1
|
Feller AF, Burgin G, Lewis NF, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. Evolution 2024; 78:1936-1948. [PMID: 39276149 DOI: 10.1093/evolut/qpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower-the pollen and the pistil-serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate. Here, we test whether differences in style length (a part of the pistil) generate a postmating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that the heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier, we assess pollen tube growth in vivo and in vitro. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within- and between-species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such reproductive isolating mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Nia F Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Xia L, Wang H, Zhao X, Zhao Q, Yu X, Li J, Lou Q, Chen J, Cheng C. The CsPPR gene with RNA-editing function involved in leaf color asymmetry of the reciprocal hybrids derived from Cucumis sativus and C. hystrix. PLANTA 2024; 260:102. [PMID: 39302471 DOI: 10.1007/s00425-024-04513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION The leaf color asymmetry found in the reciprocal hybrids C. hystrix × C. sativus (HC) and C. sativus × C. hystrix (CH) could be influenced by the CsPPR gene (CsaV3_1G038250.1). Most angiosperm organelles are maternally inherited; thus, the reciprocal hybrids usually exhibit asymmetric phenotypes that are associated with the maternal parent. However, there are two sets of organelle genomes in the plant cytoplasm, and the mechanism of reciprocal differences are more complex and largely unknown, because the chloroplast genes are involved besides mitochondrial genes. Cucumis spp. contains the species, i.e., cucumber and melon, which chloroplasts and mitochondria are maternally inherited and paternally inherited, respectively, serving as good materials for the study of reciprocal differences. In this study, leaf color asymmetry was observed in the reciprocal hybrids (HC and CH) derived from C. sativus (2n = 14, CC) and C. hystrix (2n = 24, HH), where the leaves of HC were found to have reduced chlorophyll content, abnormal chloroplast structure and lower photosynthetic capacity. Transcriptomic analysis revealed that the chloroplast development-related genes were differentially expressed in leaf color asymmetry. Genetic analysis showed that leaf color asymmetry was caused by the maternal chloroplast genome. Comparative analysis of chloroplast genomes revealed that there was no mutation in the chloroplast genome during interspecific hybridization. Moreover, a PPR gene (CsaV3_1G038250.1) with RNA-editing function was found to be involved in the regulation of leaf color asymmetry. These findings provide new insights into the regulatory mechanisms of asymmetric phenotypes in plant reciprocal crosses.
Collapse
Affiliation(s)
- Lei Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Vaz de Sousa D, Greve M, Oberlander KC. Friends without benefits: Extensive cytotype sympatry and polyploid persistence in an African geophyte. AMERICAN JOURNAL OF BOTANY 2024; 111:e16291. [PMID: 38439133 DOI: 10.1002/ajb2.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/06/2024]
Abstract
PREMISE Polyploidy is a major factor in plant adaptation and speciation. Multiple mechanisms contribute to autopolyploid frequency within populations, but uncertainties remain regarding mechanisms that facilitate polyploid establishment and persistence. Here we aimed to document and predict cytotype distributions of Oxalis obliquifolia Steud. ex A. Rich. across Gauteng, South Africa, and test for evidence of possible mechanisms, including morphological, phenological, and reproductive traits, that may potentially facilitate polyploid persistence. METHODS Over 320 O. obliquifolia plants from 25 sites were cytotyped using flow cytometry, and DNA ploidy was confirmed using meiotic chromosome squashes. Cytotypes were mapped and correlations with abiotic variables assessed using ordinations. To assess morphological and phenological associations with cytotype, we grew multiple cytotypes in a common garden, measured phenotypic traits and compared them using linear models and discriminant analyses. Intercytotype reproductive isolation was assessed using crossing experiments, and AMOVAs based on ITS DNA sequences tested for cytogeographic structure. RESULTS Six cytotypes were identified, and most sites had multiple cytotypes. Abiotic variables were not predictive of cytotype distribution. A clear gigas effect was present. Differences in flower size and phenology suggested pollinator interactions could play a role in polyploid persistence. Intercytotype crosses produced seed at low frequency. DNA data suggested diploids and polyploids were largely reproductively isolated in situ, and polyploidization events were not frequent enough to explain high cytotype sympatry. CONCLUSIONS Diploids and polyploids are behaving as separate species, despite little observable niche differentiation and non-zero potential intercytotype seed set. Tests on biotic interactions and intercytotype F1 fitness may provide insights into diploid and polyploid coexistence.
Collapse
Affiliation(s)
- Damian Vaz de Sousa
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
- H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| | - Michelle Greve
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Kenneth C Oberlander
- H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Lamb K, Debban CL, Galloway LF. Phylogeography and paleoclimatic range dynamics explain variable outcomes to contact across a species' range. Mol Ecol 2024; 33:e17450. [PMID: 38973501 DOI: 10.1111/mec.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Replicability of divergence after contact is a poorly characterized process, particularly in the contexts of phylogeography and postglacial range dynamics within species. Using contact zones located at the leading-, mid- and rear-edges of a species' range, we examined variation in outcomes to contact between divergent lineages of Campanula americana. We investigated whether contact zones vary in quantity and directionality of gene flow, how phylogeographic structure differs between contact zones, and how historic range dynamics may affect outcomes to contact. We found that all contact zones formed at similar times via primary contact yet detected significant admixture in only the rear-edge (RE) contact zone. In the northern leading-edge contact zone and the mid-range Virginia contact zone, gene flow was minimal and asymmetric. In the southern RE contact zone, gene flow was strong and symmetric. Asymmetric admixture in the leading-edge and Virginia contact zones matches the directionality of a known cosmopolitan cytonuclear incompatibility between lineages of C. americana. Our results emphasize the dependence of speciation processes on phylogeographic structure, evolutionary history and range dynamics.
Collapse
Affiliation(s)
- Keric Lamb
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine L Debban
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Lakušić D, Zbiljić M, Šatović Z, Kuzmanović N, Liber Z. Asymmetric Introgression and Cryptic Natural Hybridization between Two Species of Teucrium Section Polium (Lamiaceae) on the Balkan Peninsula. PLANTS (BASEL, SWITZERLAND) 2024; 13:1617. [PMID: 38931049 PMCID: PMC11207346 DOI: 10.3390/plants13121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
In this work, we analyzed the morphology and genetic structure of Teucrium montanum, T. capitatum and their hybrid T. × rohlenae from three syntopic populations. A morphometric study showed that the parents and their hybrids exhibited continuous morphological variation, with the hybrid positioned exactly between the parents. Genetic analysis revealed that plants morphologically identified as T. × rohlenae are fertile hybrids that produce hybrid swarms dominated by later-generation hybrids. This suggests that introgression, rather than speciation, is the more likely outcome of hybridization between these plant species. The extent and direction of gene flow between the two species differed markedly between the three syntopic localities. At the Trilj locality, it was clearly unidirectional, with T. capitatum playing the dominant role. At the Sićevo locality, gene flow was slightly asymmetric, favoring the genetic background of T. capitatum, while at the Sliven site, it was completely asymmetric in the opposite direction. The extreme case of unidirectional gene flow was observed at the Trilj locality where plants morphologically identified as T. montanum could not be genetically distinguished from T. capitatum. This suggests that interspecific hybridization occurred long ago, leading to introgression and cryptic hybrids, blurring of species boundaries and generating evolutionary noise.
