1
|
Li S, Fan J, Xue C, Shan H, Kong H. Spur development and evolution: An update. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102573. [PMID: 38896925 DOI: 10.1016/j.pbi.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Floral spurs, widely recognized as a classic example of key morphological and functional innovation and thought to have promoted the origin and adaptive evolution of many flowering plant lineages, have attracted the attention of researchers for centuries. Despite this, the mechanisms underlying the development and evolution of these structures remain poorly understood. Recent studies have discovered the phytohormones and transcription factor genes that play key roles in regulating patterns of cell division and cell expansion during spur morphogenesis. Spur morphogenesis was also found to be tightly linked with the programs specifying floral zygomorphy, floral organ identity determination, and nectary development. Independent origins and losses of spurs in different flowering plant lineages, therefore, may be attributed to changes in the spur program and/or its upstream ones.
Collapse
Affiliation(s)
- Shuixian Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhi Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
van der Niet T, Cozien RJ. Evidence for moth pollination in a rhinomyiophilous Erica species from the Cape Floristic Region of South Africa. PHYTOKEYS 2024; 246:43-70. [PMID: 39257487 PMCID: PMC11384911 DOI: 10.3897/phytokeys.246.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/12/2024] [Indexed: 09/12/2024]
Abstract
Contrasting pollination syndromes in closely related species suggest that floral trait divergence is associated with differences in pollination system, but empirical observations are required to confirm syndrome-based predictions. We present a comparative study of two closely related Erica species with contrasting pollination syndromes from the Cape Floristic Region of South Africa. Ericacylindrica has narrowly tubular pale and strongly scented flowers and is known to be hawkmoth-pollinated. The closely related Ericainfundibuliformis has bright flower colours and appears to lack scent, traits that are suggestive of pollination by long-tongued nemestrinid flies (rhinomyiophily). Floral trait measurements revealed that both species exhibit predominantly upright flower orientation and elongated floral tubes, although tube length of E.infundibuliformis is consistently greater than that of E.cylindrica. For both species, petals are brighter than floral tube surfaces, but flowers of E.cylindrica lack the strong UV reflectance found in E.infundibuliformis. Nectar of E.infundibuliformis is more concentrated and produced in larger volumes. Scent composition, but not evening scent emission rates, differed between the species: scent of E.cylindrica is dominated by aromatic compounds, whereas scent of E.infundibuliformis is dominated by (E)-ocimene and other terpenoid compounds and is emitted at higher rates during the day than the evening. Pollinator observations contradicted trait-based predictions: although a single nemestrinid fly captured in the vicinity of E.infundibuliformis did carry Erica pollen, almost all other diurnal flower visitors were nectar-robbing Hymenoptera which did not carry Erica pollen. Contrary to predictions, at two sites and over two flowering seasons, flowers were consistently visited in the evenings by several species of settling moths and hawkmoths which carried pollen, almost exclusively of Erica, on their proboscides. Our findings thus suggest that, despite objective differences in key floral traits between the closely related hawkmoth-pollinated E.cylindrica and E.infundibuliformis, moths are also important pollinators of E.infundibuliformis. A bimodal pollination system involving predominant pollination by moths and occasional visits by long-proboscid flies could partially reconcile findings with predictions. Our study further suggests that hawkmoth pollination may be more widespread in both Erica and the broader Cape flora than has hitherto been assumed and emphasises the importance of nocturnal pollinator observations.
Collapse
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa University of KwaZulu-Natal Pietermaritzburg South Africa
| | - Ruth J Cozien
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa University of KwaZulu-Natal Pietermaritzburg South Africa
| |
Collapse
|
3
|
Bechler JP, Steiner K, Tschapka M. Feeding efficiency of two coexisting nectarivorous bat species (Phyllostomidae: Glossophaginae) at flowers of two key-resource plants. PLoS One 2024; 19:e0303227. [PMID: 38924018 PMCID: PMC11207168 DOI: 10.1371/journal.pone.0303227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/23/2024] [Indexed: 06/28/2024] Open
Abstract
Animals should maximize their energy uptake while reducing the costs for foraging. For flower-visitors these costs and benefits are rather straight forward as the energy uptake equals the caloric content of the consumed nectar while the costs equal the handling time at the flower. Due to their energetically demanding lifestyle, flower-visiting bats face particularly harsh energetic conditions and thus need to optimize their foraging behavior at the flowers of the different plant species they encounter within their habitat. In flight cage experiments we examined the nectar-drinking behavior (i.e. hovering duration, nectar uptake, and the resulting feeding efficiency) of the specialized nectar-feeding bat Hylonycteris underwoodi and the more generalistic Glossophaga commissarisi at flowers of two plant species that constitute important nectar resources in the Caribbean lowland rainforests of Costa Rica and compared nectar-drinking behavior between both bat species and at both plant species. We hypothesized that the 1) specialized bat should outperform the more generalistic species and that 2) bats should generally perform better at flowers of the nectar-rich flowers of the bromeliad Werauhia gladioliflora than at the relatively nectar-poor flowers of the Solanaceae Merinthopodium neuranthum that has an extremely long flowering phase and therefore is an extremely reliable nectar resource, particularly for the specialized Hylonycteris. While we did not find substantial differences in the feeding efficiency of the generalist G. commissarisi, we observed an increased feeding efficiency of the specialized H. underwoodi at flowers of the nectar-poor M. neuranthum. This suggests that familiarity and ecological importance are more important determinants of the interaction than just morphological traits. Our results demonstrate that in addition to morphology, behavioral adaptations are also important drivers that determine the fitness of nectar-feeding bats. Both familiarity with and the ecological importance of a resource seem to contribute to shaping the interactions between pollinating bats and their plants.
Collapse
Affiliation(s)
- Jan Philipp Bechler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Kira Steiner
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancón, Panama City, Panama
| |
Collapse
|
4
|
Wenzell KE, Zhang JY, Skogen KA, Fant JB. Adaptive generalization in pollination systems: Hawkmoths increase fitness to long-tubed flowers, but secondary pollinators remain important. Ecol Evol 2024; 14:e11443. [PMID: 38783846 PMCID: PMC11112297 DOI: 10.1002/ece3.11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Selection on floral traits by animal pollinators is important in the evolution of flowering plants, yet whether floral divergence requires specialized pollination remains uncertain. Longer floral tubes, a trait associated with long-tongued pollinators, can also exclude other pollinators from accessing rewards, a potential mechanism for specialization. Across most of its range, Castilleja sessiliflora displays much longer corollas than most Castilleja species, though tube length varies geographically and correlates partially with hawkmoth visitation. To assess whether long corolla tubes reflect adaptation to hawkmoth pollinators, we performed a day/night pollinator exclusion experiment in nine natural populations that varied in corolla length across the range of C. sessiliflora and short-tubed members of the parapatric C. purpurea complex. We compared the fitness contributions of nocturnal and diurnal visitors, revealing that long-tubed populations visited predominantly by hawkmoths experienced greater fruit set at night, in contrast with short-tubed populations or those visited mainly by diurnal pollinators. Next, leveraging a range-wide multiyear dataset of pollinator visitation to these species, we identify that hawkmoth visitation is associated with increased fitness in long-tubed populations overall, and that long tubes are associated with less diverse visitor assemblages. Thus, long corollas represent an adaptation to hawkmoth pollination at the exclusion of diverse pollinators. Nonetheless, while hawkmoths were scarce in the northern range, secondary diurnal pollinators contributed to fruit set across the range, providing reproductive assurance despite possible trait mismatch. This study illustrates adaptive generalization in pollination systems and that floral divergence may proceed along a continuum of generalized and specialized pollinator interactions.
