechanisms involved and derangements in cellular metabolic promenades implicated in these diseases, satisfactory strategies for the clinical management of these ailments are yet to be achieved. Therefore, the molecules targeting these cell signaling cascades may emerge as useful leads in developing newer management strategies. Osthole is an important ingredient of traditional Chinese medicinal plants, often found in various plants of the Apiaceae family and has been observed to target these aforementioned mediators. Until now, no review has been aimed to discuss the possible molecular signaling cascades involved in osthole-mediated neuroprotection at one platform. The current review aimed to explore the interplay of various mediators and the modulation of the different molecular signaling cascades in osthole-mediated neuroprotection. This review could open new insights into research involving diseases of neuronal origin, especially the effect on neurodegeneration, neurogenesis, and synaptic plasticity. The articles gathered to compose the current review were extracted by using the PubMed, Scopus, Science Direct, and Web of Science databases. A methodical approach was used to integrate and discuss all published original reports describing the modulation of different mediators by osthole to confer neuroprotection at one platform to provide possible molecular pathways. Based on the inclusion and exclusion criteria, 32 articles were included in the systematic review. Moreover, literature evidence was also used to construct the biosynthetic pathway of osthole. The current review reveals that osthole promotes neurogenesis and neuronal functioning via stimulation of Notch, BDNF/Trk, and P13k/Akt signaling pathways. It upregulates the expression of various proteins, such as BDNF, TrkB, CREB, Nrf-2, P13k, and Akt. Activation of Wnt by osthole, in turn, regulates downstream GSK-1β to inhibit tau phosphorylation and β-catenin degradation to prevent neuronal apoptosis. The activation of Wnt and inhibition of oxidative stress, Aβ, and GSK-3β mediated β-catenin degradation by osthole might also be involved in mediating the protection against neurodegenerative diseases. Furthermore, it also inhibits neuroinflammation by suppressing MAPK/NF-κB-mediated transcription of genes involved in the generation of inflammatory cytokines and NLRP-3 inflammasomes. This review delineates the various underlying signaling pathways involved in mediating the neuroprotective effect of osthole. Modulation of Notch, BDNF/Trk, MAPK/NF-κB, and P13k/Akt signaling pathways by osthole confers protection against neurodegenerative diseases. The preclinical effects of osthole suggest that it could be a valuable molecule in inspiring the development of new drugs for the management of neurodegenerative diseases and demands clinical studies to explore its potential. An effort has been made to unify the varied mechanisms and target sites involved in the neuroprotective effect of osthole. The comprehensive description of the molecular pathways in the present work reflects its originality and thoroughness. The reviewed literature findings may be extrapolated to suggest the role of othole as a "biological response modifier" which contributes to neuroprotection through kinase modulatory, immunomodulatory, and anti-oxidative activity, which is documented even at lower doses. The current review attempts to emphasize the gaps in the existing literature which can be explored in the future.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India.
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
15
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
16
|
Pandey P, Khan F, Singh M, Verma A, Kumar H, Mazumder A, Rakhra G. Study Deciphering the Crucial Involvement of Notch Signaling Pathway in Human Cancers. Endocr Metab Immune Disord Drug Targets 2024; 24:1241-1253. [PMID: 37997805 DOI: 10.2174/0118715303261691231107113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes, such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various human cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. Notch signaling has been implicated in tumor initiation, cancer cell proliferation, cell migration and maintenance of cancer stem cells in several human cancers, including leukemia, breast, pancreatic and lung cancer. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of potent targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Megha Singh
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Aditi Verma
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Hariom Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Gurmeen Rakhra
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
Medina E, Perez DH, Antfolk D, Luca VC. New tricks for an old pathway: emerging Notch-based biotechnologies and therapeutics. Trends Pharmacol Sci 2023; 44:934-948. [PMID: 37891017 PMCID: PMC10841456 DOI: 10.1016/j.tips.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
The Notch pathway regulates a diverse array of cell fate decisions, making it an enticing target in cancer therapy and regenerative medicine. During the early stages of Notch drug development, off-target toxicity precluded the approval of Notch inhibitors for the treatment of cancer. However, recent advances in our understanding of Notch structure and signaling have led to the development of several innovative Notch-based biotechnologies. In addition to new classes of inhibitors, pharmacological Notch activators have been shown to enhance osteogenesis and various aspects of T cell function. Furthermore, the mechanosensitive negative regulatory region (NRR) of the Notch receptor has been converted into synthetic Notch (synNotch) receptors with fully customizable signaling circuits. We review emergent Notch-based compounds, biologics, and cell therapies while highlighting the challenges and opportunities they face on the path to clinical development.