Collapse
Affiliation(s)
- Dmitar Lakušić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (D.L.); (N.K.)
| | - Miloš Zbiljić
- Department of Botany, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11060 Belgrade, Serbia;
| | - Zlatko Šatović
- Department of Plant Biodiversity, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska 25, 10000 Zagreb, Croatia
| | - Nevena Kuzmanović
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia; (D.L.); (N.K.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska 25, 10000 Zagreb, Croatia
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9A, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Feller AF, Burgin G, Lewis N, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593106. [PMID: 38766021 PMCID: PMC11100701 DOI: 10.1101/2024.05.08.593106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In flowering plants, pollen-pistil interactions can serve as an important barrier to reproduction between species. As the last barrier to reproduction before fertilization, interactions between these reproductive organs are both complex and important for determining a suitable mate. Here, we test whether differences in style length generate a post-mating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier we assess pollen tube growth in vitro and in vivo. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within and between species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F. Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Nia Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Northeastern University, Boston, MA 02115, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Lau JA, Bolin LG. The tiny drivers behind plant ecology and evolution. AMERICAN JOURNAL OF BOTANY 2024; 111:e16324. [PMID: 38666516 DOI: 10.1002/ajb2.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Jennifer A Lau
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| | - Lana G Bolin
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| |
Collapse
|
9
|
Moran BM, Payne CY, Powell DL, Iverson ENK, Donny AE, Banerjee SM, Langdon QK, Gunn TR, Rodriguez-Soto RA, Madero A, Baczenas JJ, Kleczko KM, Liu F, Matney R, Singhal K, Leib RD, Hernandez-Perez O, Corbett-Detig R, Frydman J, Gifford C, Schartl M, Havird JC, Schumer M. A lethal mitonuclear incompatibility in complex I of natural hybrids. Nature 2024; 626:119-127. [PMID: 38200310 PMCID: PMC10830419 DOI: 10.1038/s41586-023-06895-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford University, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico.
| | - Cheyenne Y Payne
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Daniel L Powell
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Erik N K Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | | | - Quinn K Langdon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Theresa R Gunn
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Angel Madero
- Department of Biology, Stanford University, Stanford, CA, USA
| | - John J Baczenas
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Fang Liu
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Rowan Matney
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Kratika Singhal
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA
| | - Osvaldo Hernandez-Perez
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico
| | - Russell Corbett-Detig
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Casey Gifford
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A.C., Calnali, Hidalgo, Mexico.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
10
|
Munguía‐Rosas MA, Parra‐Tabla V, Rodríguez‐Domínguez JM. Partial and asymmetrical reproductive isolation between two sympatric tropical shrub species: Cnidoscolus aconitifolius and C. souzae (Euphorbiaceae). Ecol Evol 2023; 13:e10801. [PMID: 38089899 PMCID: PMC10714054 DOI: 10.1002/ece3.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Reproductive isolation is conferred by several barriers that occur at different stages of reproduction. Comprehensive reviews on the topic have identified that barriers occurring prior to zygote formation are often stronger than those that occur afterward. However, the overrepresentation of temperate perennial herbs in the current literature precludes any generalization of this pattern to plants that present other life forms and patterns of distribution. Here, we assessed reproductive isolation barriers and their absolute contribution to reproductive isolation and asymmetry in Cnidoscolus aconitifolius and C. souzae, two closely related tropical shrub species that co-occur on the Yucatan peninsula. The reproductive barriers assessed were phenological mismatch, pollinator differentiation, pollen-pistil incompatibility (three pre-zygotic barriers), fruit set failure, and seed unviability (post-zygotic barriers). Reproductive isolation between the study species was found to be complete in the direction C. aconitifolius to C. souzae, but only partial in the opposite direction. One post-zygotic barrier was the strongest example. Most barriers, particularly the pre-zygotic examples, were asymmetrical and predicted the direction of heterospecific pollen flow and hybrid formation from C. souzae to C. aconitifolius. Both parental species, as well as the hybrids, were diploid and had a chromosome number 2n = 36. More studies with tropical woody perennials are required to fully determine whether this group of plants consistently shows stronger post-zygotic barriers.
Collapse
Affiliation(s)
- Miguel A. Munguía‐Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología HumanaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)MéridaMexico
| | - Víctor Parra‐Tabla
- Departamento de Ecología TropicalUniversidad Autónoma de YucatánMéridaMexico
| | - José M. Rodríguez‐Domínguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad de Biotecnología VegetalGuadalajaraMexico
| |
Collapse
|
11
|
Coughlan JM. The role of conflict in shaping plant biodiversity. THE NEW PHYTOLOGIST 2023; 240:2210-2217. [PMID: 37667567 PMCID: PMC11077469 DOI: 10.1111/nph.19233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
Although intrinsic postzygotic reproductive barriers can play a fundamental role in speciation, their underlying evolutionary causes are widely debated. One hypothesis is that incompatibilities result from genomic conflicts. Here, I synthesize the evidence that conflict generates incompatibilities in plants, thus playing a creative role in plant biodiversity. While much evidence supports a role for conflict in several classes of incompatibility, integrating knowledge of incompatibility alleles with natural history can provide further essential tests. Moreover, comparative work can shed light on the relative importance of conflict in causing incompatibilities, including the extent to which their evolution is repeatable. Together, these approaches can provide independent lines of evidence that conflict causes incompatibilities, cementing its role in plant speciation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
12
|
Wang L, Filatov DA. Mechanisms of prezygotic post-pollination reproductive barriers in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1230278. [PMID: 37476168 PMCID: PMC10354421 DOI: 10.3389/fpls.2023.1230278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Hybridisation between individuals of different species can lead to maladapted or inviable progeny due to genetic incompatibilities between diverging species. On the other hand, mating with close relatives, or self-fertilisation may lead to inbreeding depression. Thus, both too much or too little divergence may lead to problems and the organisms have to carefully choose mating partners to avoid both of these pitfalls. In plants this choice occurs at many stages during reproduction, but pollen-pistil interactions play a particularly important role in avoiding inbreeding and hybridisation with other species. Interestingly, the mechanisms involved in avoidance of selfing and interspecific hybridisation may work via shared molecular pathways, as self-incompatible species tend to be more 'choosy' with heterospecific pollen compared to self-compatible ones. This review discusses various prezygotic post-pollination barriers to interspecific hybridisation, with a focus on the mechanisms of pollen-pistil interactions and their role in the maintenance of species integrity.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Dmitry A. Filatov
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
13
|
Bendall EE, Mattingly KM, Moehring AJ, Linnen CR. A Test of Haldane's Rule in Neodiprion Sawflies and Implications for the Evolution of Postzygotic Isolation in Haplodiploids. Am Nat 2023; 202:40-54. [PMID: 37384768 DOI: 10.1086/724820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractHaldane's rule-a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross-is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane's rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane's rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane's rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite to that of Haldane's rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature but underrepresented in the speciation literature.
Collapse
|
14
|
Lackey ACR, Murray AC, Mirza NA, Powell THQ. The role of sexual isolation during rapid ecological divergence: Evidence for a new dimension of isolation in Rhagoletis pomonella. J Evol Biol 2023. [PMID: 37173822 DOI: 10.1111/jeb.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023]
Abstract
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures - apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.