Collapse
Affiliation(s)
- Katherine E. Wenzell
- Botany DepartmentCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Johnathan Y. Zhang
- Interdisciplinary Programs BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Krissa A. Skogen
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jeremie B. Fant
- Program in Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
| |
Collapse
|
5
|
Campbell DR, Powers JM, Crowell M. Pollinator and habitat-mediated selection as potential contributors to ecological speciation in two closely related species. Evol Lett 2024; 8:311-321. [PMID: 38525033 PMCID: PMC10959478 DOI: 10.1093/evlett/qrad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 03/26/2024] Open
Abstract
In ecological speciation, incipient species diverge due to natural selection that is ecologically based. In flowering plants, different pollinators could mediate that selection (pollinator-mediated divergent selection) or other features of the environment that differ between habitats of 2 species could do so (environment-mediated divergent selection). Although these mechanisms are well understood, they have received little rigorous testing, as few studies of divergent selection across sites of closely related species include both floral traits that influence pollination and vegetative traits that influence survival. This study employed common gardens in sites of the 2 parental species and a hybrid site, each containing advanced generation hybrids along with the parental species, to test these forms of ecological speciation in plants of the genus Ipomopsis. A total of 3 vegetative traits (specific leaf area, leaf trichomes, and photosynthetic water-use efficiency) and 5 floral traits (corolla length and width, anther insertion, petal color, and nectar production) were analyzed for impacts on fitness components (survival to flowering and seeds per flower, respectively). These traits exhibited strong clines across the elevational gradient in the hybrid zone, with narrower clines in theory reflecting stronger selection or higher genetic variance. Plants with long corollas and inserted anthers had higher seeds per flower at the Ipomopsis tenuituba site, whereas selection favored the reverse condition at the Ipomopsis aggregata site, a signature of divergent selection. In contrast, no divergent selection due to variation in survival was detected on any vegetative trait. Selection within the hybrid zone most closely resembled selection within the I. aggregata site. Across traits, the strength of divergent selection was not significantly correlated with width of the cline, which was better predicted by evolvability (standardized genetic variance). These results support the role of pollinator-mediated divergent selection in ecological speciation and illustrate the importance of genetic variance in determining divergence across hybrid zones.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
- Rocky Mountain Biological Laboratory, Crested Butte, CO, United States
| | - John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
- Rocky Mountain Biological Laboratory, Crested Butte, CO, United States
| | - Madison Crowell
- Rocky Mountain Biological Laboratory, Crested Butte, CO, United States
| |
Collapse
|
6
|
Prokop P, Ježová Z, Mešková M, Vanerková V, Zvaríková M, Fedor P. Flower angle favors pollen export efficiency in the snowdrop Galanthus nivalis (Linnaeus, 1753) but not in the lesser celandine Ficaria verna (Huds, 1762). PLANT SIGNALING & BEHAVIOR 2023; 18:2163065. [PMID: 36635990 PMCID: PMC9851262 DOI: 10.1080/15592324.2022.2163065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Flower angle is crucially important for accurate pollination and flower protection against abiotic factors. Evolutionary factors shaping floral traits are particularly strong for bilaterally symmetric flowers because these flowers require more pollination accuracy than radially symmetrical flowers. We experimentally investigated the flower angle in the snowdrop's (Galanthus nivalis) radially symmetrical, early-blooming downward flowers. Bumblebees were able to gather significantly more pollen grains from downward flowers than from upward flowers, but female traits (fertility in the field) seem unaffected by flower angle. Similar experiments with radially symmetrical, later flowering Lesser celandine (Ficaria verna) upward flowers showed no differences in bees' abilities to gather pollen in upward vs downward-facing flowers. The downward angle of snowdrop flowers is an adaptation that increases the ability of insects to collect more pollen grains under unfavorable early spring weather conditions when pollinators are scarce.
Collapse
Affiliation(s)
- Pavol Prokop
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Ježová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Michaela Mešková
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Viktória Vanerková
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Martina Zvaríková
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Peter Fedor
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
McCarren S, Johnson SD, Theron GL, Coetzee A, Turner R, Midgley J. Flower orientation and corolla length as reproductive barriers in the pollinator-driven divergence of Erica shannonea and Erica ampullacea. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1083-1090. [PMID: 37676744 DOI: 10.1111/plb.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
A variety of reproductive barriers can enable reproductive isolation and stable coexistence of plant species. Differing floral traits might play an important role in reproductive isolation imposed by pollinators. Such shifts in pollinator use have been hypothesized to contribute to the radiation of Erica (Ericaceae) in the Cape Floristic Region, South Africa. The sister species Erica shannonea and Erica ampullacea co-occur and overlap in flowering phenology. Both have unscented long-tubed flowers consistent with adaptations for pollination by long-proboscid flies (LPFs), but differences in flower orientation and corolla tube length are indicative of a shift in pollinator species. We conducted controlled pollination experiments and pollinator observations to determine the breeding system and pollinators of the two species. Both species are self-incompatible and require pollinator visits for seed production, suggesting that pollinators could strongly influence flower evolution. The horizontally orientated flowers of E. shannonea were found to be pollinated by Philoliche rostrata (Tabanidae), which has a long, fixed forward-pointing proboscis, while the vertically upright orientated flowers of E. ampullacea were found to be pollinated by Prosoeca westermanni (Nemestrinidae), which has a shorter proboscis that can swivel downwards. The nemestrinid fly's proboscis is too short to access the nectar in the relative long-tubed flowers of E. shannonea and the tabanid fly's proboscis cannot swivel down to access the upright flowers of E. ampullacea. Consequently, these traits are likely to act as reproductive barriers between the two Erica species and thereby might have contributed to speciation and enable stable coexistence.
Collapse
Affiliation(s)
- S McCarren
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - S D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - G L Theron
- Department of Natural Sciences, KwaZulu-Natal Museum, Pietermaritzburg, South Africa
| | - A Coetzee
- Nelson-Mandela University, George, South Africa
| | - R Turner
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - J Midgley
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Wessinger CA, Katzer AM, Hime PM, Rausher MD, Kelly JK, Hileman LC. A few essential genetic loci distinguish Penstemon species with flowers adapted to pollination by bees or hummingbirds. PLoS Biol 2023; 21:e3002294. [PMID: 37769035 PMCID: PMC10538765 DOI: 10.1371/journal.pbio.3002294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-wide dXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 "species-diagnostic loci," which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.
Collapse
Affiliation(s)
- Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Amanda M. Katzer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Paul M. Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, United States of America
| | - Mark D. Rausher
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Lena C. Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
9
|
Zhang Z, Nishimura A, Trovão NS, Cherry JL, Holbrook AJ, Ji X, Lemey P, Suchard MA. Accelerating Bayesian inference of dependency between mixed-type biological traits. PLoS Comput Biol 2023; 19:e1011419. [PMID: 37639445 PMCID: PMC10491301 DOI: 10.1371/journal.pcbi.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Inferring dependencies between mixed-type biological traits while accounting for evolutionary relationships between specimens is of great scientific interest yet remains infeasible when trait and specimen counts grow large. The state-of-the-art approach uses a phylogenetic multivariate probit model to accommodate binary and continuous traits via a latent variable framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the computational bottleneck-integrating many latent variables from a high-dimensional truncated normal distribution. This approach breaks down as the number of specimens grows and fails to reliably characterize conditional dependencies between traits. Here, we propose an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The novelty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated latent variables and correlation matrix elements. In an application exploring HIV-1 evolution from 535 viruses, the inference requires joint sampling from an 11,235-dimensional truncated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup compared to BPS and makes it possible to learn partial correlations between candidate viral mutations and virulence. Computational speedup now enables us to tackle even larger problems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For broader applicability, we extend the phylogenetic probit model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Akihiko Nishimura
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew J. Holbrook
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biomathematics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Wenzell KE, Skogen KA, Fant JB. Range‐wide floral trait variation reflects shifts in pollinator assemblages, consistent with pollinator‐mediated divergence despite generalized visitation. OIKOS 2023. [DOI: 10.1111/oik.09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katherine E. Wenzell
- John Innes Centre Colney Lane Norwich UK
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
| | - Krissa A. Skogen
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
- Clemson Univ., Dept of Biological Sciences Clemson SC USA
| | - Jeremie B. Fant
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
| |
Collapse
|
11
|
Floral scent divergence across an elevational hybrid zone with varying pollinators. Oecologia 2023; 201:45-57. [PMID: 36374316 DOI: 10.1007/s00442-022-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Divergence in floral traits attractive to different pollinators can promote reproductive isolation in related species. When isolation is incomplete, hybridization may occur, which offers the opportunity to explore mechanisms underlying reproductive isolation. Recent work suggests that divergence in floral scent may frequently contribute to reproductive barriers, although such divergence has seldom been examined in species with generalized pollination. Here, we used two closely related Penstemon species, P. newberryi and P. davidsonii, and their natural hybrids from an elevational gradient with pollinator communities that are predicted to vary in their reliance on floral scent (i.e., primarily hummingbirds at low elevation vs. bees at high elevation). The species vary in a suite of floral traits, but scent is uncharacterized. To address whether scent varies along elevation and potentially contributes to reproductive isolation, we genetically characterized individuals collected at field and identified whether they were parental species or hybrids. We then characterized scent amount and composition. Although the parental species had similar total emissions, some scent characteristics (i.e., scent composition, aromatic emission) diverged between them and may contribute to their isolation. However, the species emitted similar compound sets which could explain hybridization in the contact area. Hybrids were similar to the parents for most scent traits, suggesting that their floral scent would not provide a strong barrier to backcrossing. Our study suggests floral scent may be a trait contributing to species boundaries even in plants with generalized pollination, and reinforces the idea that evolutionary pollinator transitions may involve changes in multiple floral traits.
