1
|
Sugumaran V, Pavithra AJ, Purushothaman B, Subramanian B. Crucial Chemical Revelations in 45S5 Bioactive Glass via Sequential Precursor Integration Order. ACS APPLIED BIO MATERIALS 2024; 7:1600-1620. [PMID: 38349355 DOI: 10.1021/acsabm.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Among the wet chemical nanoparticle fabrication techniques, the sol-gel process happens through hydrolysis and subsequent polycondensation reactions. The bioactive glass known as the 45S5 SiO2-Na2O-CaO-P2O5 quaternary system has intricate chemistry, yet its advantages benefit the biomedical field on an enormous scale. The order in which the ethanol and TEOS inclusions are exchanged was investigated in this work because it has a direct impact on the early hydrolysis process. Another strategy involves adding phosphate species to the sol before gelation, modifying the network chemistry, and interpreting the findings. Adding phosphate species before gelation in the biomaterial (E-Si-P) resulted in the formation of hydroxyapatite and other calcium silicate phases at 800 °C. Swapping ethanol and TEOS biomaterials (E-Si and Si-E) resulted in the sodium-calcium silicate phase only. Si-E with strong Si-O-Si siloxane rings demonstrated superior mechanical stability, hemocompatibility, and bioactivity. This compact Si-O-Si decreased the surface area of Si-E. XPS spectra revealed that E-Si-P has the lowest Na 1s binding energy (BE) and the highest BE for Si 2p. More Si-O-/Si-OH groups formed by E-Si make the network weak and decrease the surface area and protein adsorption. These differences significantly influenced the morphology, surface properties, mechanical studies, and compatibility test. This study has further unraveled the protocol to design a biomaterial with mechanical stability and load-bearing ability. In addition, the appropriate protocol to yield the desired property-rich biomaterial with preserved bioactivity, mechanical stability, cytocompatibility, as well and surface porosity has been elaborated in detail.
Collapse
Affiliation(s)
- Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| | - A J Pavithra
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu 603103, India
| | - Bargavi Purushothaman
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamilnadu 600077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| |
Collapse
|
2
|
Nicholson JW, Sidhu SK, Czarnecka B. Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon 2024; 10:e25239. [PMID: 38352767 PMCID: PMC10862525 DOI: 10.1016/j.heliyon.2024.e25239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives This paper reviews the chemical behaviour of glass polyalkenoate (glass-ionomer) dental cements, both conventional and resin-modified, in contact with natural tissues, with the aim of determining whether these materials can be considered to be bioactive. Data Relevant papers describing the behaviour of bioactive glasses and ceramics, and glass-ionomer (glass polyalkenoate) cements have been identified using PubMed and Science Direct. This has allowed a comparison to be made between the behaviour of glass-ionomers and the speciality glasses and ceramics that are widely classified as bioactive, a designation considered valid for over fifty years. More recent papers concerning bioactive metals and polymers have also been studied and both in vitro and in vivo studies are included. Sources Have included general papers on the chemistry and biological behaviour of bioactive glasses and ceramics, as well as papers on glass-ionomers dealing with (i) ion release, (ii) bonding to the surface of teeth, (iii) influence on surrounding pH and (iv) interaction with bone. Conclusion The literature shows that glass-ionomers (glass polyalkenoates) have three types of behaviour that are similar to those of bioactive glasses as follows: Formation of direct bonds to living tissue (teeth and bones) without fibrous capsule; release of biologically beneficial ions; and change of the local pH. However, in in vitro tests, they do not cause calcium phosphate to precipitate from solutions of simulated body fluid, SBF. Despite this, studies show that, in patients, glass-ionomers interact chemically with hard tissues and this suggests that may indeed be considered bioactive.
Collapse
Affiliation(s)
- John W. Nicholson
- Bluefield Centre for Biomaterials, 152-160 City Road, London EC1V 2NX, UK and Dental Physical Sciences, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, Poznań University of Medical Sciences, Ul. Bukowska 70, 60-812 Poznań, Poland
| |
Collapse
|
3
|
Vargas Guerrero M, Aendekerk FMA, de Boer C, Geurts J, Lucchesi J, Arts JJC. Bioactive-Glass-Based Materials with Possible Application in Diabetic Wound Healing: A Systematic Review. Int J Mol Sci 2024; 25:1152. [PMID: 38256225 PMCID: PMC10816070 DOI: 10.3390/ijms25021152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes affected 537 million adults in 2021, costing a total of USD 966 billion dollars in healthcare. One of the most common complications associated with diabetes corresponds to the development of diabetic foot ulcers (DFUs). DFUs affect around 15% of diabetic patients; these ulcers have impaired healing due to neuropathy, arterial disease, infection, and aberrant extracellular matrix (ECM) degradation, among other factors. The bioactive-glass-based materials discussed in this systematic review show promising results in accelerating diabetic wound healing. It can be concluded that the addition of BG is extremely valuable with regard to the wound healing rate and wound healing quality, since BG activates fibroblasts, enhances M1-to-M2 phenotype switching, induces angiogenesis, and initiates the formation of granulation tissue and re-epithelization of the wound. In addition, a higher density and deposition and better organization of collagen type III are seen. This systematic review was made using the PRISMA guideline and intends to contribute to the advancement of diabetic wound healing therapeutic strategies development by providing an overview of the materials currently being developed and their effect in diabetic wound healing in vitro and in vivo.