Collapse
Affiliation(s)
- Elliot Medina
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - David H Perez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
18
|
Lu L, Varshney S, Yuan Y, Wei HX, Tanwar A, Sundaram S, Nauman M, Haltiwanger RS, Stanley P. In vivo evidence for GDP-fucose transport in the absence of transporter SLC35C1 and putative transporter SLC35C2. J Biol Chem 2023; 299:105406. [PMID: 38270391 PMCID: PMC10709068 DOI: 10.1016/j.jbc.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024] Open
Abstract
Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.
Collapse
Affiliation(s)
- Linchao Lu
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shweta Varshney
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Youxi Yuan
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hua-Xing Wei
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ankit Tanwar
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Subha Sundaram
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mohd Nauman
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
19
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Simone S, Gesualdo L, Battaglia M, Ditonno P, Lucarelli G. Complement System and the Kidney: Its Role in Renal Diseases, Kidney Transplantation and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16515. [PMID: 38003705 PMCID: PMC10671650 DOI: 10.3390/ijms242216515] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simona Simone
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
21
|
Fan HM, Qiao YL, Liu Y, Xu S, Ni HF, Jiao WE, Tao ZZ, Chen SM. Long-term consequences of regulatory T-cell-specific knockout of Notch2 in immune homeostasis. Int Immunopharmacol 2023; 124:111069. [PMID: 37852117 DOI: 10.1016/j.intimp.2023.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
AIMS To investigate the long-term alterations in immune function and spontaneous inflammation in mice following specific knockout of Notch2 (Notch2KO) in Treg cells. MAIN METHODS A Treg cell-specific Notch2 knockout mouse model was constructed, and the mice were named Notch2KO mice. The pathological changes and inflammatory cell infiltration in the lungs, skin, and liver of the mice at 2, 6, 9, and 12 months of age were evaluated by HE staining. The expression of Th1/Th2/Th17/Treg transcription factors was detected by Western blotting. The proportion of CD4 + T-cell subsets was determined by flow cytometry. The levels of Th1/Th2/Th17/Treg cytokines were measured by enzyme-linked immunosorbent assays (ELISAs). KEY FINDINGS The expression level of Notch2 in Treg cells from the Notch2KO mice was significantly decreased compared with that in Treg cells from the control mice (P < 0.05). HE staining showed that compared with the control mice, the Notch2KO mice displayed spontaneous inflammation and had a large amount of inflammatory cell infiltration in the lungs and skin (P < 0.05). The number of Treg cells, the expression level of Foxp3, and the level of IL-10 were reduced in the Notch2KO mice compared with the control mice (P < 0.05), and these metrics further decreased with increasing age (P < 0.05). In contrast, the number of Th1/Th2 cells, the expression level of T-bet/GATA3, and the levels of Th1 cytokines (IFN-γ)/Th2 cytokines (IL-4, IL-5, and IL-13) were significantly increased in the Notch2KO mice (P < 0.05), and these metrics further increased with increasing age (P < 0.05). There was no significant change in the number of Th17 cells, the expression of RORγt, or the level of IL-17. Further analysis showed that the balance of Th1/Th2 and Treg/Th17 cells in the Notch2KO mice was shifted, and the ratio showed a downward trend over time (P < 0.05). SIGNIFICANCE The number and function of Treg cells can be severely inhibited by a specific knockout of Notch2 in Treg cells, leading to immune disorders that gradually worsen over time.