Collapse
|
12
|
McCarren S, Midgley JJ, Johnson SD. Biomechanics of nectar feeding explain flower orientation in plants pollinated by long-proboscid flies. Naturwissenschaften 2022; 109:47. [DOI: 10.1007/s00114-022-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
13
|
Wessinger CA. Small genetic steps lead to mechanical isolation in hummingbird-pollinated gingers. Mol Ecol 2022; 31:4205-4207. [PMID: 35796626 DOI: 10.1111/mec.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Interactions with pollinators are a potent source of natural selection driving the spectacular array of flowering plant diversity on Earth (Kay & Sargent, 2009; Van der Niet et al., 2014). Floral traits play a central role in this process: reliable and effective pollination by animal pollinators depends on complex floral features, including traits that determine pollinator attraction and reward, as well as the mechanics of pollen transfer. Pollinators specify mating events between individuals, and thus differences in flowers have the potential to generate reproductive isolating barriers (floral isolation). A compelling case of floral isolation comes from spiral gingers (Costus), where hummingbird-adapted species have evolved distinct pollen placement strategies (on the bills vs. foreheads of pollinators) due to differences in flower shape and the arrangements of flower parts. This difference in pollen placement causes a mechanical barrier to cross-pollination. In this issue of Molecular Ecology, Kay and Surget-Groba (2022) dissect the genetic basis of these floral differences using a quantitative trait locus (QTL) mapping approach. They find small-effect QTLs that influence multiple correlated traits and allelic effects that suggest a history of directional selection. Their results indicate mechanical isolation reflects adaptive divergence that has built up piecemeal over time.
Collapse
|
14
|
Nakata T, Rin I, Yaida YA, Ushimaru A. Horizontal orientation facilitates pollen transfer and rain damage avoidance in actinomorphic flowers of Platycodon grandiflorus. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:798-805. [PMID: 35289975 DOI: 10.1111/plb.13414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
In zoophilous plants, floral orientation evolved under both biotic and abiotic pressure to enhance pollination success. However, the adaptive significance of horizontal orientation in radially symmetrical (actinomorphic) flowers remains largely unknown, although that of bilaterally symmetrical flowers has been well studied. We experimentally altered floral angle in a population of insect-pollinated Platycodon grandiflorus flowers to examine the effects of floral orientation on pollinator behaviour, pollination success and pollen rain damage avoidance. To further investigate the potential pollen damage by rain, we obtained past precipitation records for the study area during the flowering season, and experimentally tested P. grandiflorus pollen damage by water. Horizontally oriented flowers received more pollinator visits and had pollen grains on the stigma in male and/or female phases than downward- and/or upward-oriented flowers and avoided pollen damage by rainfall better than upward-oriented flowers. A pollen germination experiment showed that approximately 30% of pollen grains burst in distilled water, indicating that pollen damage by rainfall may be significant in P. grandiflorus. Our field experiments revealed that upward-oriented flowers cannot avoid pollen damage by rainfall during the flowering period, and that both upward- and downward-oriented flowers experience pollinator limitation in female success. Therefore, horizontal flower orientation appears to be adaptive in this insect-pollinated actinomorphic species that blooms during the rainy season.
Collapse
Affiliation(s)
- T Nakata
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - I Rin
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Y A Yaida
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - A Ushimaru
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
- Faculty of Human Development, Kobe University, Kobe, Japan
| |
Collapse
|
15
|
Balbuena MS, Broadhead GT, Dahake A, Barnett E, Vergara M, Skogen KA, Jogesh T, Raguso RA. Mutualism has its limits: consequences of asymmetric interactions between a well-defended plant and its herbivorous pollinator. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210166. [PMID: 35491593 DOI: 10.1098/rstb.2021.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concern for pollinator health often focuses on social bees and their agricultural importance at the expense of other pollinators and their ecosystem services. When pollinating herbivores use the same plants as nectar sources and larval hosts, ecological conflicts emerge for both parties, as the pollinator's services are mitigated by herbivory and its larvae are harmed by plant defences. We tracked individual-level metrics of pollinator health-growth, survivorship, fecundity-across the life cycle of a pollinating herbivore, the common hawkmoth, Hyles lineata, interacting with a rare plant, Oenothera harringtonii, that is polymorphic for the common floral volatile (R)-(-)-linalool. Linalool had no impact on floral attraction, but its experimental addition suppressed oviposition on plants lacking linalool. Plants showed robust resistance against herbivory from leaf-disc to whole-plant scales, through poor larval growth and survivorship. Higher larval performance on other Oenothera species indicates that constitutive herbivore resistance by O. harringtonii is not a genus-wide trait. Leaf volatiles differed among populations of O. harringtonii but were not induced by larval herbivory. Similarly, elagitannins and other phenolics varied among plant tissues but were not herbivore-induced. Our findings highlight asymmetric plant-pollinator interactions and the importance of third parties, including alternative larval host plants, in maintaining pollinator health. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Maria Sol Balbuena
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, C1428EHA, Argentina
| | - Geoffrey T Broadhead
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Ajinkya Dahake
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Emily Barnett
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Melissa Vergara
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Tania Jogesh
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.,Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Robert A Raguso
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Hopkins R. Predicting how pollinator behavior causes reproductive isolation. Ecol Evol 2022; 12:e8847. [PMID: 35462980 PMCID: PMC9019001 DOI: 10.1002/ece3.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022] Open
Abstract
Pollinator behavior is an important contributor to plants speciation, yet how variation in pollinator behavior causes variation in reproductive isolation (RI) is largely uncharacterized. Here I present a model that predicts how two aspects of pollinator behavior, constancy and preference, contribute to a barrier to reproduction in plants. This model is motivated by two observations: most co‐occurring plants vary in frequency over space and time, and most plants have multiple pollinators that differ in behavior. Thus, my goal was to understand how relative frequencies of plants and pollinators in a community influence ethological RI between co‐occurring plants. I find that RI for a focal plant generally increases with increasing relative plant frequency, but the shape of this relationship is highly dependent on the strength of pollinator behavior (constancy and preference). Additionally, when multiple pollinators express different behavior, I find that pollinators with stronger preference disproportionately influence RI. But, I show that RI caused by constancy is the average RI predicted from constancy of each pollinator weighted by pollinator frequency. I apply this model to examples of pollinator‐mediated RI in Phlox and in Ipomopsis to predict the relationships between plant frequency and ethological RI in natural systems. This model provides new insights into how and why pollinator specialization causes RI, and how RI could change with changing biological communities.
Collapse
Affiliation(s)
- Robin Hopkins
- The Department of Organismic and Evolutionary Biology and The Arnold ArboretumHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
17
|
Cabin Z, Derieg NJ, Garton A, Ngo T, Quezada A, Gasseholm C, Simon M, Hodges SA. Non-pollinator selection for a floral homeotic mutant conferring loss of nectar reward in Aquilegia coerulea. Curr Biol 2022; 32:1332-1341.e5. [PMID: 35176226 DOI: 10.1016/j.cub.2022.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Here, we describe a polymorphic population of Aquilegia coerulea with a naturally occurring floral homeotic mutant, A. coerulea var. daileyae, where the characteristic petals with nectar spurs are replaced with a second set of sepals. Although it would be expected that this loss of pollinator reward would be disadvantageous to the mutant, we find that it has reached relatively high frequency (∼25%) and is under strong, positive selection across multiple seasons (s = 0.17-0.3) primarily due to reduced floral herbivory. We identify the underlying locus (APETALA3-3) and multiple causal loss-of-function mutations indicating an ongoing soft sweep. Elevated linkage disequilibrium around the two most common causal alleles indicates that positive selection has been occurring for many generations. Lastly, genotypic frequencies at AqAP3-3 indicate a degree of positive assortative mating by morphology. Together, these data provide both a compelling example that large-scale discontinuous morphological changes differentiating taxa can occur due to single mutations and a particularly clear example of linking genotype, phenotype, and fitness.