Collapse
Affiliation(s)
- Marian Vargas Guerrero
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.V.G.); (F.M.A.A.); (C.d.B.); (J.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Floor M. A. Aendekerk
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.V.G.); (F.M.A.A.); (C.d.B.); (J.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Candice de Boer
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.V.G.); (F.M.A.A.); (C.d.B.); (J.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Geurts
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.V.G.); (F.M.A.A.); (C.d.B.); (J.G.)
| | | | - Jacobus J. C. Arts
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.V.G.); (F.M.A.A.); (C.d.B.); (J.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
4
|
Christie JK. Clustering of fluoride and phosphate ions in bioactive glass from computer simulation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220345. [PMID: 37634536 PMCID: PMC10460646 DOI: 10.1098/rsta.2022.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 08/29/2023]
Abstract
In order to understand the nature of ionic clustering in bioactive glass compositions, computer simulation was used to model four different compositions of bioactive glass with various amounts of flouride and phosphate. Fluoride ions were chemically bonded only to sodium and calcium, creating regions rich in fluoride and modifiers, and fluoride clustering was seen to be present in all compositions. The majority of phosphate groups are present as orthophosphate and phosphate clustering is also seen, and shown to be stronger in compositions with a lower phosphate content. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
Collapse
|
5
|
Christie JK. Review: understanding the properties of amorphous materials with high-performance computing methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220251. [PMID: 37211037 DOI: 10.1098/rsta.2022.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 05/23/2023]
Abstract
Amorphous materials have no long-range order in their atomic structure. This makes much of the formalism for the study of crystalline materials irrelevant, and so elucidating their structure and properties is challenging. The use of computational methods is a powerful complement to experimental studies, and in this paper we review the use of high-performance computing methods in the simulation of amorphous materials. Five case studies are presented to showcase the wide range of materials and computational methods available to practitioners in this field. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- J K Christie
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
6
|
Huang C, Wang Q, Zhao C, Zhou W, Chang X, Liu X, Tian W, Zhang S. Nanoscale Insight into the Effect of Calcium on Early-Age Polymerization of CNASH Gels. J Phys Chem B 2023; 127:4338-4350. [PMID: 37133933 DOI: 10.1021/acs.jpcb.3c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sodium-containing calcium-alumino-silicate-hydrate (CNASH) gels, the primary binder phase of alkali-activated materials (AAMs), significantly impact the performance of the AAM. Although the effect of the calcium content on the AAM has been extensively studied in the past, few studies focus on the effect of calcium on the structure and performance of gels at a molecular scale. As an important element in gels, the effect of calcium in gels on its atomic-scale properties remains unclear. This study establishes a molecular model of the CNASH gel via reactive molecular dynamics (MD) simulation and verifies the feasibility of the gel model. By employing the reactive MD, the effect of calcium on the physicochemical properties of gels in the AAM is investigated. The simulation highlights that the condensation process of the system containing Ca is accelerated dramatically. This phenomenon is explained from the perspective of thermodynamics and kinetics. The increased calcium content enhances the thermodynamic stability and reduces the energy barrier of the reaction. Then, the phenomenon is further analyzed through the nanosegregation in the structure. It is proved that this behavior is driven by the weaker affinity of calcium for aluminosilicate chains than the particles in the aqueous environment. The difference in affinity leads to nanosegregation in the structure, making Si(OH)4 and Al(OH)3 monomers and oligomers closer for better polymerization.
Collapse
Affiliation(s)
- Chengbin Huang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Qiao Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Cheng Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhou
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaolin Chang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Xinghong Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wenxiang Tian
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Sifan Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Vedeanu NS, Lujerdean C, Zăhan M, Dezmirean DS, Barbu-Tudoran L, Damian G, Ștefan R. Synthesis and Structural Characterization of CaO-P 2O 5-CaF:CuO Glasses with Antitumoral Effect on Skin Cancer Cells. MATERIALS 2022; 15:ma15041526. [PMID: 35208066 PMCID: PMC8874574 DOI: 10.3390/ma15041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to developing new complexes in cancer therapy. In the present investigation, we developed a novel xCuO∙(100 − x) [CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% in order to determine the influence of doping on the composition structure of glasses. The samples were characterized by dissolution tests, pH measurements, Fourier-transform infrared spectroscopy (FT-IR), electron paramagnetic resonance (EPR), Scanning Electron Microscopy with energy dispersive spectroscopy (SEM-EDX) and afterward, their antitumor character was assessed. The glasses were mostly soluble in the aqueous medium, their dissolution rate being directly proportional to the increase in pH and the level of doping up to x = 8 mol%. FT-IR spectra of glass samples show the presence of all structural units characteristic to P2O5 in different rates and directly depending on the depolymerization process. SEM-EDX results revealed the presence of an amorphous glass structure composed of P, O, Ca, and Cu elements. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay showed strong cytotoxicity for tumoral cells A375 even in low concentrations for Cu-treatment. In contrast, the copper-free matrix (without Cu) determined a proliferative effect of over 70% viability for all concentrations used.
Collapse
Affiliation(s)
- Nicoleta Simona Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
- Correspondence: (C.L.); (R.Ș.)
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies of Cluj-Napoca, 400293 Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Răzvan Ștefan
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.Z.); (D.S.D.)