Collapse
Affiliation(s)
- Hui-Ming Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
22
|
Cheng Y, Ren Y, Wang W, Zhang W. Similar proteome expression profiles of the aggregated lymphoid nodules area and Peyer's patches in Bactrian camel. BMC Genomics 2023; 24:608. [PMID: 37821839 PMCID: PMC10568864 DOI: 10.1186/s12864-023-09715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The presence of Aggregated Lymphoid Nodules Area (ALNA) is a notable anatomical characteristic observed in the abomasum of Bactrian camels. This area is comprised of two separate regions, namely the Reticular Mucosal Folds Region (RMFR) and the Longitudinal Mucosal Folds Region (LMFR). The histological properties of ALNA exhibit significant similarities to those of Peyer's patches (PPs) found in the gastrointestinal system. The functional characteristics of ALNA were examined in relation to mucosal immunity in the gastrointestinal system. RESULTS We used iTRAQ-based proteomic analysis on twelve Bactrian camels to measure the amount of proteins expressed in ALNA. In the experiment, we sampled the RMFR and LMFR separately from the ALNA and compared their proteomic quantification results with samples from the PPs. A total of 1253 proteins were identified, among which 39 differentially expressed proteins (DEPs) were found between RMFR and PPs, 33 DEPs were found between LMFR and PPs, and 22 DEPs were found between LMFR and RMFR. The proteins FLNA, MYH11, and HSPB1 were chosen for validation using the enzyme-linked immunosorbent assay (ELISA), and the observed expression profiles were found to be in agreement with the results obtained from the iTRAQ study. The InnateDB database was utilized to get data pertaining to immune-associated proteins in ALNA. It was observed that a significant proportion, specifically 76.6%, of these proteins were found to be associated with the same orthogroups as human immune-related genes. These proteins are acknowledged to be associated with a diverse range of functions, encompassing the uptake, processing and presentation of antigens, activation of lymphocytes, the signaling pathways of T-cell and B-cell receptors, and the control of actin polymerization. CONCLUSIONS The experimental results suggest that there are parallels in the immune-related proteins found in ALNA and PPs. Although there are variations in the structures of LMFR and RMFR, the proteins produced in both structures exhibit a high degree of similarity and perform comparable functions in the context of mucosal immune responses.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
23
|
Lahimchi MR, Maroufi F, Maali A. Induced Pluripotent Stem Cell-Derived Chimeric Antigen Receptor T Cells: The Intersection of Stem Cells and Immunotherapy. Cell Reprogram 2023; 25:195-211. [PMID: 37782910 DOI: 10.1089/cell.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising cell-based immunotherapy applicable to various cancers. High cost of production, immune rejection, heterogeneity of cell product, limited cell source, limited expandability, and relatively long production time have created the need to achieve a universal allogeneic CAR-T cell product for "off-the-shelf" application. Since the innovation of induced pluripotent stem cells (iPSCs) by Yamanaka et al., extensive efforts have been made to prepare an unlimited cell source for regenerative medicine, that is, immunotherapy. In the autologous grafting approach, iPSCs prepare the desired cell source for generating autologous CAR-T cells through more accessible and available sources. In addition, generating iPSC-derived CAR-T cells is a promising approach to achieving a suitable source for producing an allogeneic CAR-T cell product. In brief, the first step is reprogramming somatic cells (accessible from peripheral blood, skin, etc.) to iPSCs. In the next step, CAR expression and T cell lineage differentiation should be applied in different arrangements. In addition, in an allogeneic manner, human leukocyte antigen/T cell receptor (TCR) deficiency should be applied in iPSC colonies. The allogeneic iPSC-derived CAR-T cell experiments showed that simultaneous performance of HLA/TCR deficiency, CAR expression, and T cell lineage differentiation could bring the production to the highest efficacy in generating allogeneic iPSC-derived CAR-T cells.
Collapse
Affiliation(s)
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
24
|
Madaan P, Sharma U, Tyagi N, Brar BK, Bansal S, Kushwaha HR, Kapoor HS, Jain A, Jain M. A panel of blood-based circulatory miRNAs with diagnostic potential in patients with psoriasis. Front Med (Lausanne) 2023; 10:1207993. [PMID: 37700769 PMCID: PMC10493330 DOI: 10.3389/fmed.2023.1207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with keratinocyte hyperproliferation and T cells as key mediators of lesional and systemic inflammatory changes. To date, no suitable differential biomarkers are available for the disease diagnosis. More recently, microRNAs have been identified as critical regulators of lesional and systemic immune changes in psoriasis with diagnostic potential. We have performed expression profiling of T cell-specific miRNAs in 38 plasma samples from psoriasis vulgaris patients and an equal number of age- and gender-matched healthy subjects. Our findings have identified a panel of five blood-based circulatory miRNAs with a significant change in their expression levels, comprising miR-215, miR-148a, miR-125b-5p, miR-223, and miR-142-3p, which can differentiate psoriasis vulgaris patients from healthy individuals. The receiver operating characteristic (ROC) curves for all five miRNAs individually and in combination exhibited a significant disease discriminatory area under the curve with an AUC of 0.762 and a p < 0.0001 for all the miRNAs together. Statistically, all five miRNAs in combination depicted the best-fit model in relation to disease severity (PASI) compared with individual miRNAs, with the highest R2 value of 0.94 and the lowest AIC score of 131.8. Each of the miRNAs also exhibited a significant association with at least one of the other miRNAs in the panel. Importantly, the five miRNAs in the panel regulate one or more immune-inflammation pathways based on target prediction, pathway network analysis, and validated roles in the literature. The miRNA panel provides a rationalized combination of biomarkers that can be tested further on an expanded cohort of patients for their diagnostic value.