Collapse
Affiliation(s)
- Zachary Cabin
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Nathan J Derieg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alexandra Garton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Timothy Ngo
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ashley Quezada
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Constantine Gasseholm
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark Simon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Scott A Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
18
|
Toji T, Hirota SK, Ishimoto N, Suyama Y, Itino T. Intraspecific independent evolution of floral spur length in response to local flower visitor size in Japanese Aquilegia in different mountain regions. Ecol Evol 2022; 12:e8668. [PMID: 35261751 PMCID: PMC8888250 DOI: 10.1002/ece3.8668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic differences in floral traits may reflect geographic differences in effective pollinator assemblages. Independent local adaptation to pollinator assemblages in multiple regions would be expected to cause parallel floral trait evolution, although sufficient evidence for this is still lacking. Knowing the intraspecific evolutionary history of floral traits will reveal events that occur in the early stages of trait diversification. In this study, we investigated the relationship between flower spur length and pollinator size in 16 populations of Aquilegia buergeriana var. buergeriana distributed in four mountain regions in the Japanese Alps. We also examined the genetic relationship between yellow- and red-flowered individuals, to see if color differences caused genetic differentiation by pollinator isolation. Genetic relationships among 16 populations were analyzed based on genome-wide single-nucleotide polymorphisms. Even among populations within the same mountain region, pollinator size varied widely, and the average spur length of A. buergeriana var. buergeriana in each population was strongly related to the average visitor size of that population. Genetic relatedness between populations was not related to the similarity of spur length between populations; rather, it was related to the geographic proximity of populations in each mountain region. Our results indicate that spur length in each population evolved independently of the population genetic structure but in parallel in response to local flower visitor size in different mountain regions. Further, yellow- and red-flowered individuals of A. buergeriana var. buergeriana were not genetically differentiated. Unlike other Aquilegia species in Europe and America visited by hummingbirds and hawkmoths, the Japanese Aquilegia species is consistently visited by bumblebees. As a result, genetic isolation by flower color may not have occurred.
Collapse
Affiliation(s)
- Tsubasa Toji
- Graduate School of Medicine, Science and TechnologyShinshu UniversityMatsumotoJapan
| | - Shun K. Hirota
- Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | | | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | - Takao Itino
- Faculty of ScienceShinshu UniversityMatsumotoJapan
- Department of Biology and Institute of Mountain ScienceShinshu UniversityMatsumotoJapan
| |
Collapse
|
19
|
Zheng W, Yan LJ, Burgess KS, Luo YH, Zou JY, Qin HT, Wang JH, Gao LM. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC PLANT BIOLOGY 2021; 21:529. [PMID: 34763662 PMCID: PMC8582147 DOI: 10.1186/s12870-021-03312-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li-Jun Yan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
- College of Vocational and Technical Education, Yunnan Normal University, 650092, Kunming, Yunnan, China
| | - Kevin S Burgess
- Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Ji-Hua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, 674100, Lijiang, Yunnan, China.
| |
Collapse
|
20
|
Yu YM, Li XX, Xie D, Wang H. Horizontal orientation of zygomorphic flowers: significance for rain protection and pollen transfer. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:156-161. [PMID: 33073503 DOI: 10.1111/plb.13197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Floral traits are recognized to have evolved under selection for abiotic and biotic factors. Complex zygomorphic flowers usually face horizontally. It has been proved that a horizontal orientation facilitates pollinator recognition and pollination efficiency, but its significance in adaptation to abiotic factors remains unknown. The floral orientation of Abelia × grandiflora naturally varies around horizontal (with an angle of -30 to +33° between the floral main axis and the horizontal). We examined whether three different floral orientations affected flower thermal conditions, response to rain and pollination. Results showed that floral orientation had no effect on diurnal variations in flower temperature. The anthers of all three flower orientations were wetted by rainfall, but the inclined upward-facing flowers contained significantly more rainwater. The horizontal flowers received significantly higher visitation by hawkmoths and had a higher stigmatic pollen load. In contrast, the upward flower orientation reduced pollination precision, while downward-facing flowers had decreased pollinator attraction. This study indicates that horizontal flowers may have evolved as a trade-off between rain protection and pollination. Zygomorphic flowers that deviate from a horizontal orientation may have lower fitness because of flower flooding by rainwater and decreased pollen transfer.
Collapse
Affiliation(s)
- Y-M Yu
- College of Horticulture & Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - X-X Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - D Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - H Wang
- College of Horticulture & Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Johnson SD, Kiepiel I, Robertson AW. Functional consequences of flower curvature, orientation and perch position for nectar feeding by sunbirds. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Mutualisms between nectarivorous birds and the plants they pollinate are functionally diverse. Nectarivorous birds which hover while feeding (the majority of hummingbirds) tend to have straight bills, while those that perch while feeding (some hummingbirds and almost all passerine nectarivores) tend to have decurved bills. Sunbirds typically use their curved bills to feed in an arc from a perching position and we thus predicted that they would prefer, and feed most efficiently on, flowers that are curved towards a perching position. To test this, we examined the responses of sunbirds to model flowers differing in curvature (straight or curved), orientation (facing upwards or downwards), and availability of a top perch (present or absent). Birds did not show preferences among model flower types in terms of number of landings to feed or number of probes. In general they preferred to use perches above model flowers, particularly those that curved upwards, but they tended to perch below model flowers that curve downwards and in such cases also took the least time to insert their bills. These results are consistent with the idea that perching birds with curved beaks will feed most efficiently from flowers that are curved towards the perching position. We discuss the implications of these results for the evolution of floral architecture, including provision of perches.
Collapse
Affiliation(s)
- Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Ian Kiepiel
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Alastair W Robertson
- Wildlife & Ecology, School of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Ballerini ES, Min Y, Edwards MB, Kramer EM, Hodges SA. POPOVICH, encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in Aquilegia. Proc Natl Acad Sci U S A 2020; 117:22552-22560. [PMID: 32848061 PMCID: PMC7486772 DOI: 10.1073/pnas.2006912117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genus Aquilegia (Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development, POPOVICH (POP), which encodes a C2H2 zinc-finger transcription factor. POP plays a central role in regulating cell proliferation in the Aquilegia petal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification of POP opens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of the Aquilegia nectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.
Collapse
Affiliation(s)
- Evangeline S Ballerini
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| | - Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Scott A Hodges
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
23
|
Armbruster WS, Muchhala N. Floral reorientation: the restoration of pollination accuracy after accidents. THE NEW PHYTOLOGIST 2020; 227:232-243. [PMID: 32252125 DOI: 10.1111/nph.16482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/11/2020] [Indexed: 05/28/2023]
Abstract
Plants sometimes suffer mechanical injury. The nonlethal collapse of a flowering stalk, for example, can greatly reduce plant fitness if it leads to 'incorrect' floral orientation and thus reduced visitation or poor pollination. When floral orientation is important for accurate pollination, as has been suggested for bilaterally symmetrical flowers, we predict that such flowers should have developmental and/or behavioural mechanisms for restoring 'correct' orientation after accidents. We made observations and conducted experiments on 23 native and cultivated flowering plant species in Australia, South America, North America and Europe. We found that flowers with bilateral symmetry usually have the capacity to reorient after accidents, and that this is manifested through rapid bending and/or rotation of pedicels or sexual organs or slower peduncle bending. Floral reorientation restores pollination accuracy and fit with pollinators. However, experimental floral misorientation in eight species with radially symmetrical flowers showed that, with one exception, they had little capacity to reorient their flowers, in line with expectations that the orientation of radially symmetrical flowers does not substantially affect pollination accuracy. Our results suggest that quick corrective reorientation of bilaterally symmetrical flowers is adaptive, highlighting a little-studied aspect of plant-pollinator interactions and plant evolution.
Collapse
Affiliation(s)
- W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121-4499, USA
| |
Collapse
|
24
|
Chapurlat E, Le Roncé I, Ågren J, Sletvold N. Divergent selection on flowering phenology but not on floral morphology between two closely related orchids. Ecol Evol 2020; 10:5737-5747. [PMID: 32607187 PMCID: PMC7319237 DOI: 10.1002/ece3.6312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant-pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early-flowering G. conopsea s.s. and for later flowering in one population of the late-flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.
Collapse
Affiliation(s)
- Elodie Chapurlat
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Iris Le Roncé
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Master BioSciencesÉcole Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Université de LyonLyonFrance
| | - Jon Ågren
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Nina Sletvold
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
25
|
Kisdi É, Weigang HC, Gyllenberg M. The Evolution of Immigration Strategies Facilitates Niche Expansion by Divergent Adaptation in a Structured Metapopulation Model. Am Nat 2019; 195:1-15. [PMID: 31868542 DOI: 10.1086/706258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Local adaptation and habitat choice are two key factors that control the distribution and diversification of species. Here we model habitat choice mechanistically as the outcome of dispersal with nonrandom immigration. We consider a structured metapopulation with a continuous distribution of patch types and determine the evolutionarily stable immigration strategy as the function linking patch type to the probability of settling in the patch on encounter. We uncover a novel mechanism whereby coexisting strains that only slightly differ in their local adaptation trait can evolve substantially different immigration strategies. In turn, different habitat use selects for divergent adaptations in the two strains. We propose that the joint evolution of immigration and local adaptation can facilitate diversification and discuss our results in the light of niche conservatism versus niche expansion.