- Correspondence: (C.L.); (R.Ș.)
| |
Collapse
|
9
|
Feito MJ, Casarrubios L, Oñaderra M, Gómez-Duro M, Arribas P, Polo-Montalvo A, Vallet-Regí M, Arcos D, Portolés MT. Response of RAW 264.7 and J774A.1 macrophages to particles and nanoparticles of a mesoporous bioactive glass: A comparative study. Colloids Surf B Biointerfaces 2021; 208:112110. [PMID: 34555654 DOI: 10.1016/j.colsurfb.2021.112110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022]
Abstract
Mesoporous bioactive glasses (MBGs) are bioceramics designed to induce bone tissue regeneration and very useful materials with the ability to act as drug delivery systems. MBGs can be implanted in contact with bone tissue in different ways, as particulate material, in 3D scaffolds or as nanospheres. In this work, we assessed the effects of particles of mesoporous bioactive glass MBG-75S and mesoporous nanospheres NanoMBG-75S on RAW 264.7 and J774A.1 macrophages, which present different sensitivity and are considered as ideal models for the study of innate immune response. After evaluating several cellular parameters (morphology, size, complexity, proliferation, cell cycle and intracellular content of reactive oxygen species), the action of MBG-75S particles and NanoMBG-75S on the polarization of these macrophages towards the pro-inflammatory (M1) or reparative (M2) phenotype was determined by the expression of specific M1 (CD80) and M2 (CD206, CD163) markers. We previously measured the adsorption of albumin and fibrinogen on MBG-75S particles and the production of pro-inflammatory cytokines as TNF-α and IL-6 by macrophages in response to these particles. This comparative study demonstrates that particles of mesoporous bioactive glass MBG-75S and mesoporous nanospheres NanoMBG-75S allow the appropriated development and function of RAW 264.7 and J774A.1 macrophages and do not induce polarization towards the M1 pro-inflammatory phenotype. Therefore, considering that these mesoporous biomaterials offer the possibility of loading drugs into their pores, the results obtained indicate their high potential for use as drug-delivery systems in bone repair and osteoporosis treatments without triggering an adverse inflammatory response.
Collapse
Affiliation(s)
- M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M Oñaderra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M Gómez-Duro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - P Arribas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - A Polo-Montalvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Sintering Behavior of a Six-Oxide Silicate Bioactive Glass for Scaffold Manufacturing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intrinsic brittleness of bioactive glasses (BGs) is one of the main barriers to the widespread use of three-dimensional porous BG-derived bone grafts (scaffolds) in clinical practice. Among all the available strategies for improving the mechanical properties of BG-based scaffolds, strut densification upon sintering treatments at high temperatures represents a relatively easy approach, but its implementation might lead to undesired and poorly predictable decrease in porosity, mass transport properties and bioactivity resulting from densification and devitrification phenomena occurring in the material upon heating. The aim of the present work was to investigate the sinter-crystallization of a highly bioactive SiO2-P2O5-CaO–MgO–Na2O–K2O glass (47.5B composition) in reference to its suitability for the fabrication of bonelike foams. The thermal behavior of 47.5B glass particles was investigated upon sintering at different temperatures in the range of 600–850 °C by means of combined thermal analyses (differential thermal analysis (DTA) and hot-stage microscopy (HSM)). Then, XRD measurements were carried out to identify crystalline phases developed upon sintering. Finally, porous scaffolds were produced by a foam replica method in order to evaluate the effect of the sintering temperature on the mechanical properties under compression loading conditions. Assessing a relationship between mechanical properties and sintering temperature, or in other words between scaffold performance and fabrication process, is a key step towards the rationale design of optimized scaffolds for tissue repair.
Collapse
|
11
|
Khoder H, Schaniel D, Pillet S, Bendeif EE. X-ray scattering study of water confined in bioactive glasses: experimental and simulated pair distribution function. Acta Crystallogr A Found Adv 2020; 76:589-599. [PMID: 32869757 DOI: 10.1107/s2053273320007834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022] Open
Abstract
Temperature-dependent total X-ray scattering measurements for water confined in bioactive glass samples with 5.9 nm pore diameter have been performed. Based on these experimental data, simulations were carried out using the Empirical Potential Structure Refinement (EPSR) code, in order to study the structural organization of the confined water in detail. The results indicate a non-homogeneous structure for water inside the pore, with three different structural organizations of water, depending on the distance from the pore surface: (i) a first layer (4 Å) of interfacial pore water that forms a strong chemical bond with the substrate, (ii) intermediate pore water forming a second layer (4-11 Å) on top of the interfacial pore water, (iii) bulk-like pore water in the centre of the pores. Analysis of the simulated site-site partial pair distribution function shows that the water-silica (Ow-Si) pair correlations occur at ∼3.75 Å. The tetrahedral network of bulk water with oxygen-oxygen (Ow-Ow) hydrogen-bonded pair correlations at ∼2.8, ∼4.1 and ∼4.5 Å is strongly distorted for the interfacial pore water while the second neighbour pair correlations are observed at ∼4.0 and ∼4.9 Å. For the interfacial pore water, an additional Ow-Ow pair correlation appears at ∼3.3 Å, which is likely caused by distortions due to the interactions of the water molecules with the silica at the pore surface.