Collapse
Affiliation(s)
- Priyanka Madaan
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Balvinder Kaur Brar
- Department of Skin and VD, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, India
| | - Shivani Bansal
- Department of Dermatology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | | | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
25
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
26
|
Bastani S, Staal FJT, Canté-Barrett K. The quest for the holy grail: overcoming challenges in expanding human hematopoietic stem cells for clinical use. Stem Cell Investig 2023; 10:15. [PMID: 37457748 PMCID: PMC10345135 DOI: 10.21037/sci-2023-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation has been the golden standard for many hematological disorders. However, the number of HSCs obtained from several sources, including umbilical cord blood (UCB), often is insufficient for transplantation. For decades, maintaining or even expanding HSCs for therapeutic purposes has been a "holy grail" in stem cell biology. Different methods have been proposed to improve the efficiency of cell expansion and enhance homing potential such as co-culture with stromal cells or treatment with specific agents. Recent progress has shown that this is starting to become feasible using serum-free and well-defined media. Some of these protocols to expand HSCs along with genetic modification have been successfully applied in clinical trials and some others are studied in preclinical and clinical studies. However, the main challenges regarding ex vivo expansion of HSCs such as limited growth potential and tendency to differentiate in culture still need improvements. Understanding the biology of blood stem cells, their niche and signaling pathways has provided possibilities to regulate cell fate decisions and manipulate cells to optimize expansion of HSCs in vitro. Here, we review the plethora of HSC expansion protocols that have been proposed and indicate the current state of the art for their clinical application.
Collapse
Affiliation(s)
- Sepideh Bastani
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
28
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
29
|
Weiss J, Reneau J, Wilcox RA. PTCL, NOS: An update on classification, risk-stratification, and treatment. Front Oncol 2023; 13:1101441. [PMID: 36845711 PMCID: PMC9947853 DOI: 10.3389/fonc.2023.1101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are relatively rare, heterogeneous, and therapeutically challenging. While significant therapeutic gains and improved understanding of disease pathogenesis have been realized for selected PTCL subtypes, the most common PTCL in North America remains "not otherwise specified (NOS)" and is an unmet need. However, improved understanding of the genetic landscape and ontogeny for the PTCL subtypes currently classified as PTCL, NOS have been realized, and have significant therapeutic implications, which will be reviewed here.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Bumping CAR T cells up a Notch. Blood 2022; 140:2185-2186. [PMID: 36422861 DOI: 10.1182/blood.2022017055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Stanley P, Tanwar A. Regulation of myeloid and lymphoid cell development by O-glycans on Notch. Front Mol Biosci 2022; 9:979724. [PMID: 36406268 PMCID: PMC9672378 DOI: 10.3389/fmolb.2022.979724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 10/06/2023] Open
Abstract
Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY, United States
| | | |
Collapse
|
33
|
Gao X, Wang C, Abdelrahman S, Kady N, Murga-Zamalloa C, Gann P, Sverdlov M, Wolfe A, Polk A, Brown N, Bailey NG, Inamdar K, Casavilca S, Montes J, Barrionuevo C, Taxa L, Reneau J, Siebel CW, Maillard I, Wilcox RA. Notch Signaling Promotes Mature T-Cell Lymphomagenesis. Cancer Res 2022; 82:3763-3773. [PMID: 36006995 PMCID: PMC9588752 DOI: 10.1158/0008-5472.can-22-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Peripheral T-cell lymphomas (PTCL) are agressive lymphomas that develop from mature T cells. The most common PTCLs are genetically, molecularly, and clinically diverse and are generally associated with dismal outcomes. While Notch signaling plays a critically important role in both the development of immature T cells and their malignant transformation, its role in PTCL is poorly understood, despite the increasingly appreciated function of Notch in regulating the proliferation and differentiation of mature T cells. Here, we demonstrate that Notch receptors and their Delta-like family ligands (DLL1/DLL4) play a pathogenic role in PTCL. Notch1 activation was observed in common PTCL subtypes, including PTCL-not otherwise specified (NOS). In a large cohort of PTCL-NOS biopsies, Notch1 activation was significantly associated with surrogate markers of proliferation. Complementary genetically engineered mouse models and spontaneous PTCL models were used to functionally examine the role of Notch signaling, and Notch1/Notch2 blockade and pan-Notch blockade using dominant-negative MAML significantly impaired the proliferation of malignant T cells and PTCL progression in these models. Treatment with DLL1/DLL4 blocking antibodies established that Notch signaling is ligand-dependent. Together, these findings reveal a role for ligand-dependent Notch signaling in driving peripheral T-cell lymphomagenesis. SIGNIFICANCE This work demonstrates that ligand-dependent Notch activation promotes the growth and proliferation of mature T-cell lymphomas, providing new therapeutic strategies for this group of aggressive lymphomas.