Collapse
|
26
|
Minnaar C, de Jager ML, Anderson B. Intraspecific divergence in floral-tube length promotes asymmetric pollen movement and reproductive isolation. THE NEW PHYTOLOGIST 2019; 224:1160-1170. [PMID: 31148172 DOI: 10.1111/nph.15971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The causative link between phenotypic divergence and reproductive isolation is an important but poorly understood part of ecological speciation. We studied the effects of floral-tube length variation on pollen placement/receipt positions and reproductive isolation. In a population of Lapeirousia anceps (Iridaceae) with bimodal floral-tube lengths, we labelled pollen of short- and long-tubed flowers with different colour fluorescent nanoparticles (quantum dots). This enabled us to map pollen placement by long- and short-tubed flowers on the only floral visitor, a long-proboscid fly. Furthermore, it allowed us to quantify pollen movement within and between short- and long-tubed flowers. Short- and long-tubed flowers placed pollen on different parts of the pollinator, and long-tubed flowers placed more pollen per visit than short-tubed flowers. This resulted in assortative pollen receipt (most pollen received comes from the same phenotype) and strong but asymmetric reproductive isolation, where short-tubed plants are more reproductively isolated than long-tubed plants. These results suggest that floral-tube length divergence can promote mechanical isolation in plants through divergence in pollen placement sites on pollinators. Consequently, in concert with other reproductive isolation mechanisms, selection for differences in floral-tube length can play an important role in ecological speciation of plants.
Collapse
Affiliation(s)
- Corneile Minnaar
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Marinus L de Jager
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Bruce Anderson
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
27
|
Ramírez-Aguirre E, Martén-Rodríguez S, Quesada-Avila G, Quesada M, Martínez-Díaz Y, Oyama K, Espinosa-García FJ. Reproductive isolation among three sympatric Achimenes species: pre- and post-pollination components. AMERICAN JOURNAL OF BOTANY 2019; 106:1021-1031. [PMID: 31299090 DOI: 10.1002/ajb2.1324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Closely related species occurring in sympatry may experience the negative consequences of interspecific pollen transfer if reproductive isolation (RI) barriers are not in place. We evaluated the importance of pre- and post-pollination RI barriers in three sympatric species of Achimenes (Gesneriaceae), including ecogeographic, phenological, floral isolation, self-pollination, and hybrid viability (fruit and seed set). METHODS We recorded geographic distribution throughout species ranges and assessed flowering phenology and pollinator visitation at one site in central Mexico. In the greenhouse, we measured floral traits involved in RI and quantified fruit and seed set for from self, intraspecific, and interspecific crosses. RESULTS Ecogeographic barriers were important in RI, but under sympatry, phenological and floral barriers contributed more to total RI. Phenological RI varied between species and years, while floral RI was 100% effective at preventing interspecific visitation. Species showed differences in floral morphology, color, and scents associated with specialized pollination systems (A. antirrhina-hummingbirds, A. flava-bees, A. patens-butterflies); heterospecific visitation events were restricted to rare secondary pollinators. Hybrid crosses consistently yielded progeny in lower numbers than intraspecific crosses. CONCLUSIONS This study indicated that neither autogamy nor early post-pollination barriers prevent interspecific pollen flow between Achimenes species. However, floral isolation, acting through a combination of attraction and reward traits, consistently ensures specificity of the pollination system. These results suggest that selection on floral traits to reduce the costs of hybrid progeny production may have played a role in evolution or maintenance of specialized pollination systems in Achimenes.
Collapse
Affiliation(s)
- Erandi Ramírez-Aguirre
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58190, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Unidad de Posgrado, Coordinación del Posgrado en Ciencias Biológicas. Edificio D, 1º Piso. Circuito de Posgrados, Ciudad Universitaria Del., Coyoacán, C. P. 04510, México D.F
| | - Silvana Martén-Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58190, México
| | - Gabriela Quesada-Avila
- Universidad Nacional de Costa Rica, Heredia, Costa Rica. Avenida 1, Calle 9. Apartado Postal, 86-3000
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58190, México
- Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, C.P. 58190, México
| | - Yesenia Martínez-Díaz
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58190, México
| | - Ken Oyama
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58190, México
| | - Francisco J Espinosa-García
- Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, C.P. 58190, México
| |
Collapse
|
28
|
Li MR, Wang HY, Ding N, Lu T, Huang YC, Xiao HX, Liu B, Li LF. Rapid Divergence Followed by Adaptation to Contrasting Ecological Niches of Two Closely Related Columbine Species Aquilegia japonica and A. oxysepala. Genome Biol Evol 2019; 11:919-930. [PMID: 30793209 PMCID: PMC6433176 DOI: 10.1093/gbe/evz038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Elucidating the mechanisms underlying the genetic divergence between closely related species is crucial to understanding the origin and evolution of biodiversity. The genus Aquilegia L. has undergone rapid adaptive radiation, generating about 70 well-recognized species that are specialized to distinct habitats and pollinators. In this study, to address the underlying evolutionary mechanisms that drive the genetic divergence, we analyzed the whole genomes of two ecologically isolated Aquilegia species, A. oxysepala and A. japonica as well as their putative hybrid. Our comparative genomic analyses reveal that while the two species diverged only recently and experienced recurrent gene flow, a high level of genetic divergence is observed in their nuclear genomes. In particular, candidate genomic regions that show signature of selection differ dramatically between the two species. Given that the splitting time of the two species is broadly matched with the decrease in effective population sizes, we propose that allopatric isolation together with natural selection have preceded the interspecific gene flow in the process of speciation. The observed high genetic divergence is likely an outcome of combined effects of natural selection, genetic drift and divergent sorting of ancestral polymorphisms. Our study provides a genome-wide view of how genetic divergence has evolved between closely related species.
Collapse
Affiliation(s)
- Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua-Ying Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tianyuan Lu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada
| | - Ye-Chao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong-Xing Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Temeles EJ, Liang J, Levy MC, Fan YL. Floral isolation and pollination in two hummingbird-pollinated plants: the roles of exploitation barriers and pollinator competition. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09992-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Fernández-Mazuecos M, Blanco-Pastor JL, Juan A, Carnicero P, Forrest A, Alarcón M, Vargas P, Glover BJ. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. THE NEW PHYTOLOGIST 2019; 222:1123-1138. [PMID: 30570752 DOI: 10.1111/nph.15654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2018] [Indexed: 05/27/2023]
Abstract
Floral nectar spurs are widely considered a key innovation promoting diversification in angiosperms by means of pollinator shifts. We investigated the macroevolutionary dynamics of nectar spurs in the tribe Antirrhineae (Plantaginaceae), which contains 29 genera and 300-400 species (70-80% spurred). The effect of nectar spurs on diversification was tested, with special focus on Linaria, the genus with the highest number of species. We generated the most comprehensive phylogeny of Antirrhineae to date and reconstructed the evolution of nectar spurs. Diversification rate heterogeneity was investigated using trait-dependent and trait-independent methods, and accounting for taxonomic uncertainty. The association between changes in spur length and speciation was examined within Linaria using model testing and ancestral state reconstructions. We inferred four independent acquisitions of nectar spurs. Diversification analyses revealed that nectar spurs are loosely associated with increased diversification rates. Detected rate shifts were delayed by 5-15 Myr with respect to the acquisition of the trait. Active evolution of spur length, fitting a speciational model, was inferred in Linaria, which is consistent with a scenario of pollinator shifts driving diversification. Nectar spurs played a role in diversification of the Antirrhineae, but diversification dynamics can only be fully explained by the complex interaction of multiple biotic and abiotic factors.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - José Luis Blanco-Pastor
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), 86600, Lusignan, France
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales (dCARN) & Instituto de la Biodiversidad (CIBIO), Universidad de Alicante, PO Box 99, 03080, Alicante, Spain
| | - Pau Carnicero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Marisa Alarcón
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
31
|
Yan LJ, Burgess KS, Zheng W, Tao ZB, Li DZ, Gao LM. Incomplete reproductive isolation between Rhododendron taxa enables hybrid formation and persistence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:433-448. [PMID: 30192058 DOI: 10.1111/jipb.12718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre- and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species, R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation. All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators; reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.