Collapse
|
12
|
de Moura NK, Martins EF, Oliveira RLMS, de Brito Siqueira IAW, Machado JPB, Esposito E, Amaral SS, de Vasconcellos LMR, Passador FR, de Sousa Trichês E. Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111327. [PMID: 32919681 DOI: 10.1016/j.msec.2020.111327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3-11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
Collapse
Affiliation(s)
- Nayara Koba de Moura
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - Eduardo Ferreira Martins
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | | | | | - João Paulo Barros Machado
- National Institute for Space Research (INPE), 1758 dos Astronautas Avenue, 12227-010 São José dos Campos, SP, Brazil
| | - Elisa Esposito
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - Suelen Simões Amaral
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - Fabio Roberto Passador
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | | |
Collapse
|
13
|
Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020; 10:33782-33835. [PMID: 35519068 PMCID: PMC9056785 DOI: 10.1039/d0ra04287k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sol–gel derived bioactive glasses have been extensively explored as a promising and highly porous scaffold materials for bone tissue regeneration applications owing to their exceptional osteoconductivity, osteostimulation and degradation rates.
Collapse
Affiliation(s)
- Kalim Deshmukh
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Kovářík
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Křenek
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Denitsa Docheva
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Theresia Stich
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Josef Pola
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| |
Collapse
|
14
|
Mubina MK, Shailajha S, Sankaranarayanan R, Saranya L. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO2-CaO-Na2O-P2O5 nano bioactive glass ceramics. J Mech Behav Biomed Mater 2019; 100:103379. [DOI: 10.1016/j.jmbbm.2019.103379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
|
15
|
Rodrigues C, Naasani LIS, Zanatelli C, Paim TC, Azevedo JG, de Lima JC, da Cruz Fernandes M, Buchner S, Wink MR. Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109781. [DOI: 10.1016/j.msec.2019.109781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
16
|
Mesoporous bioactive glasses for bone healing and biomolecules delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110180. [PMID: 31753410 DOI: 10.1016/j.msec.2019.110180] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Impact of bone diseases and injury is increasing at an enormous rate during the past decades due to increase in road traffic accidents and other injuries. Bioactive glasses have excellent biocompatibility and osteoconductivity that makes it suitable for bone regeneration. Researches and studies conducted on several bioactive glasses gives an insight on the need of multi-disciplinary approaches involving various scientific fields to attain its full potential. Of late, a next generation bioactive glass called as mesoporous bioactive glass (MBG) has been developed with higher specific surface area and control over mesoporous structure that presents a new material for bone regeneration. A brief discussion and overview on the potential use of MBG as a suitable material for bone tissue regeneration and biomolecule delivery is included. Additionally, possible control of the structural and functional property based on composition and fabrication techniques are also covered. According to recent researches, MBG-implant interaction with bone forming cells for cellular growth and differentiation as well as its effect on delivery of growth factor, both in vitro and in vivo, are optimistic; yet, the complete efficacy of this material is still to be explored. Hence, in this article we will review the current development and its applications for bone tissue engineering (TE).
Collapse
|
17
|
Investigation of citric acid-assisted sol-gel synthesis coupled to the self-propagating combustion method for preparing bioactive glass with high structural homogeneity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:669-678. [DOI: 10.1016/j.msec.2018.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/21/2018] [Accepted: 12/08/2018] [Indexed: 12/23/2022]
|
18
|
Baino F, Minguella-Canela J, Korkusuz F, Korkusuz P, Kankılıç B, Montealegre MÁ, De Los Santos-López MA, Vitale-Brovarone C. In Vitro Assessment of Bioactive Glass Coatings on Alumina/Zirconia Composite Implants for Potential Use in Prosthetic Applications. Int J Mol Sci 2019; 20:E722. [PMID: 30744005 PMCID: PMC6387312 DOI: 10.3390/ijms20030722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
Achieving the stable osteointegration of prosthetic implants is one of the great challenges of modern orthopedic surgery. The fixation of ceramic acetabular cups of hip joint prostheses is usually achieved using a metal shell provided with screws or pegs that penetrate into the host pelvic bone. The deposition of bioactive coatings on the implant surface to be put in contact with bone could be a valuable strategy to promote a more "physiological" osteointegration. In this work, bioactive glass porous coatings were manufactured on the top of alumina/zirconia composite implants by two different methods, i.e., sponge replication and laser cladding. The coated samples underwent immersion studies in Kokubo's simulated body fluid (SBF) to assess in vitro bioactivity and were found to exhibit an excellent hydroxyapatite-forming ability, which is key to allow bonding to bone. Biological tests using mesenchymal stem and osteoblast-like cells revealed the good biocompatibility of both types of materials. Furthermore, a higher level of mineralization was induced by the sponge-replicated coatings at 10 days. Overall, these results are highly promising and encourage further research on these materials.
Collapse
Affiliation(s)
- Francesco Baino
- Politecnico di Torino, Department of Applied Science and Technology, Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Joaquim Minguella-Canela
- Centre CIM/Departament d'Enginyeria Mecànica, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain.
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Sihhiye, Ankara 06100, Turkey.