Collapse
Affiliation(s)
- Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Nermin Kady
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Peter Gann
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ivan Maillard
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
35
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
36
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
37
|
Minocycline Alleviates White Matter Injury following Intracerebral Hemorrhage by Regulating CD4+ T Cell Differentiation via Notch1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3435267. [PMID: 35571238 PMCID: PMC9098346 DOI: 10.1155/2022/3435267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Neuroinflammation is a major reason for white matter injury (WMI) after intracerebral hemorrhage (ICH). Apart from microglia/macrophage activation, T cells also play an important role in regulating immune responses after ICH. In a previous study, we have revealed the role of minocycline in modulating microglia/macrophage activation after ICH. However, the exact mechanisms of minocycline in regulating T cells differentiation after ICH are still not well understood. Hence, this study explored the relationship between minocycline and CD4+ T cell differentiation after ICH. Piglet ICH model was used to investigate naive CD4+ T cell differentiation and T cells signal gene activation after ICH with immunofluorescence and whole transcriptome sequencing. Naive CD4+ T cells and primary oligodendrocyte coculture model were established to explore the effect and mechanism of minocycline in modulating CD4+ T cell differentiation after ICH. Flow cytometry was used to indicate CD4+ T cell differentiation after ICH. The mechanism of minocycline in modulating CD4+ T cell differentiation was demonstrated with immunofluorescence and western blot. Double immunostaining of representative CD4+ T cell marker CD3 and different subtype CD4+ T cell assisted proteins (IL17, IL4, Foxp3, and IFNγ) demonstrated naive CD4+ T cell differentiation in piglet after ICH. Whole transcriptome sequencing for perihematomal white matter sorted from piglet brains indicated T cell signal gene activation after ICH. The results of luxol fast blue staining, immunofluorescent staining, and electron microscopy showed that minocycline alleviated white matter injury after ICH in piglets. For our in vitro model, minocycline reduced oligodendrocyte injury and neuroinflammation by regulating CD4+ T cell differentiation after ICH. Moreover, minocycline increased the expression of NOTCH1, ACT1, RBP-J, and NICD1 in cultured CD4+ T cell when stimulated with hemoglobin. Hence, minocycline treatment could modulate naive CD4+ T cell differentiation and attenuate white matter injury via regulating Notch1 signaling pathway after ICH.
Collapse
|
38
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
39
|
Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnology 2022; 20:127. [PMID: 35279135 PMCID: PMC8917374 DOI: 10.1186/s12951-022-01343-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle (NP) is an emerging tool applied in the biomedical field. With combination of different materials and adjustment of their physical and chemical properties, nanoparticles can have diverse effects on the organism and may change the treating paradigm of multiple diseases in the future. More and more results show that nanoparticles can function as immunomodulators and some formulas have been approved for the treatment of inflammation-related diseases. However, our current understanding of the mechanisms that nanoparticles can influence immune responses is still limited, and systemic clinical trials are necessary for the evaluation of their security and long-term effects. This review provides an overview of the recent advances in nanoparticles that can interact with different cellular and molecular components of the immune system and their application in the management of inflammatory diseases, which are caused by abnormal immune reactions. This article focuses on the mechanisms of interaction between nanoparticles and the immune system and tries to provide a reference for the future design of nanotechnology for the treatment of inflammatory diseases.