Collapse
Affiliation(s)
- Alycia C R Lackey
- University of Louisville, Louisville, Kentucky, USA
- Binghamton University, Binghamton, New York, USA
| | | | | | | |
Collapse
|
15
|
Jiménez-López FJ, Arista M, Talavera M, Cerdeira Morellato LP, Pannell JR, Viruel J, Ortiz Ballesteros PL. Multiple pre- and postzygotic components of reproductive isolation between two co-occurring Lysimachia species. THE NEW PHYTOLOGIST 2023; 238:874-887. [PMID: 36683441 DOI: 10.1111/nph.18767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Genetic divergence between species depends on reproductive isolation (RI) due to traits that reduce interspecific mating (prezygotic isolation) or are due to reduced hybrid fitness (postzygotic isolation). Previous research found that prezygotic barriers tend to be stronger than postzygotic barriers, but most studies are based on the evaluation of F1 hybrid fitness in early life cycle stages. We combined field and experimental data to determine the strength of 17 prezygotic and postzygotic reproductive barriers between two Lysimachia species that often co-occur and share pollinators. We assessed postzygotic barriers up to F2 hybrids and backcrosses. The two species showed near complete RI due to the cumulative effect of multiple barriers, with an uneven and asymmetric contribution to isolation. In allopatry, prezygotic barriers contributed more to reduce gene flow than postzygotic barriers, but their contributions were more similar in sympatry. The strength of postzygotic RI was up to three times lower for F1 progeny than for F2 or backcrossed progenies, and RI was only complete when late F1 stages and either F2 or backcrosses were accounted for. Our results thus suggest that the relative strength of postzygotic RI may be underestimated when its effects on late stages of the life cycle are disregarded.
Collapse
Affiliation(s)
- Francisco Javier Jiménez-López
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
- Phenology Lab, Department of Biodiversity, Biosciences Institute, UNESP - São Paulo State University, São Paulo, Brazil
| | - Montserrat Arista
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| | - María Talavera
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| | | | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Juan Viruel
- Royal Botanic Gardens, Kew, TW9 3DS, Richmond, UK
| | - Pedro L Ortiz Ballesteros
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| |
Collapse
|
16
|
MacPherson N, Champion CP, Weir LK, Dalziel AC. Reproductive isolating mechanisms contributing to asymmetric hybridization in Killifishes (Fundulus spp.). J Evol Biol 2023; 36:605-621. [PMID: 36636892 DOI: 10.1111/jeb.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/26/2022] [Indexed: 01/14/2023]
Abstract
When species hybridize, one F1 hybrid cross type often predominates. Such asymmetry can arise from differences in a variety of reproductive barriers, but the relative roles and concordance of pre-mating, post-mating prezygotic, and post-zygotic barriers in producing these biases in natural animal populations have not been widely investigated. Here, we study a population of predominantly F1 hybrids between two killifish species (Fundulus heteroclitus and F. diaphanus) in which >95% of F1 hybrids have F. diaphanus mothers and F. heteroclitus fathers (D♀ × H♂). To determine why F. heteroclitus × F. diaphanus F1 hybrids (H♀ × D♂) are so rare, we tested for asymmetry in pre-mating reproductive barriers (female preference and male aggression) at a common salinity (10 ppt) and post-mating, pre-zygotic (fertilization success) and post-zygotic (embryonic development time and hatching success) reproductive barriers at a range of ecologically relevant salinities (0, 5, 10, and 15 ppt). We found that F. heteroclitus females preferred conspecific males, whereas F. diaphanus females did not, matching the observed cross bias in the wild. Naturally rare H♀ × D♂ crosses also had lower fertilization success than all other cross types, and a lower hatching success than the prevalent D♀ × H♂ crosses at the salinity found in the hybrid zone centre (10 ppt). Furthermore, the naturally predominant D♀ × H♂ crosses had a higher hatching success than F. diaphanus crosses at 10 ppt, which may further increase their relative abundance. The present study suggests that a combination of incomplete mating, post-mating pre-zygotic and post-zygotic reproductive isolating mechanisms act in concert to produce hybrid asymmetry in this system.
Collapse
Affiliation(s)
- Nathalie MacPherson
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Chloe P Champion
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Laura K Weir
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Perrier A, Willi Y. Intraspecific variation in reproductive barriers between two closely related Arabidopsis sister species. J Evol Biol 2023; 36:121-130. [PMID: 36436201 PMCID: PMC10100320 DOI: 10.1111/jeb.14122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/29/2022]
Abstract
Reproductive isolation (RI) is a critical component of speciation and varies strongly in timing and strength among different sister taxa, depending on, for example the geography of speciation and divergence time. However, these factors may also produce variation in timing and strength among populations within species. Here we tested for variation in the expression of RI among replicate population pairs between the sister taxa Arabidopsis lyrata subsp. lyrata and A. arenicola. While the former is predominantly outcrossing, the latter is predominantly selfing. We focused on intrinsic prezygotic and postzygotic RI as both species occur largely in allopatry. We assessed RI by performing within-population crosses and interspecific between-population crosses, and by raising offspring. RI was generally high between all interspecific population pairs, but it varied in timing and strength depending on population history. Prezygotic isolation was strongest between the closest-related population pair, while early postzygotic isolation was high for all other population pairs. Furthermore, the timing and strength of RI depended strongly on cross direction. Our study provides empirical support that reproductive barriers between species are highly variable among population pairs and asymmetric within population pairs, and this variation seems to follow patterns typically described across species pairs.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
19
|
Osmolovsky I, Shifrin M, Gamliel I, Belmaker J, Sapir Y. Eco-Geography and Phenology Are the Major Drivers of Reproductive Isolation in the Royal Irises, a Species Complex in the Course of Speciation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3306. [PMID: 36501345 PMCID: PMC9739335 DOI: 10.3390/plants11233306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The continuous nature of speciation implies that different species are found at different stages of divergence, from no- to complete reproductive isolation. This process and its underlying mechanisms are best viewed in incipient species. Moreover, the species complex can offer unique insight into how reproductive isolation (RI) has evolved. The royal irises (Iris section Oncocyclus) are a young group of species in the course of speciation, providing an ideal system for speciation study. We quantified pre- and post-zygotic reproductive barriers between the eight Israeli species of this complex and estimated the total RI among them. We tested for both pre-pollination and post-pollination reproductive barriers. Pre-pollination barriers, i.e., eco-geographic divergence and phenological differentiation were the major contributors to RI among the Iris species. On the other hand, post-pollination barriers, namely pollen-stigma interactions, fruit set, and seed viability had negligible contributions to total RI. The strength of RI was not uniform across the species complex, suggesting that species may have diverged at different rates. Overall, this study in a young, recently diverged group of species provides insight into the first steps of speciation, suggesting a crucial role of the pre-zygotic barriers.