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Sihhiye, Ankara 06100, Turkey.
| | - Berna Kankılıç
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Cankaya, Ankara 06800, Turkey.
| | | | - M Antonia De Los Santos-López
- Centre CIM/Departament d'Enginyeria Mecànica, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain.
| | - Chiara Vitale-Brovarone
- Politecnico di Torino, Department of Applied Science and Technology, Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
19
|
Du T, Li H, Sant G, Bauchy M. New insights into the sol-gel condensation of silica by reactive molecular dynamics simulations. J Chem Phys 2018; 148:234504. [PMID: 29935513 DOI: 10.1063/1.5027583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sol-gel method is an attractive technique to synthesize homogeneous silicate glasses with high purity while relying on a lower synthesis temperature than in the melt-quench method. However, the mechanism and kinetics of the condensation of the silicate network in aqueous solution remain unclear. Here, based on reactive molecular dynamics simulations (ReaxFF), we investigate the sol-gel condensation kinetics of a silica glass. The influence of the potential parametrization and system size is assessed. Our simulation methodology is found to offer good agreement with experiments. We show that the aqueous concentration of the Si(OH)4 precursors and the local degree of polymerization of the Si atoms play a crucial role in controlling the condensation activation energy. Based on our simulations, we demonstrate that the gelation reaction is driven by the existence of some local atomic stress that gets released upon condensation.
Collapse
Affiliation(s)
- Tao Du
- Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, 150090 Harbin, China
| | - Hui Li
- Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, 150090 Harbin, China
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Ionescu E, Sen S, Mera G, Navrotsky A. Structure, energetics and bioactivity of silicon oxycarbide-based amorphous ceramics with highly connected networks. Ann Ital Chir 2018. [DOI: 10.1016/j.jeurceramsoc.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abstract
In 2005, our group described for the first time the structural characterization at the atomic scale of bioactive glasses and the influence of the glasses’ nanostructure in their reactivity in simulated body fluids. In that study, two bioactive sol-gel glasses with composition 80%SiO2–20%CaO and 80%SiO2–17%CaO–3%P2O5 (in mol-%) were characterized by High-Resolution Transmission Electron Microscopy (HRTEM). Such characterization revealed unknown features of the glasses’ structure at the local scale that allowed the understanding of their different in vitro behaviors as a consequence of the presence or absence of P2O5. Since then, the nanostructure of numerous bioactive glasses, including melt-prepared, sol-gel derived, and mesoporous glasses, was investigated by HRTEM, Nuclear Magnetic Resonance (NMR) spectroscopy, Molecular Dynamics (MD) simulations, and other experimental techniques. These studies have shown that although glasses are amorphous solids, a certain type of short distance order, which greatly influences the in vitro and in vivo reactivity, is always present. This paper reviews the most significant advances in the understanding of bioactive glasses that took place in the last years as a result of the growing knowledge of the glasses’ nanostructure.
Collapse
|
22
|
Pedone A, Chen X, Hill RG, Karpukhina N. Molecular Dynamics Investigation of Halide-Containing Phospho-Silicate Bioactive Glasses. J Phys Chem B 2018; 122:2940-2948. [DOI: 10.1021/acs.jpcb.8b00547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alfonso Pedone
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Xiaojing Chen
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan 410078, P.R. China
- Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Robert G. Hill
- Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Natalia Karpukhina
- Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
23
|
Christie JK, de Leeuw NH. Effect of strontium inclusion on the bioactivity of phosphate-based glasses. JOURNAL OF MATERIALS SCIENCE 2017; 52:9014-9022. [PMID: 32055076 PMCID: PMC6991965 DOI: 10.1007/s10853-017-1155-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/27/2017] [Indexed: 05/30/2023]
Abstract
We have conducted first-principles and classical molecular dynamics simulations of various compositions of strontium-containing phosphate glasses, to understand how strontium incorporation will change the glasses' activity when implanted into the body (bioactivity). To perform the classical simulations, we have developed a new interatomic potential, which takes account of the polarizability of the oxygen ions. The Sr-O bond length is ∼2.44-2.49 Å, and the coordination number is 7.5-7.8. The Q n distribution and network connectivity were roughly constant for these compositions. Sr bonds to a similar number of phosphate chains as Ca does; based on our previous work (Christie et al. in J Phys Chem B 117:10652, 2013), this implies that SrO ↔ CaO substitution will barely change the dissolution rate of these glasses and that the bioactivity will remain essentially constant. Strontium could therefore be incorporated into phosphate glass for biomedical applications.
Collapse
Affiliation(s)
- J. K. Christie
- Department of Materials, Loughborough University, Loughborough, LE11 3TU UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - N. H. de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| |
Collapse
|
24
|
Côté AS, Cormack AN, Tilocca A. Influence of Calcium on the Initial Stages of the Sol-Gel Synthesis of Bioactive Glasses. J Phys Chem B 2016; 120:11773-11780. [PMID: 27809532 DOI: 10.1021/acs.jpcb.6b09881] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding how calcium interacts with silica sources and influences their polycondensation in aqueous solutions is of central importance for the development of more effective biomaterials by sol-gel approaches. For this purpose, the atomic-scale evolutions of a calcium-containing precursor solution corresponding to a typical sol-gel bioactive glass and of a corresponding Ca-free solution were compared using reactive molecular dynamics simulations. The simulations highlight a significantly faster rate of condensation when calcium is present in the initial solution, resulting in the formation of large and ramified silica clusters within 5 ns, which are absent in the Ca-free system. This different behavior has been analyzed and interpreted in terms of the Ca-induced nanosegregation in calcium-rich and silica-rich regions, which promotes the condensation reactions within the latter. By identifying a possible mechanism behind the limited incorporation of calcium in the silica nanoclusters formed in the early stages of the sol-gel process, these results could guide further studies aimed at identifying favorable experimental conditions to enhance initial calcium incorporation and thus produce sol-gel biomaterials with improved properties.