Collapse
|
40
|
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett 2022; 596:534-556. [PMID: 34762736 DOI: 10.1002/1873-3468.14225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1β and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
41
|
Chirichella M, Bianchi N, Džafo E, Foli E, Gualdrini F, Kenyon A, Natoli G, Monticelli S. RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biol 2022; 20:e3001538. [PMID: 35143476 PMCID: PMC8865640 DOI: 10.1371/journal.pbio.3001538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/23/2022] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9–mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes. MicroRNAs exert key regulatory functions in the immune system, but their targets are largely unknown. This study shows that the ability of primary human T lymphocytes to proliferate in response to T cell receptor activation is modulated by a network comprising miR-150, transcription factors of the RFX family, and the RNA-binding protein PDAP1.
Collapse
Affiliation(s)
- Michele Chirichella
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elena Foli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Francesco Gualdrini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amy Kenyon
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
42
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
43
|
Yao Y, Uddin MN, Manley K, Lawrence DA. Constitutive activation of Notch signalling and T cell activation characterize a mouse model of autism. Cell Biochem Funct 2022; 40:150-162. [PMID: 34978084 DOI: 10.1002/cbf.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Gene and protein expression of BTBR T+ Itpr3tf /J (BTBR) mice with autistic-like behaviours were compared with the C57BL/6J strain, which is considered to have normal immunity and behaviour. Notch signalling pathway was constitutively activated in the immune system and liver of BTBR T+ Itpr3tf /J (BTBR) mice. Notch ligand 4 (Dll4), Notch receptors (Notch1 Notch2 and Notch3) and recombination signal binding protein for immunoglobulin κ j region (RBPJ) were increased both at gene and protein levels in BTBR spleens and thymi. Notch downstream transcriptional factors, Tbx21, Gata3, Rorc and FoxP3 were increased in BTBR spleens, Gata3 and FoxP3 were increased in BTBR thymi and BTBR mice have a high blood CD4/CD8 T cell ratio. Reduced nucleotide excision repair ability in BTBR spleens was associated with increased 8-oxoguanine, Ogg1 inhibition, an enhanced level of apoptotic thymocytes and higher expression of GATA-3. Ogg1 inhibition and enhanced GATA-3 expression also were detected in BTBR brain. Notch signal promoted mitochondrial dynamics switching to enhanced fission with an increased number and mass of mitochondria in immune cells of BTBR mice, but not in livers and brains. Constitutive influences on mitochondria exist in this mouse model of autism spectrum disorder; similar outcomes from environmental exposures might occur perinatally in susceptible individuals to affect the development of autism.
Collapse
Affiliation(s)
- Yunyi Yao
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Kevin Manley
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.,Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
44
|
Fazil MHUT, Prasannan P, Wong BHS, Kottaiswamy A, Salim NSBM, Sze SK, Verma NK. GSK3β Interacts With CRMP2 and Notch1 and Controls T-Cell Motility. Front Immunol 2021; 12:680071. [PMID: 34975828 PMCID: PMC8718691 DOI: 10.3389/fimmu.2021.680071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
The trafficking of T-cells through peripheral tissues and into afferent lymphatic vessels is essential for immune surveillance and an adaptive immune response. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and regulates numerous cell/tissue-specific functions, including cell survival, metabolism, and differentiation. Here, we report a crucial involvement of GSK3β in T-cell motility. Inhibition of GSK3β by CHIR-99021 or siRNA-mediated knockdown augmented the migratory behavior of human T-lymphocytes stimulated via an engagement of the T-cell integrin LFA-1 with its ligand ICAM-1. Proteomics and protein network analysis revealed ongoing interactions among GSK3β, the surface receptor Notch1 and the cytoskeletal regulator CRMP2. LFA-1 stimulation in T-cells reduced Notch1-dependent GSK3β activity by inducing phosphorylation at Ser9 and its nuclear translocation accompanied by the cleaved Notch1 intracellular domain and decreased GSK3β-CRMP2 association. LFA-1-induced or pharmacologic inhibition of GSK3β in T-cells diminished CRMP2 phosphorylation at Thr514. Although substantial amounts of CRMP2 were localized to the microtubule-organizing center in resting T-cells, this colocalization of CRMP2 was lost following LFA-1 stimulation. Moreover, the migratory advantage conferred by GSK3β inhibition in T-cells by CHIR-99021 was lost when CRMP2 expression was knocked-down by siRNA-induced gene silencing. We therefore conclude that GSK3β controls T-cell motility through interactions with CRMP2 and Notch1, which has important implications in adaptive immunity, T-cell mediated diseases and LFA-1-targeted therapies.