Collapse
Affiliation(s)
- Inna Osmolovsky
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mariana Shifrin
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Gamliel
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Belmaker
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Sapir
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Christie K, Fraser LS, Lowry DB. The strength of reproductive isolating barriers in seed plants: Insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Evolution 2022; 76:2228-2243. [PMID: 35838076 PMCID: PMC9796645 DOI: 10.1111/evo.14565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Speciation is driven by the evolution of reproductive isolating barriers that reduce, and ultimately prevent, substantial gene flow between lineages. Despite its central role in evolutionary biology, the process can be difficult to study because it proceeds differently among groups and may occur over long timescales. Due to this complexity, we typically rely on generalizations of empirical data to describe and understand the process. Previous reviews of reproductive isolation (RI) in flowering plants have suggested that prezygotic or extrinsic barriers generally have a stronger effect on reducing gene flow compared to postzygotic or intrinsic barriers. Past conclusions have rested on relatively few empirical estimates of RI; however, RI data have become increasingly abundant over the past 15 years. We analyzed data from recent studies quantifying multiple pre- and postmating barriers in plants and compared the strengths of isolating barriers across 89 taxa pairs using standardized RI metrics. Individual prezygotic barriers were on average stronger than individual postzygotic barriers, and the total strength of prezygotic RI was approximately twice that of postzygotic RI. These findings corroborate that ecological divergence and extrinsic factors, as opposed to solely the accumulation of genetic incompatibilities, are important to speciation and the maintenance of species boundaries in plants. Despite an emphasis in the literature on asymmetric postmating and postzygotic RI, we found that prezygotic barriers acted equally asymmetrically. Overall, substantial variability in the strengths of 12 isolating barriers highlights the great diversity of mechanisms that contribute to plant diversification.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824,Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizona86011
| | - Linnea S. Fraser
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|
21
|
Bhargav VV, Freeland JR, Dorken ME. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca). Heredity (Edinb) 2022; 129:195-201. [PMID: 35933492 PMCID: PMC9411187 DOI: 10.1038/s41437-022-00557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Interspecific hybridization has varied consequences for offspring fitness, with implications for the maintenance of species integrity. Hybrid vigour, when it occurs, can peak in first-generation (F1) hybrids and then decline in advanced-generation (F2+) hybrids. This hybrid breakdown, together with the processes affecting patterns of hybridization and hybrid fitness, determine the evolutionary stability of hybrid zones. An extensive hybrid zone in North America involving the cattails Typha latifolia, T. angustifolia, and their invasive hybrid T. × glauca is characterized by hybrid vigour among F1s, but the fitness of advanced-generation hybrids has not been studied. We compared seed germination and plant growth of T. latifolia (parental L), F1 T. × glauca (F1), hybrid backcrosses to T. angustifolia (bcA) and T. latifolia (bcL), and advanced-generation (F2) hybrids. Consistent with expectations under hybrid breakdown, we found reduced plant growth for F2 hybrids in comparison with F1s (plant height and above-ground biomass) and parental Ls (above-ground biomass). Backcrossed hybrids had intermediate measures of plant growth and bcLs were characterized by reduced seed germination in comparison with parental Ls. Hybrid breakdown could make the formation of F1s in North America finite because (1) hybridization among cattails is asymmetric, with T. angustifolia but not T. latifolia subject to genetic swamping, and (2) T. angustifolia is less common and subject to competitive displacement by F1s. Hybrid breakdown is therefore expected to reduce hybrid frequencies over time, contributing to the long-term maintenance of T. latifolia - the only native cattail in the study region.
Collapse
Affiliation(s)
- V Vikram Bhargav
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Joanna R Freeland
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
22
|
Joachimiak AJ, Libik-Konieczny M, Wójtowicz T, Sliwinska E, Grabowska-Joachimiak A. Physiological aspects of sex differences and Haldane's rule in Rumex hastatulus. Sci Rep 2022; 12:11145. [PMID: 35778518 PMCID: PMC9249882 DOI: 10.1038/s41598-022-15219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Haldane's rule (HR, impairment of fertility and/or viability of interracial hybrids) seems to be one of few generalizations in evolutionary biology. The validity of HR has been confirmed in animals, and more recently in some dioecious plants (Silene and Rumex). Dioecious Rumex hastatulus has two races differing in the sex chromosome system: Texas (T) and North Carolina (NC), and T × NC males showed both reduced pollen fertility and rarity-two classical symptoms of Haldane's rule (HR). The reduced fertility of these plants has a simple mechanistic explanation, but the reason for their rarity was not elucidated. Here, we measured selected physiological parameters related to the antioxidant defense system in parental races and reciprocal hybrids of R. hastatulus. We showed that the X-autosome configurations, as well as asymmetries associated with Y chromosomes and cytoplasm, could modulate this system in hybrids. The levels and quantitative patterns of the measured parameters distinguish the T × NC hybrid from the other analyzed forms. Our observations suggest that the rarity of T × NC males is caused postzygotically and most likely related to the higher level of oxidative stress induced by the chromosomal incompatibilities. It is the first report on the physiological aspects of HR in plants.
Collapse
Affiliation(s)
- Andrzej J Joachimiak
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Marta Libik-Konieczny
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Tomasz Wójtowicz
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140, Kraków, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Aleksandra Grabowska-Joachimiak
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140, Kraków, Poland.
| |
Collapse
|
23
|
Zhang SY, Hu YF, Wang HT, Zhang PC, Shao JW. Over 30 Years of Misidentification: A New Nothospecies Lycoris × jinzheniae (Amaryllidaceae) in Eastern China, Based on Molecular, Morphological, and Karyotypic Evidence. PLANTS (BASEL, SWITZERLAND) 2022; 11:1730. [PMID: 35807681 PMCID: PMC9269102 DOI: 10.3390/plants11131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Based on the complete chloroplast genome, morphology, and karyotype evidence, we identified a new nothospecies, Lycoris × jinzheniae S.Y. Zhang, P.C. Zhang & J.W. Shao, in eastern China. This new nothospecies has been inappropriately named Lycoris × albiflora in the previous literature for more than 30 years. However, the new nothospecies resulted from the hybridization of L. sprengeri and L. chinensis and had the following characteristics: the karyotype was 2n = 19 = 3V + 16I, the leaves emerged in the spring, the ratio of filament to corolla length was approximately 1.2, tepals were slightly undulated and curved, and it was distributed throughout eastern China. These characteristics are quite different from those of L. × albiflora; thus, in this study, we named it and provided a detailed morphological description and diagnosis.
Collapse
Affiliation(s)
- Si-Yu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | - Ying-Feng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | - Hao-Tian Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | | | - Jian-Wen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
- The Key Laboratory of Conservation and Employment of Biological Resources of Anhui, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
24
|
Pouca CV, Vedder S, Kotrschal A. Hybridization may promote variation in cognitive phenotypes in experimental guppy hybrids. Am Nat 2022; 200:607-619. [DOI: 10.1086/720731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Curran EV, Scott MS, Olofsson JK, Nyirenda F, Sotelo G, Bianconi ME, Manzi S, Besnard G, Pereira L, Christin PA. Hybridization boosts dispersal of two contrasted ecotypes in a grass species. Proc Biol Sci 2022; 289:20212491. [PMID: 35078363 PMCID: PMC8790336 DOI: 10.1098/rspb.2021.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
Genetic exchanges between closely related groups of organisms with different adaptations have well-documented beneficial and detrimental consequences. In plants, pollen-mediated exchanges affect the sorting of alleles across physical landscapes and influence rates of hybridization. How these dynamics affect the emergence and spread of novel phenotypes remains only partially understood. Here, we use phylogenomics and population genomics to retrace the origin and spread of two geographically overlapping ecotypes of the African grass Alloteropsis angusta. In addition to an ecotype inhabiting wetlands, we report the existence of a previously undescribed ecotype inhabiting Miombo woodlands and grasslands. The two ecotypes are consistently associated with different nuclear groups, which represent an advanced stage of divergence with secondary low-level gene flow. However, the seed-transported chloroplast genomes are consistently shared by distinct ecotypes inhabiting the same region. These patterns suggest that the nuclear genome of one ecotype can enter the seeds of the other via occasional pollen movements with sorting of nuclear groups in subsequent generations. The contrasting ecotypes of A. angusta can thus use each other as a gateway to new locations across a large part of Africa, showing that hybridization can facilitate the geographical dispersal of distinct ecotypes of the same grass species.