Collapse
Affiliation(s)
- Li-Jun Yan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Kevin S Burgess
- Department of Biology, College of Letters & Sciences, Columbus State University, University System of Georgia, 31907-5645 Columbus, GA, USA
| | - Wei Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Bin Tao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
32
|
Stöckl AL, Kelber A. Fuelling on the wing: sensory ecology of hawkmoth foraging. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:399-413. [PMID: 30880349 PMCID: PMC6579779 DOI: 10.1007/s00359-019-01328-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
Abstract
Hawkmoths (Lepidoptera, Sphingidae) comprise around 1500 species, most of which forage on nectar from flowers in their adult stage, usually while hovering in front of the flower. The majority of species have a nocturnal lifestyle and are important nocturnal pollinators, but some species have turned to a diurnal lifestyle. Hawkmoths use visual and olfactory cues including CO2 and humidity to detect and recognise rewarding flowers; they find the nectary in the flowers by means of mechanoreceptors on the proboscis and vision, evaluate it with gustatory receptors on the proboscis, and control their hovering flight position using antennal mechanoreception and vision. Here, we review what is presently known about the sensory organs and sensory-guided behaviour that control feeding behaviour of this fascinating pollinator taxon. We also suggest that more experiments on hawkmoth behaviour in natural settings are needed to fully appreciate their sensory capabilities.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
33
|
Groh JS, Percy DM, Björk CR, Cronk QCB. On the origin of orphan hybrids between Aquilegia formosa and Aquilegia flavescens. AOB PLANTS 2019; 11:ply071. [PMID: 30687492 PMCID: PMC6341775 DOI: 10.1093/aobpla/ply071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/14/2018] [Indexed: 06/01/2023]
Abstract
We report the investigation of an Aquilegia flavescens × A. formosa population in British Columbia that is disjunct from its parents-the latter species is present locally but ecologically separated, while the former is entirely absent. To confirm hybridity, we used multivariate analysis of floral characters of field-sampled populations to ordinate phenotypes of putative hybrids in relation to those of the parental species. Microsatellite genotypes at 11 loci from 72 parental-type and putative hybrid individuals were analysed to assess evidence for admixture. Maternally inherited plastid sequences were analysed to infer the direction of hybridization and test hypotheses on the origin of the orphan hybrid population. Plants from the orphan hybrid population are on average intermediate between typical A. formosa and A. flavescens for most phenotypes examined and show evidence of genetic admixture. This population lies beyond the range of A. flavescens, but within the range of A. formosa. No pure A. flavescens individuals were observed in the vicinity, nor is this species known to occur within 200 km of the site. The hybrids share a plastid haplotype with local A. formosa populations. Alternative explanations for this pattern are evaluated. While we cannot rule out long-distance pollen dispersal followed by proliferation of hybrid genotypes, we consider the spread of an A. formosa plastid during genetic swamping of a historical A. flavescens population to be more parsimonious.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis R Björk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Kay KM, Zepeda AM, Raguso RA. Experimental sympatry reveals geographic variation in floral isolation by hawkmoths. ANNALS OF BOTANY 2019; 123:405-413. [PMID: 30032166 PMCID: PMC6344223 DOI: 10.1093/aob/mcy143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Under a widely accepted model of pollinator-driven speciation, geographic variation in pollinator assemblage drives floral divergence and automatically causes reproductive isolation. Yet it is unclear whether divergent floral adaptation initially confers strong reproductive isolation, or whether that comes at later stages of speciation and requires other forms of reproductive isolation. This study uses a pair of recently diverged, interfertile and parapatric species in the genus Clarkia to determine whether adaptation to hawkmoths, a novel pollinator functional group, would automatically confer floral isolation upon sympatric contact. METHODS First, genetically based differences in floral traits between C. breweri and C. concinna that would be maintained upon migration are quantified. Then scenarios of experimental sympatry are constructed in which arrays of flowers are exposed to the novel pollinator, the hawkmoth Hyles lineata, and pollinator preference and heterospecific pollen transfer are assessed. Source populations from across the ranges of each species are used to understand how geographic variation in floral traits within species may affect floral isolation. KEY RESULTS Although H. lineata has never been observed visiting C. concinna in the wild, it regularly moves between species in experimental floral arrays. Hawkmoth preference and heterospecific pollen transfer vary both among moths and among geographic source locations of C. concinna. The strength of floral isolation in this system is related to variation in flower size, especially hypanthium tube width, and nectar reward among C. concinna forms. CONCLUSIONS Although C. breweri has adopted a novel hawkmoth pollination system, both ethological and mechanical floral isolation by hawkmoths are incomplete and vary according to the specific phenotype of the C. concinna source population. The results suggest that strong floral isolation is not automatically conferred by a pollinator shift and may require additional evolution of deterrent floral traits and habitat isolation that reduces the immediate spatial co-occurrence of young species.
Collapse
Affiliation(s)
- Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Aubrey M Zepeda
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Haverkamp A, Li X, Hansson BS, Baldwin IT, Knaden M, Yon F. Flower movement balances pollinator needs and pollen protection. Ecology 2019; 100:e02553. [PMID: 30411786 PMCID: PMC7378942 DOI: 10.1002/ecy.2553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/29/2018] [Accepted: 10/12/2018] [Indexed: 12/03/2022]
Abstract
Flower signaling and orientation are key characteristics that determine a flower's pollinator guild. However, many flowers actively move during their daily cycle, changing both their detectability and accessibility to pollinators. The flowers of the wild tobacco Nicotiana attenuata orientate their corolla upward at sunset and downward after sunrise. Here, we investigated the effect of different flower orientations on a major pollinator of N. attenuata, the hawkmoth Manduca sexta. We found that although flower orientation influenced the flight altitude of the moth in respect to the flower, it did not alter the moth's final flower choice. These behavioral observations were consistent with the finding that orientation did not systematically change the spatial distribution of floral volatiles, which are major attractants for the moths. Moreover, hawkmoths invested the same amount of time into probing flowers at different orientations, even though they were only able to feed and gather pollen from horizontally and upward-oriented flowers, but not from downward-facing flowers. The orientation of the flower was hence crucial for a successful interaction between N. attenuata and its hawkmoth pollinator. Additionally, we also investigated potential adverse effects of exposing flowers at different orientations to natural daylight levels, finding that anther temperature of upward-oriented flowers was more than 7°C higher than for downward-oriented flowers. This increase in temperature likely caused the significantly reduced germination success that was observed for pollen grains from upward-oriented flowers in comparison to those of downward and horizontally oriented flowers. These results highlight the importance of flower reorientation to balance pollen protection and a successful interaction of the plant with its insect pollinators by maintaining the association between flower volatiles and flower accessibility to the pollinator.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Xiang Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Aura Optik GmbHJenaGermany
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Ian T. Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Markus Knaden
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Felipe Yon
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
CIEUniversidad Peruana Cayetano HerediaLimaPeru
| |
Collapse
|
36
|
Cuevas E, Espino J, Marques I. Reproductive isolation between Salvia elegans and S. fulgens, two hummingbird-pollinated sympatric sages. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1075-1082. [PMID: 30004608 DOI: 10.1111/plb.12874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The integrity of species in sympatric contact sites is dependent on the existence of reproductive isolating mechanisms, which restrict gene flow between them. However, we know little about the mechanisms that enable the coexistence of species with similar floral morphologies. Here, we evaluated several reproductive isolation barriers between Salvia elegans and S. fulgens, two sympatric sages with a similar ornithophilous floral syndrome, offering nectar as the main reward. Over 3 years, we evaluated broad-scale geographic isolation, floral phenologies and floral visitors as pre-pollination barriers, and fruit set, seed number and seed germination as post-pollination barriers. We found considerable geographic isolation and significant altitudinal differences between the two sages. The flowering period of both sages always overlapped extensively during the 3 years of this study, but hummingbirds were highly specific, visiting one or the other Salvia species and showing aggressive territorial behaviour. Interspecific experimental crosses revealed that hybrid seeds might be formed although strong asymmetric barriers were found depending on the species acting as the maternal donor. Despite the low level of flowering asynchrony, reproductive isolation was remarkably high in the two sages. Geographic isolation and pollinator fidelity were the main factors responsible for maintaining species integrity. Despite an extensive review, we found very few studies quantifying the efficiency of isolation barriers in Neotropical plants or even the importance of hummingbirds as pollinators.