Collapse
Affiliation(s)
- Alexander S Côté
- Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| | - Alastair N Cormack
- New York State College of Ceramics, Alfred University , Alfred, New York 14802, United States
| | - Antonio Tilocca
- Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| |
Collapse
|
25
|
Christie JK. Atomic structure of biodegradable Mg-based bulk metallic glass. Phys Chem Chem Phys 2016; 17:12894-8. [PMID: 25906985 DOI: 10.1039/c4cp03714f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used highly accurate first-principles molecular dynamics simulations to elucidate the structure of Mg60Zn35Ca5 and Mg72Zn23Ca5 bulk metallic glasses, which are candidate materials for biomedical implants; these two compositions exhibit different behaviours when implanted. The environments of each species are different, and average coordination numbers are ∼13 for Mg, ∼11 for Zn and ∼18-19 for Ca. A wide range of local environments were found and icosahedral motifs, often seen in bulk metallic glasses, were among the most common for both Mg and Zn. Through the computation of a chemical short-range order parameter, a moderate avoidance of Zn-Zn bonding over Zn-Mg or Zn-Ca was observed. No statistically significant difference in structure was observed between the two compositions.
Collapse
Affiliation(s)
- J K Christie
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
26
|
Tian KV, Chass GA, Di Tommaso D. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements. Phys Chem Chem Phys 2016; 18:837-45. [PMID: 26646505 DOI: 10.1039/c5cp05650k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.
Collapse
Affiliation(s)
- Kun Viviana Tian
- Materials Science Research Institute, Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest 1088, Hungary and Global Institute of Computational Molecular and Materials Science (GIOCOMMS), Budapest (Hungary)/Beijing (China)/Toronto (Canada)
| | - Gregory A Chass
- Global Institute of Computational Molecular and Materials Science (GIOCOMMS), Budapest (Hungary)/Beijing (China)/Toronto (Canada) and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Devis Di Tommaso
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
27
|
|
28
|
Kapoor S, Semitela Â, Goel A, Xiang Y, Du J, Lourenço AH, Sousa DM, Granja PL, Ferreira JMF. Understanding the composition-structure-bioactivity relationships in diopside (CaO·MgO·2SiO₂)-tricalcium phosphate (3CaO·P₂O₅) glass system. Acta Biomater 2015; 15:210-26. [PMID: 25578990 DOI: 10.1016/j.actbio.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022]
Abstract
The present work is an amalgamation of computation and experimental approach to gain an insight into composition-structure-bioactivity relationships of alkali-free bioactive glasses in the CaO-MgO-SiO2-P2O5 system. The glasses have been designed in the diopside (CaO·MgO·2SiO2; Di)-tricalcium phosphate (3CaO·P2O5; TCP) binary join by varying the Di/TCP ratio. The melt-quenched glasses have been investigated for their structure by molecular dynamic (MD) simulations as well as by nuclear magnetic resonance spectroscopy (NMR). In all the investigated glasses silicate and phosphate components are dominated by Q(2) (Si) and Q(0) (P) species, respectively. The apatite forming ability of the glasses was investigated using X-ray diffraction (XRD), infrared spectroscopy after immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the investigated glasses showed good bioactivity without any substantial variation. A significant statistical increase in metabolic activity of human mesenchymal stem cells (hMSCs) when compared to the control was observed for Di-60 and Di-70 glass compositions under both basal and osteogenic conditions.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ângela Semitela
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, United States.
| | - Ye Xiang
- Department of Materials Science and Engineering, University of North Texas, United States
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, United States
| | - Ana H Lourenço
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - Daniela M Sousa
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Pedro L Granja
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Feng P, Deng Y, Duan S, Gao C, Shuai C, Peng S. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace. Int J Mol Sci 2014; 15:14574-90. [PMID: 25196598 PMCID: PMC4159869 DOI: 10.3390/ijms150814574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022] Open
Abstract
Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Youwen Deng
- Department of Spine Surgery, the Second Xiangya Hospital of Central South University, Changsha 410011, China.
| | - Songlin Duan
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha 410078, China.
| |
Collapse
|
30
|
Kansal I, Reddy A, Muñoz F, Choi SJ, Kim HW, Tulyaganov DU, Ferreira JMF. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:159-65. [PMID: 25280692 DOI: 10.1016/j.msec.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 07/16/2014] [Accepted: 08/03/2014] [Indexed: 11/24/2022]
Abstract
We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium.
Collapse
Affiliation(s)
- Ishu Kansal
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - AlluAmarnath Reddy
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Francisco Muñoz
- Ceramics and Glass Institute (CSIC), Kelsen 5, 28049 Madrid, Spain
| | - Seong-Jun Choi
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330714, South Korea
| | | | - José M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
31
|
Christie JK, Ainsworth RI, de Leeuw NH. Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 2014; 35:6164-71. [DOI: 10.1016/j.biomaterials.2014.04.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 11/16/2022]
|
32
|
Kapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, Ferreira JMF. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 2014; 10:3264-78. [PMID: 24709542 DOI: 10.1016/j.actbio.2014.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, USA.
| | - Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vikram Dhuna
- Department of Biotechnology, DAV College, Amritsar 143-001, Punjab, India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - Kshitija Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Tilocca A. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics. J Chem Phys 2014; 139:114501. [PMID: 24070291 DOI: 10.1063/1.4821150] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ~10(3) atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application in different fields. In addition, as a first application of the present findings, the fully converged structure of the 45S5 glass was further analyzed to shed new light on several dissolution-related features whose interpretation has been rather controversial in the past.