Collapse
Affiliation(s)
- Emma V. Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matilda S. Scott
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jill K. Olofsson
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matheus E. Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sophie Manzi
- Laboratoire Evolution and Diversité Biologique (EDB UMR5174), Université de Toulouse III – Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB UMR5174), Université de Toulouse III – Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
26
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
27
|
Delomas TA, Dabrowski K. Asymmetric viability in reciprocal crosses of zebrafish Danio rerio and pearl danio Danio albolineatus. JOURNAL OF FISH BIOLOGY 2022; 100:10-14. [PMID: 34547104 DOI: 10.1111/jfb.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Interspecies hybrids have long been studied to further understanding of speciation. Reciprocal crosses sometimes have asymmetric viability, a phenomenon termed 'Darwin's corollary to Haldane's rule'. It has been proposed that this asymmetry is caused by Dobzhansky-Muller incompatibilities between nuclear genes and cytoplasmic factors (e.g., maternal transcripts, mitochondrial genome). The molecular basis of this hypothesis has received little empirical investigation, presumably due to the lack of an appropriate model system. We report a case of extreme asymmetry in viability between reciprocal hybrids of zebrafish Danio rerio and pearl danio Danio albolineatus. Hybrids from D. rerio females × D. albolineatus males (n = 4 crosses) were viable, with 83.2 ± 9.6% surviving from fertilization to 5 days post-fertilization (dpf) and 80.1 ± 14.4% surviving from 5 to 21 dpf. Hybrids from D. albolineatus females × D. rerio males (n = 6 crosses) were inviable after embryonic development. These hybrids developed pericardial oedema at 1 dpf and only 37.2 ± 18.0% survived from fertilization to 5 dpf. Of the 595 larvae alive at 5 dpf, only one juvenile with stunted growth survived to 21 dpf. We propose that given the resources available for the D. rerio model system and the strong asymmetry in viability between reciprocal crosses, these hybrids will allow investigation of the molecular basis for Darwin's corollary to Haldane's rule.
Collapse
Affiliation(s)
- Thomas A Delomas
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Konrad Dabrowski
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Cruzan MB, Thompson PG, Diaz NA, Hendrickson EC, Gerloff KR, Kline KA, Machiorlete HM, Persinger JM. Weak coupling among barrier loci and waves of neutral and adaptive introgression across an expanding hybrid zone. Evolution 2021; 75:3098-3114. [PMID: 34668193 PMCID: PMC9298192 DOI: 10.1111/evo.14381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range‐limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per‐generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range‐limited species.
Collapse
Affiliation(s)
- Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Pamela G Thompson
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Nicolas A Diaz
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | - Katie R Gerloff
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Katie A Kline
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | | |
Collapse
|
29
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
30
|
Gorman CE, Li Y, Dorken ME, Stift M. No evidence for incipient speciation by selfing in North American Arabidopsis lyrata. J Evol Biol 2021; 34:1397-1405. [PMID: 34228843 DOI: 10.1111/jeb.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/01/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
Self-fertilization inherently restricts gene flow by reducing the fraction of offspring that can be produced by inter-population matings. Therefore, mating system transitions from outcrossing to selfing could result in reproductive isolation between selfing and outcrossing lineages and provide a starting point for speciation. In newly diverged lineages, for example after a transition to selfing, further reproductive isolation can be caused by a variety of prezygotic and post-zygotic mechanisms that operate before, during and after pollination. In animals, prezygotic barriers tend to evolve faster than post-zygotic ones. This is not necessarily the case for plants, for which the relative importance of post-mating, post-fertilization and early-acting post-zygotic barriers has been investigated far less. To test whether post-pollination isolation exists between populations of North American Arabidopsis lyrata that differ in breeding (self-incompatible versus self-compatible) and mating system (outcrossing versus selfing), we compared patterns of seed set after crosses made within populations, between populations of the same mating system and between populations with different mating systems. We found no evidence for post-pollination isolation between plants from selfing populations (self-compatible, low outcrossing rates) and outcrossing populations (self-incompatible, high outcrossing rates) via either prezygotic or early-acting post-zygotic mechanisms. Together with the results of other studies indicating the absence of reproductive barriers acting before and during pollination, we conclude that the transition to selfing in this study system has not led to the formation of reproductive barriers between selfing and outcrossing populations of North American A. lyrata.
Collapse
Affiliation(s)
| | - Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Marcel E Dorken
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Marc Stift
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
31
|
Abstract
Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall-modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| |
Collapse
|
32
|
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M. The Scope for Postmating Sexual Selection in Plants. Trends Ecol Evol 2021; 36:556-567. [PMID: 33775429 DOI: 10.1016/j.tree.2021.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.
| | - Patrice David
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Tim Janicke
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France; Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Arnaud Lehner
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathilde Dufay
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
33
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
34
|
Dong CM, Rankin KJ, McLean CA, Stuart-Fox D. Maternal reproductive output and F1 hybrid fitness may influence contact zone dynamics. J Evol Biol 2021; 34:680-694. [PMID: 33580546 DOI: 10.1111/jeb.13772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
The outcome of secondary contact between divergent lineages or species may be influenced by both the reproductive traits of parental species and the fitness of offspring; however, their relative contributions have rarely been evaluated, particularly in longer-lived vertebrate species. We performed pure and reciprocal laboratory crosses between Ctenophorus decresii (tawny dragon) and C. modestus (swift dragon) to examine how parental reproductive traits and ecologically relevant offspring fitness traits may explain contact zone dynamics in the wild. The two species meet in a contact zone of post-F1 hybrids with asymmetric backcrossing and predominantly C. modestus mtDNA haplotypes. We found no evidence for reduced parental fecundity or offspring fitness for F1 hybrid crosses. However, maternal reproductive strategy differed between species, irrespective of the species of their mate. Ctenophorus modestus females had higher fecundity and produced more and larger clutches with lower embryonic mortality. Parental species also influenced sex ratios and offspring traits, with C. modestus ♀ × C. decresii ♂ hybrids exhibiting higher trait values for more fitness measures (growth rate, sprint speed, bite force) than offspring from all other pairings. Together, these patterns are consistent with the prevalence of C. modestus mtDNA in the contact zone, and asymmetric backcrossing likely reflects fitness effects that manifest in the F2 generation. Our results highlight how parental species can influence multiple offspring traits in different ways, which together may combine to influence offspring fitness and shape contact zone dynamics.
