1
|
Calamari ZT, Song A, Cohen E, Akter M, Das Roy R, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Bank vole genomics links determinate and indeterminate growth of teeth. BMC Genomics 2024; 25:1000. [PMID: 39472825 PMCID: PMC11523675 DOI: 10.1186/s12864-024-10901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA.
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA.
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY, 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY, 10010, USA
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mona M Christensen
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Pengyang Li
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Rm 119, Stanford, CA, 94305, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA.
| |
Collapse
|
2
|
Harano T, Asahara M. Evolution of tooth morphological complexity and its association with the position of tooth eruption in the jaw in non-mammalian synapsids. PeerJ 2024; 12:e17784. [PMID: 39148681 PMCID: PMC11326432 DOI: 10.7717/peerj.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 08/17/2024] Open
Abstract
Heterodonty and complex molar morphology are important characteristics of mammals acquired during the evolution of early mammals from non-mammalian synapsids. Some non-mammalian synapsids had only simple, unicuspid teeth, whereas others had complex, multicuspid teeth. In this study, we reconstructed the ancestral states of tooth morphological complexity across non-mammalian synapsids to show that morphologically complex teeth evolved independently multiple times within Therapsida and that secondary simplification of tooth morphology occurred in some non-mammalian Cynodontia. In some mammals, secondary evolution of simpler teeth from complex molars has been previously reported to correlate with an anterior shift of tooth eruption position in the jaw, as evaluated by the dentition position relative to the ends of component bones used as reference points in the upper jaw. Our phylogenetic comparative analyses showed a significant correlation between an increase in tooth complexity and a posterior shift in the dentition position relative to only one of the three specific ends of component bones that we used as reference points in the upper jaw of non-mammalian synapsids. The ends of component bones depend on the shape and relative area of each bone, which appear to vary considerably among the synapsid taxa. Quantification of the dentition position along the anteroposterior axis in the overall cranium showed suggestive evidence of a correlation between an increase in tooth complexity and a posterior shift in the dentition position among non-mammalian synapsids. This correlation supports the hypothesis that a posterior shift of tooth eruption position relative to the morphogenetic fields that determine tooth form have contributed to the evolution of morphologically complex teeth in non-mammalian synapsids, if the position in the cranium represents a certain point in the morphogenetic fields.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
3
|
Calamari ZT, Song A, Cohen E, Akter M, Roy RD, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Vole genomics links determinate and indeterminate growth of teeth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572015. [PMID: 38187646 PMCID: PMC10769287 DOI: 10.1101/2023.12.18.572015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY 10016, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY 10010
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pengyang Li
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
5
|
Harano T, Asahara M. The anteriorization of tooth position underlies the atavism of tooth morphology: Insights into the morphogenesis of mammalian molars. Evolution 2022; 76:2986-3000. [PMID: 36200621 DOI: 10.1111/evo.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/22/2023]
Abstract
The evolution and development of complex molars as a key innovation in mammals have long been of interest yet remain poorly understood. With reference to century-old theories and modern findings, we focused on the teeth of pinnipeds (Carnivora) and cetaceans (Cetartiodactyla), which are morphologically simple compared with those of other mammals, and thus can be considered a reversal toward the ancestral state of nonmammalian synapsids. By reconstructing the evolutionary history of tooth complexity for the phylogenies of Carnivora and Cetartiodactyla, we established that a secondary evolution of simple teeth from more complex molars has occurred independently multiple times. Our phylogenetic comparative analyses showed that a simplification in tooth morphology was correlated with a more anterior dentition position relative to the component bones of the upper jaw in both Carnivora and Cetartiodactyla. These results suggest that the anterior shift of tooth position relative to the morphogenetic fields present in the jaw contributed to the evolutionary simplification in molar morphology. Our findings provide insights into the developmental basis of complex mammalian dentition.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| |
Collapse
|
6
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
7
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
8
|
Alotaibi RN, Howe BJ, Moreno Uribe LM, Ramirez CV, Restrepo C, Deleyiannis FW, Padilla C, Orioli IM, Buxó CJ, Hecht JT, Wehby GL, Neiswanger K, Murray JC, Shaffer JR, Weinberg SM, Marazita ML. Multivariate GWAS of Structural Dental Anomalies and Dental Caries in a Multi-Ethnic Cohort. FRONTIERS IN DENTAL MEDICINE 2022; 2:771116. [PMID: 36267138 PMCID: PMC9581442 DOI: 10.3389/fdmed.2021.771116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Odontogenesis is a complex process, where disruption can result in dental anomalies and/or increase the risk of developing dental caries. Based on previous studies, certain dental anomalies tend to co-occur in patients, suggesting that these traits may share common genetic and etiological components. The main goal of this study was to implement a multivariate genome-wide association study approach to identify genetic variants shared between correlated structural dental anomalies and dental caries. Our cohort (N = 3,579) was derived from the Pittsburgh Orofacial Clefts Study, where multiple dental traits were assessed in both the unaffected relatives of orofacial cleft (OFC) cases (n = 2,187) and unaffected controls (n = 1,392). We identified four multivariate patterns of correlated traits in this data: tooth agenesis, impaction, and rotation (AIR); enamel hypoplasia, displacement, and rotation (HDR); displacement, rotation, and mamelon (DRM); and dental caries, tooth agenesis and enamel hypoplasia (CAH). We analyzed each of these four models using genome-wide multivariate tests of association. No genome-wide statistically significant results were found, but we identified multiple suggestive association signals (P < 10-5) near genes with known biological roles during tooth development, including ADAMTS9 and PRICKLE2 associated with AIR; GLIS3, WDR72, and ROR2 associated with HDR and DRM; ROBO2 associated with DRM; BMP7 associated with HDR; and ROBO1, SMAD2, and MSX2 associated with CAH. This is the first study to investigate genetic associations for multivariate patterns of correlated dental anomalies and dental caries. Further studies are needed to replicate these results in independent cohorts.