Collapse
Affiliation(s)
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore, Singapore, Singapore
| | - Amuthavalli Kottaiswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- *Correspondence: Navin Kumar Verma,
| |
Collapse
|
45
|
Immunomodulatory Actions of Mesenchymal Stromal Cells (MSCs) in Osteoarthritis of the Knee. OSTEOLOGY 2021. [DOI: 10.3390/osteology1040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular therapy offers regeneration which curbs osteoarthritis of the knee. Among cellular therapies, mesenchymal stromal cells (MSCs) are readily isolated from various sources as culture expanded and unexpanded cellular population which are used as therapeutic products. Though MSCs possess a unique immunological and regulatory profile through cross-talk between MSCs and immunoregulatory cells (T cells, NK cells, dendritic cells, B cells, neutrophils, monocytes, and macrophages), they provide an immunotolerant environment when transplanted to the site of action. Immunophenotypic profile allows MSCs to escape immune surveillance and promotes their hypoimmunogenic or immune-privileged status. MSCs do not elicit a proliferative response when co-cultured with allogeneic T cells in vitro. MSCs secrete a wide range of anti-inflammatory mediators such as PGE-2, IDO, IL-1Ra, and IL-10. They also stimulate the resilient chondrogenic progenitors and enhance the chondrocyte differentiation by secretion of BMPs and TGFβ1. We highlight the various mechanisms of MSCs during tissue healing signals, their interaction with the immune system, and the impact of their lifespan in the management of osteoarthritis of the knee. A better understanding of the immunobiology of MSC renders them as an efficient therapeutic product for the management of osteoarthritis of the knee.
Collapse
|
46
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
He Z, Wu J, Zeng X, Bao H, Liu X. Role of the Notch ligands Jagged1 and Delta4 in Th17/Treg immune imbalance in a mouse model of chronic asthma. Exp Lung Res 2021; 47:289-299. [PMID: 34096812 DOI: 10.1080/01902148.2021.1933653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Asthma is associated with a T helper (Th)17/regulatory T (Treg) cells immune imbalance where the Notch signaling pathway contributes vitally. This study aimed to explore the role of Notch ligands Jagged1 and Delta4 in the Th17/Treg immune imbalance of chronic asthmatic mice. METHODS The experimental animals were randomly assigned to the Saline, ovalbumin (OVA), and OVA + γ-secretase inhibitor (GSI) groups. A mouse model of chronic asthma was induced by OVA sensitization and challenge. GSI was injected intraperitoneally before the OVA challenge in the OVA + GSI group. Lung function, lung histopathology and immunohistochemistry to assess airway inflammation, enzyme-linked immunosorbent assay to measure cytokines levels, flow cytometry to measure the proportions of Th17 (Th17%) and Treg% in CD4+T cells, quantitative real-time polymerase chain reaction and western blot to measure mRNA and protein levels of Jagged1 and Delta4 in lung tissue, and correlation analysis were performed. RESULTS Lung function and histopathology and IL-4, IL-13, and IFN-γ levels in the bronchoalveolar lavage fluid (BALF) of chronic asthmatic mice showed characteristic changes of asthma. The Th17%, Th17/Treg ratio, BALF and serum IL-17 levels, and IL-17/IL-10 ratio increased significantly in the OVA group, while the Treg% and IL-10 level significantly decreased. mRNA and protein expression levels of Jagged1 and Delta4 increased significantly. GSI could reduce the Th17%, Th17/Treg ratio, IL-17, IL-17/IL-10 ratio, and Jagged1 expression in chronic asthmatic mice. The mRNA and protein levels of Jagged1 and Delta4 were positively correlated with the Th17/Treg ratio in the OVA group, while only those of Jagged1 were positively correlated with the Th17/Treg ratio in the OVA + GSI group. CONCLUSIONS In chronic asthmatic mice, the Th17/Treg ratio increased, and the Notch ligands Jagged1 and Delta4 were overactive and positively regulated the Th17/Treg imbalance. GSI partially inhibited Jagged1 and relieved the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Zhen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jirong Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoli Zeng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hairong Bao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoju Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
48
|