Collapse
Affiliation(s)
- Caroline M Dong
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia.,Sciences Department, Museums Victoria, Melbourne, Vic., Australia
| | - Katrina J Rankin
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Claire A McLean
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia.,Sciences Department, Museums Victoria, Melbourne, Vic., Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
35
|
Keller B, Ganz R, Mora-Carrera E, Nowak MD, Theodoridis S, Koutroumpa K, Conti E. Asymmetries of reproductive isolation are reflected in directionalities of hybridization: integrative evidence on the complexity of species boundaries. THE NEW PHYTOLOGIST 2021; 229:1795-1809. [PMID: 32761901 DOI: 10.1111/nph.16849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 05/26/2023]
Abstract
The complex nature of species boundaries has been a central topic in evolutionary biology ever since Darwin. Despite numerous separate studies on reproductive isolation and hybridization, their relationship remains underinvestigated. Are the strengths and asymmetries of reproductive barriers reflected in the extent and directionalities of interspecific genetic exchange? We combined field, experimental, and molecular data to quantify strengths and asymmetries of sympatric reproductive barriers and hybridization between florally heteromorphic primroses. We also assessed whether generalist pollinators discriminate between different floral cues and contribute to reproductive isolation, a long-debated topic. Sympatric reproductive isolation is high but incomplete, and most phenotypic intermediates are genetic F1 hybrids, whereas backcrosses are rare, revealing low interspecific gene flow. Species integrity rests on multiple barriers, but ethological isolation is among the strongest, demonstrating that even generalist pollinators crucially contribute to the maintenance of species boundaries. Furthermore, reproductive barriers are weaker for Primula veris and short-styled plants, results corroborated by molecular data. Thus, in florally heteromorphic systems, both species- and morph-dependent asymmetries affect permeability of species boundaries. Our study illustrates how the interactions between complex floral syndromes and pollinators shape species boundaries in unique, previously undescribed ways.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Rita Ganz
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Michael D Nowak
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Spyros Theodoridis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| |
Collapse
|
36
|
Kong S, Kubatko LS. Comparative Performance of Popular Methods for Hybrid Detection using Genomic Data. Syst Biol 2021; 70:891-907. [PMID: 33404632 DOI: 10.1093/sysbio/syaa092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Interspecific hybridization is an important evolutionary phenomenon that generates genetic variability in a population and fosters species diversity in nature. The availability of large genome scale datasets has revolutionized hybridization studies to shift from the observation of the presence or absence of hybrids to the investigation of the genomic constitution of hybrids and their genome-specific evolutionary dynamics. Although a handful of methods have been proposed in an attempt to identify hybrids, accurate detection of hybridization from genomic data remains a challenging task. In addition to methods that infer phylogenetic networks or that utilize pairwise divergence, site pattern frequency based and population genetic clustering approaches are popularly used in practice, though the performance of these methods under different hybridization scenarios has not been extensively examined. Here, we use simulated data to comparatively evaluate the performance of four tools that are commonly used to infer hybridization events: the site pattern frequency based methods HyDe and the D-statistic (i.e., the ABBA-BABA test) and the population clustering approaches structure and ADMIXTURE. We consider single hybridization scenarios that vary in the time of hybridization and the amount of incomplete lineage sorting (ILS) for different proportions of parental contributions (γ); introgressive hybridization; multiple hybridization scenarios; and a mixture of ancestral and recent hybridization scenarios. We focus on the statistical power to detect hybridization and the false discovery rate (FDR) for comparisons of the D-statistic and HyDe, and the accuracy of the estimates of γ as measured by the mean squared error for HyDe, structure, and ADMIXTURE. Both HyDe and the D-statistic are powerful for detecting hybridization in all scenarios except those with high ILS, although the D-statistic often has an unacceptably high FDR. The estimates of γ in HyDe are impressively robust and accurate whereas structure and ADMIXTURE sometimes fail to identify hybrids, particularly when the proportional parental contributions are asymmetric (i.e., when γ is close to 0). Moreover, the posterior distribution estimated using structure exhibits multimodality in many scenarios, making interpretation difficult. Our results provide guidance in selecting appropriate methods for identifying hybrid populations from genomic data.
Collapse
Affiliation(s)
- Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Laura S Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Statistics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
St John ME, Fuller RC. Asymmetric reinforcement in Lucania killifish: assessing reproductive isolation when both sexes choose. Curr Zool 2020; 67:215-224. [PMID: 33854539 PMCID: PMC8026148 DOI: 10.1093/cz/zoaa049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
Reinforcement can occur when maladaptive hybridization in sympatry favors the evolution of conspecific preferences and target traits that promote behavioral isolation (BI). In many systems, enhanced BI is due to increased female preference for conspecifics. In others, BI is driven by male preference, and in other systems both sexes exert preferences. Some of these patterns can be attributed to classic sex-specific costs and benefits of preference. Alternatively, sex differences in conspecific preference can emerge due to asymmetric postzygotic isolation (e.g., hybrid offspring from female A × male B have lower fitness than hybrid offspring from female B × male A), which can lead to asymmetric BI (e.g., female A and male B are less likely to mate than female B and male A). Understanding reinforcement requires understanding how conspecific preferences evolve in sympatry. Yet, estimating conspecific preferences can be difficult when both sexes are choosy. In this study, we use Lucania killifish to test the hypothesis that patterns of reinforcement are driven by asymmetric postzygotic isolation between species. If true, we predicted that sympatric female Lucania goodei and sympatric male L. parva should have lower levels of BI compared with their sympatric counterparts, as they produce hybrid offspring with the highest fitness. To address the problem of measuring BI when both sexes are choosy, we inferred the contribution to BI of each partner using assays where one sex in the mating pair comes from an allopatric population with potentially low preference, whereas the other comes from a sympatric population with high preference. For one hybrid cross direction, we found that both female L. parva and male L. goodei have high contributions to BI in sympatry. In the other hybrid cross direction, we found that only female L. goodei contribute to BI. Sympatric male L. parva readily engaged in hybrid spawnings with allopatric L. goodei females. These results indicate that both asymmetric postzygotic isolation and the traditional sex-specific costs to preference likely affect the nature of selection on conspecific preferences and target traits.
Collapse
Affiliation(s)
- Michelle E St John
- School of Integrative Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Rebecca C Fuller
- School of Integrative Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
38
|
Rushworth CA, Mitchell-Olds T. The Evolution of Sex is Tempered by Costly Hybridization in Boechera (Rock Cress). J Hered 2020; 112:67-77. [PMID: 33211850 DOI: 10.1093/jhered/esaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Despite decades of research, the evolution of sex remains an enigma in evolutionary biology. Typically, research addresses the costs of sex and asexuality to characterize the circumstances favoring one reproductive mode. Surprisingly few studies address the influence of common traits that are, in many organisms, obligately correlated with asexuality, including hybridization and polyploidy. These characteristics have substantial impacts on traits under selection. In particular, the fitness consequences of hybridization (i.e., reduced fitness due to interspecific reproductive isolation) will influence the evolution of sex. This may comprise a cost of either sex or asexuality due to the link between hybridity and asexuality. We examined reproductive isolation in the formation of de novo hybrid lineages between 2 widespread species in the ecological model system Boechera. Seventeen percent of 664 crosses produced F1 fruits, and only 10% of these were viable, suggesting that postmating prezygotic and postzygotic barriers inhibit hybrid success in this system. The postmating prezygotic barrier was asymmetrical, with 110 of 115 total F1 fruits produced when Boechera stricta acted as maternal parent. This asymmetry was confirmed in wild-collected lineages, using a chloroplast phylogeny of wild-collected B. stricta, Boechera retrofracta, and hybrids. We next compared fitness of F2 hybrids and selfed parental B. stricta lines, finding that F2 fitness was reduced by substantial hybrid sterility. Multiple reproductively isolating barriers influence the formation and fitness of hybrid lineages in the wild, and the costs of hybridization likely have profound impacts on the evolution of sex in the natural environment.