Collapse
Affiliation(s)
- E Cuevas
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - J Espino
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - I Marques
- UBC Botanical Garden & Centre for Plant Research and Department of Botany, University of British Columbia, Vancouver, BC, Canada
- CE3C - Centre for Ecology, Evolution and Environmental Changes, Campo Grande, Portugal
| |
Collapse
|
37
|
Zemenick AT, Rosenheim JA, Vannette RL. Legitimate visitors and nectar robbers of
Aquilegia formosa
have different effects on nectar bacterial communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ash T. Zemenick
- Department of Entomology and Nematology University of California—Davis One Shields Avenue Davis California 95616 USA
| | - Jay A. Rosenheim
- Department of Entomology and Nematology University of California—Davis One Shields Avenue Davis California 95616 USA
| | - Rachel L. Vannette
- Department of Entomology and Nematology University of California—Davis One Shields Avenue Davis California 95616 USA
| |
Collapse
|
38
|
Misaki A, Itagaki T, Matsubara Y, Sakai S. Intraflower variation in nectar secretion: Secretion patterns and pollinator behavior in male- and female-phase flowers. AMERICAN JOURNAL OF BOTANY 2018; 105:842-850. [PMID: 29893413 DOI: 10.1002/ajb2.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plants that secrete abundant nectar attract many pollinator visits, potentially leading to a high frequency of geitonogamous pollination. However, intraflower variation in nectar volume might enhance early departure from the flower or inflorescence, reducing geitonogamy. To examine the adaptive significance of multiple nectar-producing spurs within flowers, we related intraflower variation in nectar characteristics to pollinator foraging behavior and plant reproductive success in protandrous Aquilegia buergeriana var. oxysepala. METHODS We investigated if nectar volume and sugar mass relate to spur length and if intraflower variation in nectar characteristics differ between male- and female-phase flowers. Because male function requires more pollinator visits than female function, male-phase flowers are expected to have greater nectar volume and lower intraflower variation in nectar volume than female-phase flowers. We used intraflower variation in spur length as an indicator of variation in nectar characteristics and investigated how spur length variation affects pollinator behavior, pollen removal, and seed production. KEY RESULTS Male-phase flowers had greater nectar volume and lower intraflower variation in nectar volume than female-phase flowers. Intraflower variation in spur length reduced the duration of bumblebee visits. Short visits reduced seed production, but increased pollen removal. CONCLUSIONS Our results suggest that high intraflower variation in nectar production rate can reduce geitonogamy and potentially increase the genetic diversity of pollen received. Such pattern of nectar secretion within and among flowers may allow flowers to ensure effective pollen transfer or high seed production.
Collapse
Affiliation(s)
- Ando Misaki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Tomoyuki Itagaki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yutaka Matsubara
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Satoki Sakai
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
39
|
Weber MG, Cacho NI, Phan MJQ, Disbrow C, Ramírez SR, Strauss SY. The evolution of floral signals in relation to range overlap in a clade of California Jewelflowers (Streptanthus s.l.). Evolution 2018; 72:798-807. [PMID: 29464694 DOI: 10.1111/evo.13456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023]
Abstract
Because of their function as reproductive signals in plants, floral traits experience distinct selective pressures related to their role in speciation, reinforcement, and prolonged coexistence with close relatives. However, few studies have investigated whether population-level processes translate into detectable signatures at the macroevolutionary scale. Here, we ask whether patterns of floral trait evolution and range overlap across a clade of California Jewelflowers reflect processes hypothesized to shape floral signal differentiation at the population level. We found a pattern of divergence in floral scent composition across the clade such that close relatives had highly disparate floral scents given their age. Accounting for range overlap with close relatives explained additional variation in floral scent over time, with sympatric species pairs having diverged more than allopatric species pairs given their age. However, three other floral traits (flower size, scent complexity and flower color) did not fit these patterns, failing to deviate from a null Brownian motion model of evolution. Together, our results suggest that selection for divergence among close relatives in the composition of floral scents may play a key, sustained role in mediating speciation and coexistence dynamics across this group, and that signatures of these dynamics may persist at the macroevolutionary scale.
Collapse
Affiliation(s)
- Marjorie G Weber
- Center for Population Biology, University of California, Davis, California 95616.,Current Address: Department of Plant Biology and Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, Michigan 48823
| | - N Ivalú Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México, CDMX 04510, México.,Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Martin J Q Phan
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Caprice Disbrow
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Santiago R Ramírez
- Center for Population Biology, University of California, Davis, California 95616.,Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Sharon Y Strauss
- Center for Population Biology, University of California, Davis, California 95616.,Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
40
|
Campitelli BE, Kenney AM, Hopkins R, Soule J, Lovell JT, Juenger TE. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata). Mol Biol Evol 2017; 35:807-822. [DOI: 10.1093/molbev/msx318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandon E Campitelli
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Amanda M Kenney
- Biotechnology Risk Analysis Programs, USDA-APHIS-BRS, Riverdale, MD
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Robin Hopkins
- Department of Organismic and Evolution Biology, Harvard University, Boston, MA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Jacob Soule
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - John T Lovell
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
41
|
Funamoto D, Ohashi K. Hidden floral adaptation to nocturnal moths in an apparently bee-pollinated flower, Adenophora triphylla var. japonica (Campanulaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:767-774. [PMID: 28493285 DOI: 10.1111/plb.12579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
The discrepancy between observed flower visitors and those predicted based on floral phenotype has often cast doubt on the pollination syndrome concept. Here we show that this paradox may be alleviated by gaining better knowledge of the contributions of different flower visitors to pollination and the effects of floral traits that cannot be readily perceived by humans in Adenophora triphylla var. japonica. The blue, bell-shaped and pendant flowers of A. triphylla appear to fit a bee pollination syndrome. In contrast to this expectation, recent studies show that these flowers are frequented by nocturnal moths. We compared the flower visitor fauna, their visitation frequency and their relative contributions to seed set between day and night in two field populations of A. triphylla in Japan. We also determined the floral traits associated with temporal changes in the visitor assemblage, i.e. the timing of anthesis, the timing of changes in the sexual phase and the diel pattern of nectar production. While A. triphylla flowers were visited by both diurnal and nocturnal insects, the results from pollination experiments demonstrate that their primary pollinators are nocturnal settling-moths. Moreover, the flowers opened just after sunset, changed from staminate to pistillate phase in successive evenings and produced nectar only during the night, which all conform to the activity of nocturnal/crepuscular moths. Our study illustrates that the tradition of stereotyping the pollinators of a flower based on its appearance can be misleading and that it should be improved with empirical evidence of pollination performance and sufficient trait matching.
Collapse
Affiliation(s)
- D Funamoto
- College of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - K Ohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Lagomarsino LP, Forrestel EJ, Muchhala N, Davis CC. Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade. Evolution 2017. [DOI: 10.1111/evo.13297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laura P. Lagomarsino
- Department of Organismic and Evolutionary Biology Harvard University Herbaria 22 Divinity Avenue Cambridge Massachusetts 02138
- Current Address: Department of Biology University of Missouri–St. Louis, and Missouri Botanical Garden 4500 Shaw Boulevard St. Louis Missouri 63110
| | | | - Nathan Muchhala
- Department of Biology, University of Missouri–St. Louis, Research Building One University Boulevard St. Louis Missouri 63121
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology Harvard University Herbaria 22 Divinity Avenue Cambridge Massachusetts 02138
| |
Collapse
|
43
|
Zhuang Y, Tripp EA. The draft genome of Ruellia speciosa (Beautiful Wild Petunia: Acanthaceae). DNA Res 2017; 24:179-192. [PMID: 28431014 PMCID: PMC5397612 DOI: 10.1093/dnares/dsw054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Ruellia (Wild Petunias; Acanthaceae) is characterized by an enormous diversity of floral shapes and colours manifested among closely related species. Using Illumina platform, we reconstructed the draft genome of Ruellia speciosa, with a scaffold size of 1,021 Mb (or ∼1.02 Gb) and an N50 size of 17,908 bp, spanning ∼93% of the estimated genome (∼1.1 Gb). The draft assembly predicted 40,124 gene models and phylogenetic analyses of four key enzymes involved in anthocyanin colour production [flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), and dihydroflavonol 4-reductase (DFR)] found that most angiosperms here sampled harboured at least one copy of F3H, F3'H, and DFR. In contrast, fewer than one-half (but including R. speciosa) harboured a copy of F3'5'H, supporting observations that blue flowers and/or fruits, which this enzyme is required for, are less common among flowering plants. Ka/Ks analyses of duplicated copies of F3'H and DFR in R. speciosa suggested purifying selection in the former but detected evidence of positive selection in the latter. The genome sequence and annotation of R. speciosa represents only one of only four families sequenced in the large and important Asterid clade of flowering plants and, as such, will facilitate extensive future research on this diverse group, particularly with respect to floral evolution.