Collapse
Affiliation(s)
- Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
34
|
Mathew R, Stevensson B, Tilocca A, Edén M. Toward a rational design of bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J Phys Chem B 2014; 118:833-44. [PMID: 24364818 PMCID: PMC3905695 DOI: 10.1021/jp409652k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
physiological responses of silicate-based bioactive glasses (BGs)
are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity
(N̅BOSi). However, while the bioactivity generally
displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate
content that directly links to the bioactivity. We exploit molecular
dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore
the quantitative relationships between N̅BOSi, nP, and the silicate and phosphate speciations in a series
of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ≤ N̅BOSi ≤
2.9 and variable P2O5 contents up to 6.0 mol
%. The fractional population of the orthophosphate groups remains
independent of nP at a fixed N̅BOSi-value,
but is reduced slightly as N̅BOSi increases. Nevertheless, P
remains predominantly as readily released orthophosphate ions, whose
content may be altered essentially independently of the network connectivity,
thereby offering a route to optimize the glass bioactivity. We discuss
the observed composition-structure links in relation to known composition-bioactivity
correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting
an optimal bioactivity can be designed by simultaneously altering
three key parameters: the silicate network connectivity, the (ortho)phosphate
content, and the nNa/nCa molar ratio.
Collapse
Affiliation(s)
- Renny Mathew
- Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Berardo E, Corno M, Cormack AN, Ugliengo P, Tilocca A. Probing the fate of interstitial water in bulk bioactive glass by ab initio simulations. RSC Adv 2014. [DOI: 10.1039/c4ra05810k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism and effects of the interaction of a water molecule with different sites found in the bulk of 45S5 bioactive glass have been investigated through ab initio simulations.
Collapse
Affiliation(s)
- Enrico Berardo
- Department of Chemistry
- University College London
- London WC1H 0AJ, UK
| | - Marta Corno
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces)
- Universitá di Torino
- 10125 Torino, Italy
| | | | - Piero Ugliengo
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces)
- Universitá di Torino
- 10125 Torino, Italy
| | - Antonio Tilocca
- Department of Chemistry
- University College London
- London WC1H 0AJ, UK
| |
Collapse
|
36
|
Ainsworth RI, Christie JK, de Leeuw NH. On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Phys Chem Chem Phys 2014; 16:21135-43. [DOI: 10.1039/c4cp00574k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles and classical molecular dynamics simulations have been carried out on undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0–20 mol% Ag2O, and varying amounts of Na2O and CaO.
Collapse
|
37
|
Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 2013; 113:4216-313. [PMID: 23289428 DOI: 10.1021/cr3003054] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
38
|
Christie JK, Ainsworth RI, Di Tommaso D, de Leeuw NH. Nanoscale Chains Control the Solubility of Phosphate Glasses for Biomedical Applications. J Phys Chem B 2013; 117:10652-7. [DOI: 10.1021/jp4058115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jamieson K. Christie
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| | - Richard I. Ainsworth
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| | - Devis Di Tommaso
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| | - Nora H. de Leeuw
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| |
Collapse
|
39
|
Zhang N, Molenda JA, Mankoci S, Zhou X, Murphy WL, Sahai N. Crystal structures of CaSiO 3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces. Biomater Sci 2013; 1:1101-1110. [PMID: 26550475 DOI: 10.1039/c3bm60034c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure-reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO3 polymorphs, pseudo-wollastonite (psw, β-CaSiO3) and wollastonite (wol, α-CaSiO3) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
Collapse
Affiliation(s)
- Nianli Zhang
- Materials Science Program, University of Wisconsin, Madison, WI53706, USA ; Department of Biologic and Materials Science, 1011 N. University Avenue, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - James A Molenda
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Steven Mankoci
- Department of Polymer Science, 170 University Avenue, Akron, OH 44325, USA. Tel: +1 330-972-5795
| | - Xianfeng Zhou
- Department of Polymer Science, 170 University Avenue, Akron, OH 44325, USA. Tel: +1 330-972-5795
| | - William L Murphy
- Materials Science Program, University of Wisconsin, Madison, WI53706, USA ; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA ; Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53706, USA ; Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA
| | - Nita Sahai
- Department of Polymer Science, 170 University Avenue, Akron, OH 44325, USA. Tel: +1 330-972-5795
| |
Collapse
|
40
|
Berardo E, Pedone A, Ugliengo P, Corno M. DFT modeling of 45S5 and 77S soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5749-5759. [PMID: 23594027 DOI: 10.1021/la304795w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The reactivity of bioglasses, which is related to the dissolution of cations and orthosilicate groups in the physiological fluid, strongly depends on the key structural features present at the glass surfaces. On the basis of the composition and the synthetic routes employed to make the glass, surfaces with very different characteristics and thus presenting different mechanisms of dissolution can be observed. In this paper, the surface structures of two very different bioglass compositions, namely 45S5 (46.1 SiO2, 24.4 Na2O, 26.9 CaO, and 2.6 P2O5 mol %) and 77S (80.0 SiO2, 16.0 CaO, and 4.0 P2O5 mol %), have been investigated by means of periodic DFT calculations based on a PBE functional and localized Gaussian basis set as encoded in the CRYSTAL code. Our calculations show that the two glass surfaces differ by the relative amount of key structural sites such as NBOs, exposed ions, orthosilicate units, and small rings. We have demonstrated how the number of these sites affects the surface stability and reactivity (bioactivity).