Collapse
Affiliation(s)
- Catherine A Rushworth
- Department of Evolution and Ecology, Storer Hall, University of California Davis, Davis, CA.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN.,University and Jepson Herbaria, University of California Berkeley, Berkeley, CA.,Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| | - Tom Mitchell-Olds
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| |
Collapse
|
39
|
Ostevik KL, Rifkin JL, Xia H, Rausher MD. Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation. Evol Lett 2020; 5:75-85. [PMID: 33552537 PMCID: PMC7857285 DOI: 10.1002/evl3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Hybridization between species can affect the strength of the reproductive barriers that separate those species. Two extensions of this effect are (1) the expectation that asymmetric hybridization or gene flow will have asymmetric effects on reproductive barrier strength and (2) the expectation that local hybridization will affect only local reproductive barrier strength and could therefore alter within‐species compatibility. We tested these hypotheses in a pair of morning glory species that exhibit asymmetric gene flow from highly selfing Ipomoea lacunosa into mixed‐mating Ipomoea cordatotriloba in regions where they co‐occur. Because of the direction of this gene flow, we predicted that reproductive barrier strength would be more strongly affected in I. cordatotriloba than I. lacunosa. We also predicted that changes to reproductive barriers in sympatric I. cordatotriloba populations would affect compatibility with allopatric populations of that species. We tested these predictions by measuring the strength of a reproductive barrier to seed set across the species’ ranges. Consistent with our first prediction, we found that sympatric and allopatric I. lacunosa produce the same number of seeds in crosses with I. cordatotriloba, whereas crosses between sympatric I. cordatotriloba and I. lacunosa are more successful than crosses between allopatric I. cordatotriloba and I. lacunosa. This difference in compatibility appears to reflect an asymmetric decrease in the strength of the barrier to seed set in sympatric I. cordatotriloba, which could be caused by I. lacunosa alleles that have introgressed into I. cordatotriloba. We further demonstrated that changes to sympatric I. cordatotriloba have decreased its ability to produce seeds with allopatric populations of the same species, in line with our second prediction. Thus, in a manner analogous to cascade reinforcement, we suggest that introgression associated with hybridization not only influences between‐species isolation but can also contribute to isolation within a species.
Collapse
Affiliation(s)
- Kate L Ostevik
- Department of Biology Duke University Durham North Carolina 27708
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Hanhan Xia
- College of Horticulture and Landscape Architecture Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Mark D Rausher
- Department of Biology Duke University Durham North Carolina 27708
| |
Collapse
|
40
|
Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (Oryza rufipogon and O. nivara). SCIENCE CHINA. LIFE SCIENCES 2020; 63:1714-1724. [PMID: 32318909 DOI: 10.1007/s11427-019-1678-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
It is of critical importance for our understanding of speciation process to determine the forms of reproductive isolation and their relative importance in species divergence. Oryza nivara and O. rufipogon are direct ancestors of Asian cultivated rice and a progenitor-daughter species pair. Investigating the reproductive isolation between them provides insights into plant speciation and helps understanding of the rice domestication. Here, we quantitatively measured the major components of reproductive isolation between the two species based on common garden and crossing experiments for three pairs of sympatric populations in Nepal, Cambodia and Laos. We revealed significant differences in the flowering times between species pairs, with O. nivara flowering much earlier than O. rufipogon. A very weak reduction in seed set but no reduction in F1 viability and fertility were detected for the crosses between species relative to those within species. Moreover, we detected asymmetrical compatibility between species and found that emasculation significantly decreased pollination success in O. nivara but not in O. rufipogon. Our study demonstrates that the divergence between O. nivara and O. rufipogon is maintained almost entirely by the difference in flowering times and suggests that differential flowering times contribute to both habitat preferences and reproductive isolation between species.
Collapse
|
41
|
Bachmann JC, Van Buskirk J. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 2020; 75:956-969. [PMID: 33063864 DOI: 10.1111/evo.14109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
We performed a reciprocal transplant experiment to estimate "parallel" adaptation to elevation and "unique" adaptation to local sites at the same elevation, using the frog Rana temporaria in the Swiss Alps. It is important to distinguish these two processes because they have different implications for population structure and ecological specialization. Larvae were reared from hatching to metamorphosis within enclosures installed in their pond of origin, in three foreign ponds at the same elevation, and in four ponds at different elevation (1500-2000 m higher or lower). There were two source populations from each elevation, and adults were held in a common environment for 1 year before they were crossed to produce offspring for the experiment. Fitness was a measure that integrated larval survival, development rate, and body size. Parallel adaptation to elevation was indicated by an advantage at the home elevation (11.5% fitness difference at low elevation and 47% at high elevation). This effect was stronger than that observed in most other studies, according to a survey of previous transplant experiments across elevation (N = 8 animal species and 71 plants). Unique local adaptation within elevational zones was only 0.3-0.7 times as strong as parallel adaptation, probably because gene flow is comparatively high among nearby wetlands at the same elevation. The home-elevation advantage may reduce gene flow across the elevational gradient and enable the evolution of habitat races specialized on elevation.
Collapse
Affiliation(s)
- Judith C Bachmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Gell RM, Horn BW, Carbone I. Genetic map and heritability of Aspergillus flavus. Fungal Genet Biol 2020; 144:103478. [PMID: 33059038 DOI: 10.1016/j.fgb.2020.103478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
The carcinogenic aflatoxins are a human health concern as well as an economic burden to corn, peanut and other crops grown within the United States and globally. Aflatoxins are produced by fungi species in Aspergillus section Flavi, primarily Aspergillus flavus. Though previously thought of as only asexual, A. flavus has recently been found to undergo sexual reproduction both in laboratory crosses and in the field. To elucidate the consequences of genetic exchange through a single generation of the sexual cycle within A. flavus, we constructed genetic maps based on three mapping populations, each composed of the parental strains and approximately 70 F1 progeny. Genome-wide data using double digest Restriction Associated DNA sequencing identified 496, 811, and 576 significant polymorphisms differentiating parents across eight linkage groups; these polymorphisms served as markers. Average spacing between marker loci was 3.1, 2.1, and 3.5 map units and overall map length was 1504.4, 1669.2, and 2001.3 cM. Recombination was non-randomly distributed across chromosomes with an average rate of recombination of about 46.81 cM per Mbp. We showed inheritance of mitochondrial loci from the sclerotial (female) parent in crosses, whereas nuclear loci showed a 1:1 segregation ratio from both parents. The linkage map will be useful in QTL analyses to identify traits that increase sexual fertility in A. flavus and modulate aflatoxin production, both of which have significant implications for sustainable reduction of aflatoxin contamination using biological control agents.
Collapse
Affiliation(s)
- Richard M Gell
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Bruce W Horn
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, GA, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
43
|
Sutherland BL, Miranda-Katz T, Galloway LF. Strength in numbers? Cytotype frequency mediates effect of reproductive barriers in mixed-ploidy arrays. Evolution 2020; 74:2281-2292. [PMID: 32776511 DOI: 10.1111/evo.14077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
When differentiated lineages come into contact, their fates depend on demographic and reproductive factors. These factors have been well-studied in taxa of the same ploidy, but less is known about sympatric lineages that differ in ploidy, particularly with respect to demographic factors. We assessed prezygotic, postzygotic, and total reproductive isolation in naturally pollinated arrays of diploid-tetraploid and tetraploid-hexaploid population mixes of Campanula rotundifolia by measuring pollinator transitions, seed yield, germination rate, and proportion of hybrid offspring. Four frequencies of each cytotype were tested, and pollinators consistently overvisited rare cytotypes. Seed yield and F1 hybrid production were greater in 4X-6X arrays than 2X-4X arrays, whereas germination rates were similar, creating two distinct patterns of reproductive isolation. In 2X-4X arrays, postzygotic isolation was near complete (3% hybrid offspring), and prezygotic isolation associated with pollinator preference is expected to facilitate the persistence of minority cytotypes. However, in 4X-6X arrays where postzygotic isolation permitted hybrid formation (44% hybrids), pollinator behavior drove patterns of reproductive isolation, with rare cytotypes being more isolated and greater gene flow expected from rare into common cytotypes. In polyploid complexes, both the specific cytotypes in contact and local cytotype frequency, likely reflecting spatial demography, will influence likelihood of gene exchange.