Collapse
Affiliation(s)
- Yongbin Zhuang
- Department of Ecology and Evolutionary Biology, University of Colorado, UCB 334, Boulder, CO 80309, USA
- Museum of Natural History, University of Colorado, UCB 350, Boulder, CO 80309, USA
| | - Erin A. Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, UCB 334, Boulder, CO 80309, USA
- Museum of Natural History, University of Colorado, UCB 350, Boulder, CO 80309, USA
| |
Collapse
|
44
|
Fernández-Mazuecos M, Glover BJ. The evo-devo of plant speciation. Nat Ecol Evol 2017; 1:110. [DOI: 10.1038/s41559-017-0110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
|
45
|
Yon F, Kessler D, Joo Y, Cortés Llorca L, Kim SG, Baldwin IT. Fitness consequences of altering floral circadian oscillations for Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:180-189. [PMID: 27957809 DOI: 10.1111/jipb.12511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Ecological interactions between flowers and pollinators are all about timing. Flower opening/closing and scent emissions are largely synchronized with pollinator activity, and a circadian clock regulates these rhythms. However, whether the circadian clock increases a plant's reproductive success by regulating these floral rhythms remains untested. Flowers of Nicotiana attenuata, a wild tobacco, diurnally and rhythmically open, emit scent and move vertically through a 140° arc to interact with nocturnal hawkmoths. We tethered flowers to evaluate the importance of flower positions for Manduca sexta-mediated pollinations; flower position dramatically influenced pollination. We examined the pollination success of phase-shifted flowers, silenced in circadian clock genes, NaZTL, NaLHY, and NaTOC1, by RNAi. Circadian rhythms in N. attenuata flowers are responsible for altered seed set from outcrossed pollen.
Collapse
Affiliation(s)
- Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, 34047 Daejeon, South Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
46
|
McCarthy EW, Berardi AE, Smith SD, Litt A. Related allopolyploids display distinct floral pigment profiles and transgressive pigments. AMERICAN JOURNAL OF BOTANY 2017; 104:92-101. [PMID: 28057690 DOI: 10.3732/ajb.1600350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/11/2016] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY Both polyploidy and shifts in floral color have marked angiosperm evolution. Here, we investigate the biochemical basis of the novel and diverse floral phenotypes seen in allopolyploids in Nicotiana (Solanaceae) and examine the extent to which the merging of distinct genomes alters flavonoid pigment production. METHODS We analyzed flavonol and anthocyanin pigments from Nicotiana allopolyploids of different ages (N. tabacum, 0.2 million years old; several species from Nicotiana section Repandae, 4.5 million years old; and five lines of first-generation synthetic N. tabacum) as well as their diploid progenitors. KEY RESULTS Allopolyploid floral pigment profiles tend not to overlap with their progenitors or related allopolyploids, and allopolyploids produce transgressive pigments that are not present in either progenitor. Differences in floral color among N. tabacum accessions seems mainly to be due to variation in cyanidin concentration, but changes in flavonol concentrations among accessions are also present. CONCLUSIONS Competition for substrates within the flavonoid biosynthetic pathway to make either flavonols or anthocyanins may drive the differences seen among related allopolyploids. Some of the pigment differences observed in allopolyploids may be associated with making flowers more visible to nocturnal pollinators.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- Department of Botany and Plant Sciences, University of California, Riverside, 2109 Batchelor Hall, Riverside, California 92521 USA
| | - Andrea E Berardi
- University of Colorado, Boulder, C127 Ramaley Hall, Campus Box 334, Boulder, Colorado 80309 USA
| | - Stacey D Smith
- University of Colorado, Boulder, C127 Ramaley Hall, Campus Box 334, Boulder, Colorado 80309 USA
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, 2109 Batchelor Hall, Riverside, California 92521 USA
| |
Collapse
|
47
|
La Rosa RJ, Conner JK. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias). AMERICAN JOURNAL OF BOTANY 2017; 104:150-160. [PMID: 28104591 DOI: 10.3732/ajb.1600328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. METHODS Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. KEY RESULTS Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. CONCLUSIONS Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition.
Collapse
Affiliation(s)
- Raffica J La Rosa
- W. K. Kellogg Biological Station, Department of Plant Biology, and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, Michigan 49060
| | - Jeffrey K Conner
- W. K. Kellogg Biological Station, Department of Plant Biology, and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, Michigan 49060
| |
Collapse
|
48
|
Monniaux M, Hay A. Cells, walls, and endless forms. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:114-121. [PMID: 27825067 DOI: 10.1016/j.pbi.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 05/26/2023]
Abstract
A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
49
|
Svensson GP, Raguso RA, Flatz R, Smith CI. Floral scent of Joshua trees (Yucca brevifolia sensu lato): Divergence in scent profiles between species but breakdown of signal integrity in a narrow hybrid zone. AMERICAN JOURNAL OF BOTANY 2016; 103:1793-1802. [PMID: 27578627 DOI: 10.3732/ajb.1600033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/13/2016] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY The role of floral scent in facilitating reproductive isolation between closely related plants remains poorly understood. Yucca brevifolia and Yucca jaegeriana are pollinated by different moth species in allopatry, but in a narrow contact zone, pollinator-host specificity breaks down, resulting in hybridization between species. We explored the chemical basis for reproductive isolation and hybridization in these Joshua trees by characterizing the floral scent of each species in allopatry, analyzing scent profiles from trees in the contact zone, and matching these data with genotypic and phenotypic data. METHODS We analyzed floral volatiles using gas chromatography-mass spectrometry, tested for species divergence of scent profiles and classified trees in the contact zone as hybrid or either parental species. We used floral and vegetative morphological data and genotypic data to classify trees and analyzed whether certain trait combinations were more correlated than others with respect to assignment of trees and whether frequencies of classified tree types differed depending on which data set was used. KEY RESULTS The Joshua tree floral scent included oxygenated 8-carbon compounds not reported for other yuccas. The two species differed (P < 0.001) in scent profiles. In the contact zone, many hybrids were found, and phenotypic traits were generally weakly correlated, which may be explained by extensive gene flow between species or by exposure to different selection pressures. CONCLUSIONS Although the two Joshua tree species produce distinct floral scent profiles, it is insufficient to prevent attraction of associated pollinators to both hosts. Instead, floral morphology may be the key trait mediating gene flow between species.
Collapse
Affiliation(s)
- Glenn P Svensson
- Department of Biology, Lund University, Solvegatan 37, SE-22362 Lund Sweden
| | - Robert A Raguso
- Department of Neurobiology and Behavior, 215 Tower Road, Cornell University, Ithaca, New York 14853 USA
| | - Ramona Flatz
- Department of Biology, Willamette University, 900 State Street, Salem, Oregon 97301 USA
| | - Christopher I Smith
- Department of Biology, Willamette University, 900 State Street, Salem, Oregon 97301 USA
| |
Collapse
|
50
|
Royer AM, Streisfeld MA, Smith CI. Population genomics of divergence within an obligate pollination mutualism: Selection maintains differences between Joshua tree species. AMERICAN JOURNAL OF BOTANY 2016; 103:1730-1741. [PMID: 27671531 DOI: 10.3732/ajb.1600069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/19/2016] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY Speciation is a complex process that can be shaped by many factors, from geographic isolation to interspecific interactions. In Joshua trees, selection from pollinators on style length has been hypothesized to contribute to the maintenance of differentiation between two hybridizing sister species. We used population genomics approaches to measure the extent of genetic differentiation between these species, test whether selection maintains differences between them, and determine whether genetic variants associated with style length show signatures of selection. METHODS Using restriction-site-associated DNA (RAD)-sequencing, we identified 9516 single nucleotide polymorphisms (SNPs) across the Joshua tree genome. We characterized the genomic composition of trees in a narrow hybrid zone and used genomic scans to search for signatures of selection acting on these SNPs. We used a genome-wide association study to identify SNPs associated with variation in phenotypic traits, including style length, and asked whether those SNPs were overrepresented among the group under selection. KEY RESULTS The two species were highly genetically differentiated (FST = 0.25), and hybrids were relatively rare in the hybrid zone. Approximately 20% of SNPs showed evidence of selection maintaining divergence. While SNPs associated with style length were overrepresented among those under selection (P << 0.0001), the same was true for SNPs associated with highly differentiated vegetative traits. CONCLUSIONS The two species of Joshua tree are clearly genetically distinct, and selection is maintaining differences between them. We found that loci associated with differentiated traits were likely to be under selection. However, many traits other than style length appeared to be under selection. Together with the dearth of intermediate hybrids, these findings reveal that these taxa are more strongly diverged than previously suspected and that selection, likely on many targets, is maintaining separation where the two species meet and hybridize.
Collapse
Affiliation(s)
- Anne M Royer
- Department of Biology, Willamette University, Salem, Oregon 97301 USA
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403 USA
| | | |
Collapse
|