Collapse
Affiliation(s)
- Enrico Berardo
- Dipartimento di Chimica and NIS-Nanostructured Interfaces and Surfaces-Centre of Excellence, Università degli Studi di Torino, Torino, Italy
| | | | | | | |
Collapse
|
41
|
Di Tommaso D, Ainsworth RI, Tang E, de Leeuw NH. Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials. J Mater Chem B 2013; 1:5054-5066. [DOI: 10.1039/c3tb20662a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Goel A, Kapoor S, Tilocca A, Rajagopal RR, Ferreira JMF. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B 2013; 1:3073-3082. [DOI: 10.1039/c3tb20163e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ainsworth RI, Tommaso DD, Christie JK, de Leeuw NH. Polarizable force field development and molecular dynamics study of phosphate-based glasses. J Chem Phys 2012; 137:234502. [DOI: 10.1063/1.4770295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Christie JK, Tilocca A. Molecular Dynamics Simulations and Structural Descriptors of Radioisotope Glass Vectors for In Situ Radiotherapy. J Phys Chem B 2012; 116:12614-20. [DOI: 10.1021/jp304200f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jamieson K. Christie
- Department of Chemistry and Thomas
Young Centre, University College London, 20 Gordon Street, London
WC1H 0AJ, U.K
| | - Antonio Tilocca
- Department of Chemistry and Thomas
Young Centre, University College London, 20 Gordon Street, London
WC1H 0AJ, U.K
| |
Collapse
|
45
|
Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Mattias Edén MVR. Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1376-1399. [PMID: 22349247 PMCID: PMC3270387 DOI: 10.1098/rsta.2011.0257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We review the benefits of using (29)Si and (1)H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for probing the local structures of both bulk and surface portions of mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-(P(2)O(5)) system. These mesoporous materials exhibit an ordered pore arrangement, and are promising candidates for improved bone and tooth implants. We discuss experimental MAS NMR results from three MBGs displaying different Ca, Si and P contents: the (29)Si NMR spectra were recorded either directly by employing radio-frequency pulses to (29)Si, or by magnetization transfers from neighbouring protons using cross polarization, thereby providing quantitative information about the silicate speciation present in the pore wall and at the MBG surface, respectively. The surface modifications were monitored for the three MBGs during their immersion in a simulated body fluid (SBF) for intervals between 30 min and one week. The results were formulated as a reaction sequence describing the interconversions between the distinct silicate species. We generally observed a depletion of Ca(2+) ions at the MBG surface, and a minor condensation of the silicate-surface network over one week of SBF soaking.
Collapse
Affiliation(s)
- Philips N. Gunawidjaja
- Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Renny Mathew
- Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Andy Y. H. Lo
- Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Isabel Izquierdo-Barba
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ana García
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Arcos
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - María Vallet-Regí Mattias Edén
- Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Cerruti M. Surface characterization of silicate bioceramics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1281-1312. [PMID: 22349243 DOI: 10.1098/rsta.2011.0274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The success of an implanted prosthetic material is determined by the early events occurring at the interface between the material and the body. These events depend on many surface properties, with the main ones including the surface's composition, porosity, roughness, topography, charge, functional groups and exposed area. This review will portray how our understanding of the surface reactivity of silicate bioceramics has emerged and evolved in the past four decades, owing to the adoption of many complementary surface characterization tools. The review is organized in sections dedicated to a specific surface property, each describing how the property influences the body's response to the material, and the tools that have been adopted to analyse it. The final section introduces the techniques that have yet to be applied extensively to silicate bioceramics, and the information that they could provide.
Collapse
Affiliation(s)
- Marta Cerruti
- Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2.
| |
Collapse
|
47
|
Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV. Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14674f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Abstract
The molecular dynamics method is a powerful computer simulation technique which provides access to the detailed time evolution (trajectory) of a system in specified conditions, such as a particular temperature or pressure. The full trajectory of the system can be analyzed using statistical mechanics tools to obtain thermodynamical quantities and dynamical properties; the mechanism of chemical reactions and other time-dependent processes, such as diffusion, can also be revealed in high detail. When applied to model extended and complex system such as biomaterials, MD simulations represent an invaluable tool to discover structure-activity relationships and rationalize biomedical applications.
Collapse
Affiliation(s)
- Antonio Tilocca
- Department of Chemistry and Thomas Young Centre, University College London, London, UK.
| |
Collapse
|
49
|
Goel A, Kapoor S, Rajagopal RR, Pascual MJ, Kim HW, Ferreira JM. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Acta Biomater 2012; 8:361-72. [PMID: 21925626 DOI: 10.1016/j.actbio.2011.08.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO(2)-P(2)O(5)-CaF(2) along the diopside (CaMgSi(2)O(6))-fluorapatite (Ca(5)(PO(4))(3)F)-tricalcium phosphate (3CaO·P(2)O(5)) join. The silicate network in all the investigated glasses is predominantly coordinated in Q(2) (Si) units, while phosphorus tends to remain in an orthophosphate (Q(0)) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite formation on their surface within 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis and hot-stage microscopy, respectively while the crystalline phase evolution in resultant glass-ceramics has been studied in the temperature range of 800-900°C using powder X-ray diffraction and scanning electron microscopy. The alkaline phosphatase activity and osteogenic differentiation for glasses have been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as-designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/glass-ceramic scaffolds.
Collapse
|
50
|
Christie JK, Tilocca A. Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31561k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|