Collapse
Affiliation(s)
- Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Howe
- Department of Family Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
- The Iowa Center for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Lina M. Moreno Uribe
- The Iowa Center for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, School of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila
| | - Ieda M. Orioli
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, TX, USA
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffery C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - John R. Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Schwarze UY, Ni Y, Zhou Y, Terlecki-Zaniewicz L, Schosserer M, Hackl M, Grillari J, Gruber R. Size changes in miR‑21 knockout mice: Geometric morphometrics on teeth, alveolar bone and mandible. Mol Med Rep 2021; 23:285. [PMID: 33604680 PMCID: PMC7905328 DOI: 10.3892/mmr.2021.11924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
MicroRNA‑21 (miR‑21) is a small non‑coding RNA that is differentially expressed during tooth development, particularly during amelogenesis. Although orthodontic tooth movement and the innate immune response are impaired, miR‑21 knockout mice demonstrate no obvious skeletal phenotype. However, the consequence of miR‑21 knockout on tooth phenotype and corresponding alveolar bone is unknown. The current study utilized landmark‑based geometric morphometrics to identify anatomical dissimilarities of the three lower and upper molars, and the corresponding alveolar bone, in miR‑21 knockout and wild‑type control mice. The anatomical structures were visualized by microcomputer tomography. A total of 36 and 38 landmarks were placed on mandibular and maxillary molars, respectively. For the alveolar bone, 16 landmarks were selected on both anatomical sites. General Procrustes analysis revealed significantly smaller molars and dimensions of the alveolar bone in the mandible of the miR‑21 knockout mice when compared with wild‑type controls (P=0.03 and P=0.04, respectively). The overall dimension of the mandible was reduced by the lack of miR‑21 (P=0.02). In the maxilla, the dimension of the alveolar bone was significant (P=0.02); however, this was not observed in the molars (P=0.36). Based on principal component analysis, no changes in shape for any of the anatomical sites were observed. Dental and skeletal jaw length were calculated and no prognathism was identified. However, the fluctuating asymmetry of the molars in the mandible and the maxilla was reduced in the miR‑21 knockout mice by 38 and 27%, respectively. Taken together, the results of the present study revealed that the molars in the mandible and the dimension of the respective alveolar bone were smaller in miR‑21 mice compared with wild‑type littermates, suggesting that miR‑21 influences tooth development.
Collapse
Affiliation(s)
- Uwe Yacine Schwarze
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Department of Orthopaedics and Trauma, Medical University of Graz, A-8010 Graz, Austria
- Department of Dental Medicine and Oral Health, Medical University of Graz, A-8010 Graz, Austria
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Yuxin Ni
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Department of Stomatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518051, P.R. China
| | - Yanmin Zhou
- Department of Stomatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518051, P.R. China
| | - Lucia Terlecki-Zaniewicz
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Markus Schosserer
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- TAmiRNA GmbH, A-1110 Vienna, Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, A-1200 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
10
|
Malik Z, Roth DM, Eaton F, Theodor JM, Graf D. Mesenchymal Bmp7 Controls Onset of Tooth Mineralization: A Novel Way to Regulate Molar Cusp Shape. Front Physiol 2020; 11:698. [PMID: 32719613 PMCID: PMC7350786 DOI: 10.3389/fphys.2020.00698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
Investigating the molecular basis for tooth shape variation provides an important glimpse into the evolution of tooth function. We recently showed that loss of mesenchymal BMP7 is sufficient to alter morphology and function of the toothrow. Here we report on the underlying mechanism. Expression of mesenchymal Bmp7 is observed at sites where mineralization is initiated, in tooth cusps of developing molars. Neural crest-specific deletion of Bmp7 (Bmp7ncko) resulted in a complete lack of dentin/enamel formation at birth, the time when mineralization is normally initiated in the upper molars, similar to what was observed in Bmp2ncko mice. Unlike loss of Bmp2, loss of Bmp7 did not affect odontoblast polarization and did not significantly alter the levels of pSmad1/5/8, but almost completely abolished canonical Wnt signaling in (pre)-ameloblasts. Tooth mineralization resumed with a 48-h delay allowing for additional mesenchymal proliferation. Enamel volume was still reduced at P4 and P8, but was comparable in erupted teeth, which were broader and had altered cusp shapes. Tooth eruption was also delayed. Overall, enamel appeared inconspicuous, although some structural changes along with reduced mineral density could be observed. Loss of Bmp7 led to an increase in mesenchymal Bmp6 suggesting an interplay between Bmp6 and Bmp7 in the regulation of mineralization initiation. Our findings show that regulation of the onset of tooth mineralization is a hitherto unsuspected mechanism controlling tooth shape variation. Initiation of tooth mineralization is regulated by a complex epithelial-mesenchymal Bmp/Wnt-signaling network to which Bmp7 contributes. This network is separate and independent of the Bmp2-signaling network regulating odontoblast cell polarization. From an evolutionary perspective, addition of Bmp7 as initiator of tooth mineralization might be akin to an upgrade of an existing computer operating system. While not essential, it provides obviously sufficient advantage warranting its evolutionary incorporation.
Collapse
Affiliation(s)
- Zeba Malik
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jessica M Theodor
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|