Collapse
Affiliation(s)
- Brittany L Sutherland
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Tomas Miranda-Katz
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Laura F Galloway
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
44
|
Coughlan JM, Wilson Brown M, Willis JH. Patterns of Hybrid Seed Inviability in the Mimulus guttatus sp. Complex Reveal a Potential Role of Parental Conflict in Reproductive Isolation. Curr Biol 2020; 30:83-93.e5. [PMID: 31883810 PMCID: PMC7017923 DOI: 10.1016/j.cub.2019.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Genomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here, we describe M. decorus: a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus, conform to the predictions of parental conflict: first, reciprocal F1s exhibit size differences and parent-of-origin-specific endosperm defects; second, the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI; and third, inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others' closest relative. Lastly, although all populations appear largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than transitions to self-fertilization may influence the rate of parental-conflict-driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin-specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA; Biology Department, University of North Carolina, Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA.
| | - Maya Wilson Brown
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| | - John H Willis
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
45
|
Dufresnes C, Mazepa G, Jablonski D, Oliveira RC, Wenseleers T, Shabanov DA, Auer M, Ernst R, Koch C, Ramírez-Chaves HE, Mulder KP, Simonov E, Tiutenko A, Kryvokhyzha D, Wennekes PL, Zinenko OI, Korshunov OV, Al-Johany AM, Peregontsev EA, Masroor R, Betto-Colliard C, Denoël M, Borkin LJ, Skorinov DV, Pasynkova RA, Mazanaeva LF, Rosanov JM, Dubey S, Litvinchuk S. Fifteen shades of green: The evolution of Bufotes toads revisited. Mol Phylogenet Evol 2019; 141:106615. [DOI: 10.1016/j.ympev.2019.106615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
|
46
|
Chin TA, Cáceres CE, Cristescu ME. The evolution of reproductive isolation in Daphnia. BMC Evol Biol 2019; 19:216. [PMID: 31775606 PMCID: PMC6880586 DOI: 10.1186/s12862-019-1542-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The process by which populations evolve to become new species involves the emergence of various reproductive isolating barriers (RIB). Despite major advancements in understanding this complex process, very little is known about the order in which RIBs evolve or their relative contribution to the total restriction of gene flow during various stages of speciation. This is mainly due to the difficulties of studying reproductive isolation during the early stages of species formation. This study examines ecological and non-ecological RIB within and between Daphnia pulex and Daphnia pulicaria, two recently diverged species that inhabit distinct habitats and exhibit an unusual level of intraspecific genetic subdivision. RESULTS We find that while ecological prezygotic barriers are close to completion, none of the non-ecological barriers can restrict gene flow between D. pulex and D. pulicaria completely when acting alone. Surprisingly, we also identified high levels of postzygotic reproductive isolation in 'conspecific' interpopulation crosses of D. pulex. CONCLUSIONS While the ecological prezygotic barriers are prevalent during the mature stages of speciation, non-ecological barriers likely dominated the early stages of speciation. This finding indicates the importance of studying the very early stages of speciation and suggests the contribution of postzygotic isolation in initiating the process of speciation.
Collapse
Affiliation(s)
- Tiffany A Chin
- Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
47
|
Moreira-Hernández JI, Muchhala N. Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024804] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding how pollen moves between species is critical to understanding speciation, diversification, and evolution of flowering plants. For co-flowering species that share pollinators, competition through interspecific pollen transfer (IPT) can profoundly impact floral evolution, decreasing female fitness via heterospecific pollen deposition on stigmas and male fitness via pollen misplacement during visits to heterospecific flowers. The pollination literature demonstrates that such reproductive interference frequently selects for reproductive character displacement in floral traits linked to pollinator attraction, pollen placement, and mating systems and has also revealed that IPT between given pairs of species is typically asymmetric. More recent work is starting to elucidate its importance to the speciation process, clarifying the link between IPT and current and historical patterns of hybridization, the evolution of phenotypic novelty through adaptive introgression, and the rise of reproductive isolation. Our review aims to stimulate further research on IPT as a ubiquitous mechanism that plays a central role in angiosperm diversification.
Collapse
Affiliation(s)
- Juan Isaac Moreira-Hernández
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| | - Nathan Muchhala
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| |
Collapse
|
48
|
Wesselingh RA, Hořčicová Š, Mirzaei K. Fitness of reciprocal F
1
hybrids between
Rhinanthus minor
and
Rhinanthus major
under controlled conditions and in the field. J Evol Biol 2019; 32:931-942. [DOI: 10.1111/jeb.13492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Renate A. Wesselingh
- Biodiversity Research Centre Earth and Life Institute UCLouvain Louvain‐la‐Neuve Belgium
| | - Šárka Hořčicová
- Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Khaled Mirzaei
- Biodiversity Research Centre Earth and Life Institute UCLouvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
49
|
Christie K, Strauss SY. Reproductive isolation and the maintenance of species boundaries in two serpentine endemic Jewelflowers. Evolution 2019; 73:1375-1391. [PMID: 31152435 DOI: 10.1111/evo.13767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre- and post-pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine-scales and rarely co-occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier-acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre-pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry.
Collapse
Affiliation(s)
- Kyle Christie
- UC Davis Department of Evolution and Ecology, and Center for Population Biology, University of California, One Shields Avenue, Davis, California, 95616
| | - Sharon Y Strauss
- UC Davis Department of Evolution and Ecology, and Center for Population Biology, University of California, One Shields Avenue, Davis, California, 95616
| |
Collapse
|
50
|
Sillo F, Gonthier P, Lockman B, Kasuga T, Garbelotto M. Molecular analyses identify hybridization-mediated nuclear evolution in newly discovered fungal hybrids. Ecol Evol 2019; 9:6588-6605. [PMID: 31236246 PMCID: PMC6580273 DOI: 10.1002/ece3.5238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hybridization may be a major driver in the evolution of plant pathogens. In a high elevation Alpine larch stand in Montana, a novel hybrid fungal pathogen of trees originating from the mating of Heterobasidion irregulare with H. occidentale has been recently discovered. In this study, sequence analyses of one mitochondrial and four nuclear loci from 11 Heterobasidion genotypes collected in the same Alpine larch stand indicated that hybridization has increased allelic diversity by generating novel polymorphisms unreported in either parental species. Sequence data and ploidy analysis through flow cytometry confirmed that heterokaryotic (n + n) genotypes were not first-generation hybrids, but were the result of multiple backcrosses, indicating hybrids are fertile. Additionally, all admixed genotypes possessed the H. occidentale mitochondrion, indicating that the hybrid progeny may have been backcrossing mostly with H. occidentale. Based on reticulate phylogenetic network analysis by PhyloNet, Bayesian assignment, and ordination tests, alleles can be defined as H. irregulare-like or H. occidentale-like. H. irregulare-like alleles are clearly distinct from all known H. irregulare alleles and are derived from the admixing of both Heterobasidion species. Instead, all but one H. occidentale alleles found in hybrids, although novel, were not clearly distinct from alleles found in the parental H. occidentale population. This discovery demonstrates that Alpine larch can be a universal host favouring the interspecific hybridization between H. irregulare and H. occidentale and the hybridization-mediated evolution of a nucleus, derived from H. irregulare parental species but clearly distinct from it.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Blakey Lockman
- Pacific Northwest Region, State and Private ForestryUSDA Forest ServicePortlandOregon
| | - Takao Kasuga
- Crops Pathology and Genetics Research UnitUSDA Agricultural Research ServiceDavisCalifornia
| | - Matteo Garbelotto
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
- Department of Environmental Science, Policy and Management, Forest Pathology and Mycology LaboratoryUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|