Matejcic M, Shaban HA, Quintana MW, Schumacher FR, Edlund CK, Naghi L, Pai RK, Haile RW, Levine AJ, Buchanan DD, Jenkins MA, Figueiredo JC, Rennert G, Gruber SB, Li L, Casey G, Conti DV, Schmit SL. Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:895-903. [PMID: 33627384 PMCID: PMC8102340 DOI: 10.1158/1055-9965.epi-20-1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inherited susceptibility is an important contributor to colorectal cancer risk, and rare variants in key genes or pathways could account in part for the missing proportion of colorectal cancer heritability. METHODS We conducted an exome-wide association study including 2,327 cases and 2,966 controls of European ancestry from three large epidemiologic studies. Single variant associations were tested using logistic regression models, adjusting for appropriate study-specific covariates. In addition, we examined the aggregate effects of rare coding variation at the gene and pathway levels using Bayesian model uncertainty techniques. RESULTS In an exome-wide gene-level analysis, we identified ST6GALNAC2 as the top associated gene based on the Bayesian risk index (BRI) method [summary Bayes factor (BF)BRI = 2604.23]. A rare coding variant in this gene, rs139401613, was the top associated variant (P = 1.01 × 10-6) in an exome-wide single variant analysis. Pathway-level association analyses based on the integrative BRI (iBRI) method found extreme evidence of association with the DNA repair pathway (BFiBRI = 17852.4), specifically with the nonhomologous end joining (BFiBRI = 437.95) and nucleotide excision repair (BFiBRI = 36.96) subpathways. The iBRI method also identified RPA2, PRKDC, ERCC5, and ERCC8 as the top associated DNA repair genes (summary BFiBRI ≥ 10), with rs28988897, rs8178232, rs141369732, and rs201642761 being the most likely associated variants in these genes, respectively. CONCLUSIONS We identified novel variants and genes associated with colorectal cancer risk and provided additional evidence for a role of DNA repair in colorectal cancer tumorigenesis. IMPACT This study provides new insights into the genetic predisposition to colorectal cancer, which has potential for translation into improved risk prediction.
Collapse
Affiliation(s)
- Marco Matejcic
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Hiba A Shaban
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | | | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
- Seidman Cancer Center, University Hospitals, Cleveland, Ohio
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Leah Naghi
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Robert W Haile
- Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, California
| | - A Joan Levine
- Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, California
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne, Centre for Cancer Research, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - David V Conti
- Department of Preventive Medicine, Division of Biostatistics, University of Southern California, Los Angeles, California
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
49
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
50
|
Robinette ML, Rao DA, Monach PA. The Immunopathology of Giant Cell Arteritis Across Disease Spectra. Front Immunol 2021; 12:623716. [PMID: 33717128 PMCID: PMC7946968 DOI: 10.3389/fimmu.2021.623716] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of large- and medium-sized arteries that affects the elderly. In recent years, advances in diagnostic imaging have revealed a greater degree of large vessel involvement than previously recognized, distinguishing classical cranial- from large vessel (LV)- GCA. GCA often co-occurs with the poorly understood inflammatory arthritis/bursitis condition polymyalgia rheumatica (PMR) and has overlapping features with other non-infectious granulomatous vasculitides that affect the aorta, namely Takayasu Arteritis (TAK) and the more recently described clinically isolated aortitis (CIA). Here, we review the literature focused on the immunopathology of GCA on the background of the three settings in which comparisons are informative: LV and cranial variants of GCA; PMR and GCA; the three granulomatous vasculitides (GCA, TAK, and CIA). We discuss overlapping and unique features between these conditions across clinical presentation, epidemiology, imaging, and conventional histology. We propose a model of GCA where abnormally activated circulating cells, especially monocytes and CD4+ T cells, enter arteries after an unknown stimulus and cooperate to destroy it and review the evidence for how this mechanistically occurs in active disease and improves with treatment.
Collapse
Affiliation(s)
- Michelle L. Robinette
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Paul A. Monach
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Rheumatology Section, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|